Skip to main content

Single-Chain Magnets and Related Systems

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 164))

Abstract

In this chapter, the static and dynamic magnetic properties of single-chain magnets and related systems are reviewed. We will particularly focus on the so-called Ising limit for which the magnetic anisotropy energy is much larger than the energy of the intrachain exchange interactions. The simple regular chain of ferromagnetically coupled spins will be first described. Static properties will be summarized to introduce the dominant role of domain walls at low temperature. The slow relaxation of the magnetization will be then discussed using a stochastic description. The deduced dynamic critical behavior will be analyzed in detail to explain the observed magnet behavior. In particular, the effect of applying a magnetic field, often ignored in the literature, will be discussed. Then, more complicated structures including chains of antiferromagnetically coupled magnetic sites will be discussed. Finally, the importance of interchain couplings will be introduced to discriminate between a “real” single-chain magnet and a sample presenting both a magnet-type property and a three-dimensional antiferromagnetic ordered state at low temperature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The equilibrium value of Γ is an even function of m and Γ is proportional to m 2 or Hm at low field. The estimation of d(Hm) at the LEA gives Hdm + mdH = 2Hdm (as m is proportional to H at equilibrium and low field). On the other hand, the dynamic calculation requires the estimation of d(Hm) for a constant value of H, which is exactly half of the LEA result.

Abbreviations

1-D:

One-dimensional

2-D:

Two-dimensional

3-D:

Three-dimensional

ac:

Alternating current

C :

Curie constant

dc:

Direct current

eiao :

1-Ethylimidazole-2-aldoximate

H:

Magnetic field

Hhmp:

2-Hydroxymethylpyridine

JT:

Jahn-Teller

LEA:

Local equilibrium approximation

LZ:

Landau-Zener

M:

Magnetization

miao :

1-Methylimidazole-2-aldoximate

pao :

Pyridine-2-aldoximate

py:

Pyridine

Rsaltmen2− :

N,N′–(1,1,2,2-Tetramethylethylene)-bis(5-Rsalicylideneiminate)

saltmen2− :

N,N′–(1,1,2,2-Tetramethylethylene)-bis(salicylideneiminate)

SCM:

Single-chain magnet

SMM:

Single-molecule magnet

T :

Temperature

ξ :

Correlation length

χ :

Magnetic susceptibility

References

  1. Boyd PDW, Li Q, Vincent JB, Folting K, Chang H-R, Streib WE, Huffman JC, Christou G, Hendrickson DN (1988) J Am Chem Soc 110:8537

    Article  CAS  Google Scholar 

  2. Caneschi A, Gatteschi D, Sessoli R (1991) J Am Chem Soc 113:5873

    Article  CAS  Google Scholar 

  3. Sessoli R, Tsai H-L, Schake AR, Wang S, Vincent JB, Folting K, Gatteschi D, Christou G, Hendrickson DN (1993) J Am Chem Soc 115:1804

    Article  CAS  Google Scholar 

  4. Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Nature 365:141

    Article  CAS  Google Scholar 

  5. Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R, Barbara B (1996) Nature 383:145

    Article  CAS  Google Scholar 

  6. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, Oxford

    Book  Google Scholar 

  7. Pedersen KS, Bendix J, Clérac R (2014) Chem Commun 50:4396

    Article  CAS  Google Scholar 

  8. Leuenberger MN, Loss D (2001) Nature 410:789

    Article  CAS  Google Scholar 

  9. Bogani L, Wernsdorfer W (2008) Nat Mater 7:179

    Article  CAS  Google Scholar 

  10. Afronte M (2008) J Mater Chem 19:1731

    Article  Google Scholar 

  11. Winpenny REP (2008) Angew Chem Int Ed 47:7992

    Article  CAS  Google Scholar 

  12. Wernsdorfer W (2008) CR Chimie 11:1086

    Article  CAS  Google Scholar 

  13. Mannini M, Pineider F, Sainctavit P, Danieli C, Otero E, Sciancalepore C, Talarico AM, Arrio MA, Cornia A, Gatteschi D, Sessoli R (2009) Nat Mater 8:194

    Article  CAS  Google Scholar 

  14. Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R, Venturi G, Vindigni A, Rettori A, Pini MG, Novak MA (2001) Angew Chem Int Ed 40:1760

    Article  CAS  Google Scholar 

  15. Clérac R, Miyasaka H, Yamashita M, Coulon C (2002) J Am Chem Soc 124:12837

    Article  Google Scholar 

  16. Coulon C, Miyasaka H, Clérac R (2006) Struct Bond 122:163

    Article  CAS  Google Scholar 

  17. Miyasaka H, Clérac R (2005) Bull Chem Soc Jpn 78:1725

    Article  CAS  Google Scholar 

  18. Xu G, Wang Q, Liao D, Yang G (2005) Prog Chem 17:970

    CAS  Google Scholar 

  19. Lescouëzec R, Toma LM, Vaissermann J, Verdaguer M, Delgado FS, Ruiz-Pérez C, Lloret F, Julve M (2005) Coord Chem Rev 249:2691

    Article  Google Scholar 

  20. Bogani L, Vindigni A, Sessoli R, Gatteschi D (2008) J Mater Chem 18:4750

    Article  CAS  Google Scholar 

  21. Miyasaka H, Julve M, Yamashita M, Clérac R (2009) Inorg Chem 48:3420

    Article  CAS  Google Scholar 

  22. Brooker S, Kitchen JA (2009) Dalton Trans 7331

    Google Scholar 

  23. Sun H-L, Wang Z-M, Gao S (2010) Coord Chem Rev 254:1081

    Article  CAS  Google Scholar 

  24. Zhang W-X, Ishikawa R, Breedlove B, Yamashita M (2013) RSC Adv 3:3772

    Article  CAS  Google Scholar 

  25. Glauber J (1963) J Math Phys 4:294

    Article  Google Scholar 

  26. Miyasaka H, Clérac R, Mizushima K, Sugiura K, Yamashita M, Wernsdorfer W, Coulon C (2003) Inorg Chem 42:8203

    Article  CAS  Google Scholar 

  27. Saitoh A, Miyasaka H, Yamashita M, Clérac R (2007) J Mater Chem 17:2002

    Article  CAS  Google Scholar 

  28. Miyasaka H, Saitoh A, Yamashita M, Clérac R (2008) Dalton Trans 2422

    Google Scholar 

  29. Lecren L, Roubeau O, Coulon C, Li Y-G, Le Goff XF, Wernsdorfer W, Miyasaka H, Clérac R (2005) J Am Chem Soc 127:17353

    Article  CAS  Google Scholar 

  30. Lecren L, Roubeau O, Li Y-G, Le Goff XF, Miyasaka H, Richard F, Wernsdorfer W, Coulon C, Clérac R (2008) Dalton Trans 755

    Google Scholar 

  31. Coulon C, Clérac R, Wernsdorfer W, Colin T, Miyasaka H (2009) Phys Rev Lett 102:167204

    Article  Google Scholar 

  32. Miyasaka H, Takayama K, Saitoh A, Furukawa S, Yamashita M, Clérac R (2010) Chem Eur J 16:3656

    Article  CAS  Google Scholar 

  33. Bhowmick I, Hillard EA, Dechambenoit P, Coulon C, Harris TD, Clérac R (2012) Chem Commun 48:9717

    Article  CAS  Google Scholar 

  34. Barbara B (1994) J Magn Magn Mater 129:79

    Article  CAS  Google Scholar 

  35. Lajzerowicz J, Niez JJ (1979) J Phys Lett 40:L165

    Article  Google Scholar 

  36. Fisher ME (1964) Am J Phys 32:343

    Article  Google Scholar 

  37. Nakamura K, Sasada T (1978) J Phys C 11:331

    Article  CAS  Google Scholar 

  38. Nakamura K, Sasada T (1977) Solid State Commun 21:891

    Article  Google Scholar 

  39. Sakai T, Matsumoto M, Asakura K, Sato M (2005) Progr Theor Phys Suppl 159:308

    Article  CAS  Google Scholar 

  40. Billoni O, Pianet V, Pescia D, Vindigni A (2011) Phys Rev B 84:064415

    Article  Google Scholar 

  41. Coulon C, Clérac R, Lecren L, Wernsdorfer W, Miyasaka H (2004) Phys Rev B 69:132408

    Article  Google Scholar 

  42. Cole KS, Cole RH (1941) J Chem Phys 9:341

    Article  CAS  Google Scholar 

  43. Sun Z-M, Prosvirin AV, Zhao H-H, Mao J-G, Dunbar KR (2005) J Appl Phys 97:10B305

    Google Scholar 

  44. Huang HW (1973) Phys Rev A 8:2553

    Article  Google Scholar 

  45. Saito Y, Kubo R (1976) J Stat Phys 15:233

    Article  Google Scholar 

  46. Boukheddaden K, Shteto I, Hoo B, Varret F (2000) Phys Rev B 62:14806

    Article  CAS  Google Scholar 

  47. Cordery R, Sarker S, Tobochnik J (1981) Phys Rev B 24:5402

    Article  Google Scholar 

  48. Wortis M (1974) Phys Rev B 10:4665

    Article  Google Scholar 

  49. Matsubara F, Yoshimura K (1973) Can J Phys 51:1053

    Article  Google Scholar 

  50. Luscombe JH, Luban M, Reynolds JP (1996) Phys Rev E 53:5852

    Article  CAS  Google Scholar 

  51. Dhar D, Barma M (1980) J Stat Phys 22:259

    Article  Google Scholar 

  52. Schwarz G (1965) J Mol Biol 11:64

    Article  CAS  Google Scholar 

  53. Pipkin AC, Gibbs JH (1996) Biopolymers 4:3

    Article  Google Scholar 

  54. Craig ME, Crothers DM (1968) Biopolymers 6:385

    Article  CAS  Google Scholar 

  55. Schwarz G (1968) Biopolymers 6:873

    Article  CAS  Google Scholar 

  56. Schwarz G (1968) Rev Mod Phys 40:206

    Article  CAS  Google Scholar 

  57. Schwarz G (1972) J Theor Biol 36:569

    Article  CAS  Google Scholar 

  58. Schwarz M Jr, Poland D (1976) J Chem Phys 65:2620

    Article  CAS  Google Scholar 

  59. Baumgärtner A, Binder K (1979) J Chem Phys 70:429

    Article  Google Scholar 

  60. Coulon C, Clérac R, Wernsdorfer W, Colin T, Saitoh A, Motokawa N, Miyasaka H (2007) Phys Rev B 76:214422

    Article  Google Scholar 

  61. Suzuki M, Kubo R (1968) J Phys Soc Jpn 24:51

    Article  Google Scholar 

  62. Wernsdorfer W, Clérac R, Coulon C, Lecren L, Miyasaka H (2005) Phys Rev Lett 95:237203

    Article  CAS  Google Scholar 

  63. Toma LM, Lescouëzec R, Pasan J, Ruiz-Perez C, Vaissermann J, Cano J, Carrasco R, Wernsdorfer W, Lloret F, Julve M (2006) J Am Chem Soc 128:4842

    Article  CAS  Google Scholar 

  64. Roubeau O, Clérac R (2008) Eur J Inorg Chem 4313:4480

    Google Scholar 

  65. Jeon IR, Clérac R (2012) Dalton Trans 41:9569

    Article  CAS  Google Scholar 

  66. Miyasaka H, Nezu T, Sugimoto K, Sugiura K-I, Yamashita M, Clérac R (2005) Chem Eur J 11:1592

    Article  CAS  Google Scholar 

  67. Zener C (1932) Proc R Soc A 137:696

    Article  Google Scholar 

  68. Wernsdorfer W, Bhaduri S, Vinslava A, Christou G (2005) Phys Rev B 72:4429

    Google Scholar 

  69. Wernsdorfer W, Sessoli R (1999) Science 284:133

    Article  CAS  Google Scholar 

  70. Lecren L, Wernsdorfer W, Li Y-G, Roubeau O, Miyasaka H, Clérac R (2005) J Am Chem Soc 127:11311

    Article  CAS  Google Scholar 

  71. Wernsdorfer W, Bonet Orozco E, Hasselbach K, Benoit A, Barbara B, Demoncy N, Loiseau A (1997) Phys Rev Lett 78:1791

    Article  CAS  Google Scholar 

  72. Wernsdorfer W, Murugesu M, Tasiopoulos T, Christou G (2005) Phys Rev B 72:212406

    Article  Google Scholar 

  73. Miyagawa K, Kanoda K, Kawamoto A (2004) Chem Rev 104:5635

    Article  CAS  Google Scholar 

  74. Miyasaka H, Madanbashi T, Sugimoto K, Nakazawa Y, Wernsdorfer W, Sugiura K-I, Yamashita M, Coulon C, Clérac R (2006) Chem Eur J 12:7028

    Article  CAS  Google Scholar 

  75. Harris TD, Bennett MV, Clérac R, Long JR (2010) J Am Chem Soc 132:3980

    Article  CAS  Google Scholar 

  76. Feng X, Harris TD, Long JR (2011) Chem Sci 2:1688

    Article  CAS  Google Scholar 

  77. Ishikawa R, Katoh K, Breedlove BK, Yamashita M (2012) Inorg Chem 51:9123

    Article  CAS  Google Scholar 

  78. Tomkowicz Z, Rams M, Balanda M, Foro S, Nojiri H, Krupskaya Y, Kataev V, Bücher B, Nayak SK, Yakhmi JV, Haase W (2012) Inorg Chem 51:9983

    Article  CAS  Google Scholar 

  79. Zhang Y-Q, Luo C-L, Wu X-B, Wang B-W, Gao S (2014) Inorg Chem 53:3503

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to all our co-workers, past students, and friends who have contributed to our scientific adventures. In addition, the authors thank the Conseil Régional d’Aquitaine, the University of Bordeaux, the CNRS, and the ANR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claude Coulon or Rodolphe Clérac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coulon, C., Pianet, V., Urdampilleta, M., Clérac, R. (2014). Single-Chain Magnets and Related Systems. In: Gao, S. (eds) Molecular Nanomagnets and Related Phenomena. Structure and Bonding, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2014_154

Download citation

Publish with us

Policies and ethics