Skip to main content

Gold Nanoclusters: Size-Controlled Synthesis and Crystal Structures

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 161))

Abstract

One of the major goals in nanoparticle research is to investigate their unique properties not seen in bulk materials or small molecules. In this chapter, we focus on a new class of gold nanoparticles (often called nanoclusters) that possess atomic precision (as opposed to conventional nanoparticles with a size distribution). The synthetic methods for obtaining atomically precise thiolate-protected gold nanocluters are first discussed, followed by the anatomy of the X-ray crystal structures of gold nanoclusters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903

    Article  CAS  Google Scholar 

  2. Jin R (2010) Quantum sized thiolate-protected gold nanoclusters. Nanoscale 2:343–362

    Article  CAS  Google Scholar 

  3. Qian H, Zhu M, Wu Z, Jin R (2012) Quantum sized gold nanoclusters with atomic precision. Acc Chem Res 45:1470

    Article  CAS  Google Scholar 

  4. Negishi Y, Nobusada K, Tsukuda T (2005) Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc 127:5261–5270

    Article  CAS  Google Scholar 

  5. Tracy JB, Crowe MC, Parker JF, Hampe O, Fields-Zinna CA, Dass A, Murray RW (2007) Electrospray ionization mass spectrometry of uniform and mixed monolayer nanoparticles: Au25[S(CH2)2Ph]18 and Au25[S(CH2)2Ph]18-x(SR)x. J Am Chem Soc 129:16209–16215

    Article  CAS  Google Scholar 

  6. Qian H, Zhu M, Andersen UN, Jin R (2009) Facile, large-scale synthesis of dodecanethiol-stabilized Au38 clusters. J Phys Chem A 113:4281–4284

    Article  CAS  Google Scholar 

  7. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1Å resolution. Science 318:430–433

    Article  CAS  Google Scholar 

  8. Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J Am Chem Soc 130:3754–3755

    Article  CAS  Google Scholar 

  9. Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc 130:5883–5885

    Article  CAS  Google Scholar 

  10. Qian H, Eckenhoff WT, Zhu Y, Pintauer T, Jin R (2010) Total structure determination of thiolate-protected Au38 nanoparticles. J Am Chem Soc 132:8280–8281

    Article  CAS  Google Scholar 

  11. Zeng C, Qian H, Li T, Li G, Rosi NL, Yoon B, Barnett RN, Whetten RL, Landman U, Jin R (2012) Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew Chem Int Ed 51:13114–13118

    Article  CAS  Google Scholar 

  12. Zeng C, Li T, Das A, Rosi NL, Jin R (2013) Chiral structure of thiolate-protected 28-Gold-atom nanocluster determined by X-ray crystallography. J Am Chem Soc 135:10011–10013

    Article  CAS  Google Scholar 

  13. Zhu M, Eckenhoff WT, Pintauer T, Jin R (2008) Conversion of anionic [Au25(SCH2CH2Ph)18] cluster to charge neutral cluster via air oxidation. J Phys Chem C 112:14221–14224

    Article  CAS  Google Scholar 

  14. Wu Z, Gayathri C, Gil RR, Jin R (2009) Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry. J Am Chem Soc 131:6535–6542

    Article  CAS  Google Scholar 

  15. Qian H, Zhu M, Gayathri C, Gil RR, Jin R (2011) Chirality in gold nanoclusters probed by NMR spectroscopy. ACS Nano 5:8935–8942

    Article  CAS  Google Scholar 

  16. McPartlin M, Mason R, Malatesta L (1969) Novel cluster complexes of gold(0)-gold(I). J Chem Soc D 334–334

    Google Scholar 

  17. Briant CE, Theobald BRC, White JW, Bell LK, Mingos DMP, Welch AJ (1981) Synthesis and X-ray structural characterization of the centred icosahedral gold cluster compound [Aul3(PMe2Ph)10Cl2](PF6)3; the realization of a theoretical prediction. J Chem Soc Chem Commun 201–202

    Google Scholar 

  18. Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis GHM, Vandervelden WA (1981) Au55[P(C6H5)3]12Cl6 − a gold cluster of an exceptional size. Chem Ber 114:3634–3642

    Article  CAS  Google Scholar 

  19. Teo BK, Shi XB, Zhang H (1992) Pure gold cluster of 1:9:9:1:9:9:1 layered structure: a novel 39-metal-atom cluster [(Ph3P)14Au39Cl6]Cl2 with an interstitial gold atom in a hexagonal antiprismatic cage. J Am Chem Soc 114:2743–2745

    Article  CAS  Google Scholar 

  20. Teo BK, Shi X, Zhang H (1991) Cluster of clusters. structure of a novel gold-silver cluster [(Ph3P)10Au13Ag12Br8](SbF6) containing an exact staggered-eclipsed-staggered metal configuration. Evidence of icosahedral units as building blocks. J Am Chem Soc 113:4329–4331

    Article  CAS  Google Scholar 

  21. Boon KT, Hong MC, Hong Z, Huang DB (1987) Cluster of clusters: structure of the 37-atom cluster [(p-Tol3P)12Au18Ag19Br11]2+ and a novel series of supraclusters based on vertex-sharing icosahedra. Angew Chem Int Ed 26:897–900

    Article  Google Scholar 

  22. Teo BK, Shi X, Zhang H (1993) Clusters of clusters. 25. Synthesis and structure of a new [gold-silver]-38-metal-atom cluster [(Ph3P)14Au18Ag20Cl12]Cl2 and its implications with regard to intracavity chemistry on metal cluster surfaces. Inorg Chem 32:3987–3988

    Article  CAS  Google Scholar 

  23. Tran NT, Powell DR, Dahl LF (2000) Nanosized Pd145(CO)x(PEt3)30 containing a capped three-shell 145-atom metal-core geometry of pseudo icosahedral symmetry. Angew Chem Int Ed 39:4121–4125

    Article  CAS  Google Scholar 

  24. Tran NT, Dahl LF (2003) Nanosized [Pd69(CO)36(PEt3)18]: metal-core geometry containing a linear assembly of three face-sharing centered Pd33 icosahedra inside of a hexagonal-shaped Pd30 tube. Angew Chem Int Ed 42:3533–3537

    Article  CAS  Google Scholar 

  25. Mednikov EG, Ivanov SA, Slovokhotova IV, Dahl LF (2005) Nanosized [Pd52(CO)36(PEt3)14] and [Pd66(CO)45(PEt3)16] clusters based on a hypothetical Pd38 vertex-truncated ν 3 octahedron. Angew Chem Int Ed 44:6848–6854

    Article  CAS  Google Scholar 

  26. Mednikov EG, Dahl LF (2008) Nanosized Pd37(CO)28{P(p-Tolyl)3}12 containing geometrically unprecedented central 23-atom interpenetrating tri-icosahedral palladium kernel of double icosahedral units: its postulated metal-core evolution and resulting stereochemical implications. J Am Chem Soc 130:14813–14821

    Article  CAS  Google Scholar 

  27. Shichibu Y, Konishi K (2010) HCl-induced nuclearity convergence in diphosphine-protected ultrasmall gold clusters: a novel synthetic route to “Magic-Number” Au13 clusters. Small 6:1216–1220

    Article  CAS  Google Scholar 

  28. Pettibone JM, Hudgens JW (2011) Gold cluster formation with phosphine ligands: etching as a size-selective synthetic pathway for small clusters? ACS Nano 5:2989–3002

    Article  CAS  Google Scholar 

  29. Wan X-K, Lin Z-W, Wang Q-M (2012) Au20 nanocluster protected by hemilabile phosphines. J Am Chem Soc 134:14750–14752

    Article  CAS  Google Scholar 

  30. Shichibu Y, Negishi Y, Watanabe T, Chaki NK, Kawaguchi H, Tsukuda T (2007) Biicosahedral gold clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n = 2-18): a stepping stone to cluster-assembled materials. J Phys Chem C 111:7845–7847

    Article  CAS  Google Scholar 

  31. Qian H, Eckenhoff WT, Bier ME, Pintauer T, Jin R (2011) Crystal structures of Au2 complex and Au25 nanocluster and mechanistic insight into the conversion of polydisperse nanoparticles into monodisperse Au25 nanoclusters. Inorg Chem 50:10735–10739

    Article  CAS  Google Scholar 

  32. Das A, Li T, Nobusada K, Zeng Q, Rosi NL, Jin R (2012) Total structure and optical properties of a phosphine/thiolate-protected Au24 nanocluster. J Am Chem Soc 134:20286–20289

    Article  CAS  Google Scholar 

  33. Yang H, Wang Y, Lei J, Shi L, Wu X, Mäkinen V, Lin S, Tang Z, He J, Häkkinen H, Zheng L, Zheng N (2013) Ligand-stabilized Au13Cux (x = 2, 4, 8) bimetallic nanoclusters: ligand engineering to control the exposure of metal sites. J Am Chem Soc 135:9568–9571

    Article  CAS  Google Scholar 

  34. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 7:801–802

    Article  Google Scholar 

  35. Whetten RL, Khoury JT, Alvarez MM, Murthy S, Vezmar I, Wang ZL, Stephens PW, Cleveland CL, Luedtke WD, Landman U (1996) Nanocrystal Gold Molecules. Adv Mater 8:428–433

    Article  CAS  Google Scholar 

  36. Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101:3706–3712

    Article  CAS  Google Scholar 

  37. Jin R, Qian H, Wu Z, Zhu Y, Zhu M, Mohanty A, Garg N (2010) Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J Phys Chem Lett 1:2903–2910

    Article  CAS  Google Scholar 

  38. Zhu M, Lanni E, Garg N, Bier ME, Jin R (2008) Kinetically controlled, high-yield synthesis of Au25 clusters. J Am Chem Soc 130:1138–1139

    Article  CAS  Google Scholar 

  39. Qian H, Zhu Y, Jin R (2009) Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. ACS Nano 3:3795–3803

    Article  CAS  Google Scholar 

  40. Qian H, Jin R (2009) Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. Nano Lett 9:4083–4087

    Article  CAS  Google Scholar 

  41. Qian H, Zhu Y, Jin R (2012) Atomically precise gold nanocrystal molecules with surface plasmon resonance. Proc Natl Acad Sci U S A 109:696–700

    Article  CAS  Google Scholar 

  42. Shichibu Y, Negishi Y, Tsukuda T, Teranishi T (2005) Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. J Am Chem Soc 127:13464–13465

    Article  CAS  Google Scholar 

  43. Nimmala PR, Dass A (2011) Au36(SPh)23 nanomolecules. J Am Chem Soc 133:9175–9177

    Article  CAS  Google Scholar 

  44. Cleveland CL, Landman U, Schaaff TG, Shafigullin MN, Stephens PW, Whetten RL (1997) Structural evolution of smaller gold nanocrystals: the truncated decahedral motif. Phys Rev Lett 79:1873–1876

    Article  CAS  Google Scholar 

  45. Schaaff TG, Shafigullin MN, Khoury JT, Vezmar I, Whetten RL, Cullen WG, First PN, Gutierrez-Wing C, Ascensio J, Jose-Yacaman MJ (1997) Isolation of smaller nanocrystal au molecules: robust quantum effects in optical spectra. J Phys Chem B 101:7885–7891

    Article  CAS  Google Scholar 

  46. Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL (1998) Isolation and selected properties of a 10.4 kDa gold: glutathione cluster compound. J Phys Chem B 102:10643–10646

    Article  CAS  Google Scholar 

  47. Schaaff TG, Shafigullin MN, Khoury JT, Vezmar I, Whetten RL (2001) Properties of a ubiquitous 29 kDa Au: SR cluster compound. J Phys Chem B 105:8785–8796

    Article  CAS  Google Scholar 

  48. Chaki NK, Negishi Y, Tsunoyama H, Shichibu Y, Tsukuda T (2008) Ubiquitous 8 and 29 kDa Gold:Alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. J Am Chem Soc 130:8608–8610

    Article  CAS  Google Scholar 

  49. Tsunoyama H, Negishi Y, Tsukuda T (2006) Chromatographic isolation of “Missing” Au55 clusters protected by alkanethiolates. J Am Chem Soc 128:6036–6037

    Article  CAS  Google Scholar 

  50. Qian H, Zhu Y, Jin R (2010) Isolation of ubiquitous Au40(SR)24 clusters from the 8 kDa gold clusters. J Am Chem Soc 132:4583–4585

    Article  CAS  Google Scholar 

  51. Knoppe S, Boudon J, Dolamic I, Dass A, Burgi T (2011) Size exclusion chromatography for semipreparative scale separation of Au38(SR)24 and Au40(SR)24 and larger clusters. Anal Chem 83:5056–5061

    Article  CAS  Google Scholar 

  52. Qian H, Jin R (2011) Synthesis and electrospray mass spectrometry determination of thiolate-protected Au55(SR)31 nanoclusters. Chem Comm 47:11462–11464

    Article  CAS  Google Scholar 

  53. Negishi Y, Sakamoto C, Ohyama T, Tsukuda T (2012) Synthesis and the origin of the stability of thiolate-protected Au130 and Au187 clusters. J Phys Chem Lett 3:1624–1628

    Article  CAS  Google Scholar 

  54. Nimmala PR, Yoon B, Whetten RL, Landman U, Dass A (2013) Au67(SR)35 nanomolecules: characteristic size-specific optical, electrochemical, structural properties and first-principles theoretical analysis. J Phys Chem A 117:504–517

    Article  CAS  Google Scholar 

  55. Schaaff TG, Whetten RL (1999) Controlled etching of Au:SR cluster compounds. J Phys Chem B 103:9394–9396

    Article  CAS  Google Scholar 

  56. Sakai N, Tatsuma T (2010) Photovoltaic properties of glutathione-protected gold clusters adsorbed on TiO2 electrodes. Adv Mater 22:3185–3188

    Article  CAS  Google Scholar 

  57. Sexton JZ, Ackerson CJ (2010) Determination of rigidity of protein bound Au144 clusters by electron cryomicroscopy. J Phys Chem C 114:16037–16042

    Article  CAS  Google Scholar 

  58. Wu Z, Wang M, Yang J, Zheng X, Cai W, Meng G, Qian H, Wang H, Jin R (2012) Well-defined nanoclusters as fluorescent nanosensors: a case study on Au25(SG)18. Small 8:2028–2035

    Article  CAS  Google Scholar 

  59. Li G, Jin R (2013) Atomically precise gold nanoclusters as new model catalysts. Acc Chem Res 46:1749–1758

    Article  CAS  Google Scholar 

  60. Wu Z, MacDonald M, Chen J, Zhang P, Jin R (2011) Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. J Am Chem Soc 133:9670–9673

    Article  CAS  Google Scholar 

  61. Akola J, Walter M, Whetten RL, Häkkinen H, Grönbeck H (2008) On the structure of thiolate-protected Au25. J Am Chem Soc 130:3756–3757

    Article  CAS  Google Scholar 

  62. Wu Z, Suhan J, Jin R (2009) One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters. J Mater Chem 19:622–626

    Article  CAS  Google Scholar 

  63. Liu C, Li G, Pang G, Jin R (2013) Toward understanding the growth mechanism of Au n (SR) m nanoclusters: effect of solvent on cluster size. RSC Adv 3:9778–9784

    Article  CAS  Google Scholar 

  64. Dharmaratne AC, Krick T, Dass A (2009) Nanocluster size evolution studied by mass spectrometry in room temperature Au25(SR)18 synthesis. J Am Chem Soc 131:13604–13605

    Article  CAS  Google Scholar 

  65. Qian H, Liu C, Jin R (2012) Controlled growth of molecularly pure Au25(SR)18 and Au38(SR)24 nanoclusters from the same polydispersed crude product. Sci China Chem 55:2359–2365

    Article  CAS  Google Scholar 

  66. Stellwagen D, Weber A, Bovenkamp GL, Jin R, Bitter JH, Kumar CSSR (2012) Ligand control in thiol stabilized Au38 clusters. RSC Adv 2:2276–2283

    Article  CAS  Google Scholar 

  67. Qian H, Jin R (2011) Ambient synthesis of Au144(SR)60 nanoclusters in methanol. Chem Mater 23:2209–2217

    Article  CAS  Google Scholar 

  68. Zhu M, Qian H, Jin R (2009) Thiolate-protected Au20 clusters with a large energy gap of 2.1 eV. J Am Chem Soc 131:7220–7221

    Article  CAS  Google Scholar 

  69. Zhu M, Qian H, Jin R (2010) Thiolate-protected Au24(SC2H4Ph)20 nanoclusters: superatoms or not? J Phys Chem Lett 1:1003–1007

    Article  CAS  Google Scholar 

  70. Levi-Kalisman Y, Jadzinsky PD, Kalisman N, Tsunoyama H, Tsukuda T, Bushnell DA, Kornberg RD (2011) Synthesis and characterization of Au102(p-MBA)44 nanoparticles. J Am Chem Soc 133:2976–2983

    Article  CAS  Google Scholar 

  71. Xu Q, Wang S, Liu Z, Xu G, Meng X, Zhu M (2013) Synthesis of selenolate-protected Au18(SeC6H5)14 nanoclusters. Nanoscale 5:1176–1182

    Article  CAS  Google Scholar 

  72. Yu Y, Chen X, Yao Q, Yu Y, Yan N, Xie J (2013) Scalable and precise synthesis of thiolated Au10–12, Au15, Au18, and Au25 nanoclusters via pH controlled CO reduction. Chem Mater 25:946–952

    Article  CAS  Google Scholar 

  73. Ghosh A, Udayabhaskararao T, Pradeep T (1997–2002) One-step route to luminescent Au18SG14 in the condensed phase and its closed shell molecular ions in the gas phase. J Phys Chem Lett 2012:3

    Google Scholar 

  74. Zeng C, Liu C, Pei Y, Jin R (2013) Thiol ligand-induced transformation of Au38(SC2H4Ph)24 to Au36(SPh-t-Bu)24. ACS Nano 7:6138–6145

    Article  CAS  Google Scholar 

  75. Whetten RL, Price RC (2007) Nano-golden order. Science 318:407–408

    Article  CAS  Google Scholar 

  76. Jiang D, Tiago ML, Luo W, Dai S (2008) The “Staple” Motif: a key to stability of thiolate-protected gold nanoclusters. J Am Chem Soc 130:2777–2779

    Article  CAS  Google Scholar 

  77. Pei Y, Gao Y, Zeng XC (2008) Structural prediction of thiolate-protected Au38: a face-fused bi-icosahedral Au core. J Am Chem Soc 130:7830–7832

    Article  CAS  Google Scholar 

  78. Lopez-Acevedo O, Tsunoyama H, Tsukuda T, Häkkinen H, Aikens CM (2010) Chirality and electronic structure of the thiolate-protected Au38 nanocluster. J Am Chem Soc 132:8210–8218

    Article  CAS  Google Scholar 

  79. Jiang D-E, Overbury SH, Dai S (2013) Structure of Au15(SR)13 and its implication for the origin of the nucleus in thiolated gold nanoclusters. J Am Chem Soc 135:8786–8789

    Article  CAS  Google Scholar 

  80. Pei Y, Gao Y, Shao N, Zeng XC (2009) Thiolate-protected Au20(SR)16 cluster: prolate Au8 core with new [Au3(SR)4] staple Motif. J Am Chem Soc 131:13619–13621

    Article  CAS  Google Scholar 

  81. Iwasa T, Nobusada K (2007) Theoretical investigation of optimized structures of thiolated gold cluster [Au25(SCH3)18]+. J Phys Chem C 111:45–49

    Article  CAS  Google Scholar 

  82. Jin R, Zhu Y, Qian H (2011) Quantum-sized gold nanoclusters: bridging the gap between organometallics and nanocrystals. Chem Eur J 17:6584–6593

    Article  CAS  Google Scholar 

  83. Venzo A, Antonello S, Gascón JA, Guryanov I, Leapman RD, Perera NV, Sousa A, Zamuner M, Zanella A, Maran F (2011) Effect of the charge state (z = −1, 0, +1) on the nuclear magnetic resonance of monodisperse Au25[S(CH2)2Ph]18 z clusters. Anal Chem 83:6355–6362

    Article  CAS  Google Scholar 

  84. Liu Z, Zhu M, Meng X, Xu G, Jin R (2011) Electron transfer between [Au25(SC2H4Ph)18]TOA+ and oxoammonium cations. J Phys Chem Lett 2:2104–2109

    Article  CAS  Google Scholar 

  85. Negishi Y, Chaki NK, Shichibu Y, Whetten RL, Tsukuda T (2007) Origin of magic stability of thiolated gold clusters: a case study on Au25(SC6H13)18. J Am Chem Soc 129:11322–11323

    Article  CAS  Google Scholar 

  86. Parker JF, Choi J-P, Wang W, Murray RW (2008) Electron self-exchange dynamics of the nanoparticle couple [Au25(SC2Ph)18]0/1− by nuclear magnetic resonance line-broadening. J Phys Chem C 112:13976–13981

    Article  CAS  Google Scholar 

  87. Kwak K, Lee D (2012) Electrochemical characterization of water-soluble Au25 nanoclusters enabled by phase-transfer reaction. J Phys Chem Lett 3:2476–2481

    Article  CAS  Google Scholar 

  88. Swanick KN, Hesari M, Workentin MS, Ding Z (2012) Interrogating near-infrared electrogenerated chemiluminescence of Au25(SC2H4Ph)18 + clusters. J Am Chem Soc 134:15205–15208

    Article  CAS  Google Scholar 

  89. Zhu M, Aikens CM, Hendrich MP, Gupta R, Qian H, Schatz GC, Jin R (2009) Reversible switching of magnetism in thiolate-protected Au25 superatoms. J Am Chem Soc 131:2490–2492

    Article  CAS  Google Scholar 

  90. Marks L (1983) Modified Wulff constructions for twinned particles. J Cryst Growth 61:556–566

    Article  CAS  Google Scholar 

  91. Marks L (1984) Surface structure and energetics of multiply twinned particles. Philos Mag A 49:81–93

    Article  CAS  Google Scholar 

  92. Mednikov EG, Dahl LF (2008) Crystallographically proven nanometer-sized gold thiolate cluster Au102(SR)44: its unexpected molecular anatomy and resulting stereochemical and bonding consequences. Small 4:534–537

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Air Force Office of Scientific Research under AFOSR Award No. FA9550-11-1-9999 (FA9550-11-1-0147) and the Camille Dreyfus Teacher-Scholar Awards Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongchao Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zeng, C., Jin, R. (2014). Gold Nanoclusters: Size-Controlled Synthesis and Crystal Structures. In: Mingos, D. (eds) Gold Clusters, Colloids and Nanoparticles I. Structure and Bonding, vol 161. Springer, Cham. https://doi.org/10.1007/430_2014_146

Download citation

Publish with us

Policies and ethics