Skip to main content

Part of the book series: Structure and Bonding ((STRUCTURE,volume 153))

Abstract

In this chapter the application of transition metal nitrosyl complexes in homogeneous catalysis has been reviewed. Particular attention was paid to the function of nitrosyl as: (1) a π-accepting ancillary ligand; (2) a non-innocent ligand capable of reversible linear/bent transformations triggering catalytic reaction courses; (3) a redox-active ligand functioning as a “nitrosyl/nitro” redox couple for oxygen atom transfer reactions. The catalytic performance and the reaction mechanisms are discussed in terms of the respective function of the NO ligand. Group 6 molybdenum and tungsten mononitrosyl hydride complexes are reviewed with respect to their activity in hydrogenations proceeding with heterolytic splitting of H2. Group 7 rhenium mononitrosyl and dinitrosyl hydride complexes are reviewed with respect to their highly efficient performance in hydrogen-related catalyses, which is highlighted by alkene hydrogenations based on Re(I) mononitrosyl complexes and efficient transfer hydrogenations based on bifunctional Shvo-type Re–H/OH and Noyori-type Re–H/NH complexes. Group 8 iron mononitrosyl- and dinitrosyl-based catalysts are surveyed with respect to their function as Lewis acids inducing nucleophilic activity in Lewis acid type organic transformations. Then the “catalytic nitrosyl effect” is described boosting catalyses by reversible nitrosyl bending, which plays a crucial role in Re(−I) dinitrosyl and Re(I) mononitrosyl catalytic systems. The oxygen atom transfer reaction based on the “nitrosyl/nitro” redox couple involving the Co, Pd, Rh, and Ru metal centers was also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BArF 4 :

B[3,5-(CF3)2C6H3]4

Cy:

Cyclohexyl

Dcype:

1,2-Bis(dicyclohexylphosphino)ethane

Dippe:

1,2-Bis-(diisopropylphosphino)ethane

Dippf:

1,1′-Bis(diisopropylphosphino)ferrocene

Dippp:

1,3-Bis(diisopropylphosphino)-propane

Diprpfc:

1,1′-Bisdiisopropylphosphinopherrocene

DMF:

Dimethylformamide

Dmpe:

1,2-Bis-(dimethylphosphino)ethane

Dpephos:

Bis(2-(diphenylphosphino)phenyl) ether

Dppfc:

1,1′-Bis(diphenylphosphino)ferrocene

DQCC:

Deuterium quadrupole coupling constants

edta:

Ethylenediaminetetraacetate

Homoxantphos:

10,11-Dihydro-4,5,-bis(diphenylphosphino)dibenzo[b,f]oxepine

IMes:

1,3-Bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene

KOtAm:

Potassium 2-methylbutan-2-olate

LA:

Lewis acid

MS:

Molecular sieves

MTBE:

Methyl tert-butyl ether

Ph:

Phenyl

Pr:

Isopropyl

Py:

Pyridine

Saloph:

N,N′-bisalicylidene-o-phenylenediamino

SIMes:

1,3-Bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene

Sixantphos:

4,6-Bis(diphenylphosphino)-10,10-dimethylphenoxasilin

TBABr:

Tetrabutylammonium bromide

TBAF:

Tetrabutylammonium fluoride

TOF:

Turn over frequency

TON:

Turn over number

TPP:

Tetraphenylporphyrin

References

  1. Cossee P (1964) Ziegler-Natta catalysis.1. Mechanism of polymerization of alpha-olefins with Ziegler-Natta catalysts. J Catal 3:80–88

    CAS  Google Scholar 

  2. Britovsek GJP, Gibson VC, Wass DF (1999) The search for New-generation olefin polymerization catalysts: life beyond metallocenes. Angew Chem Int Ed 38:428–447

    CAS  Google Scholar 

  3. Noyori R (2002) Asymmetric catalysis: science and opportunities (Nobel lecture). Angew Chem Int Ed 41:2008–2022

    CAS  Google Scholar 

  4. Noyori R, Hashiguchi S (1997) Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes. Acc Chem Res 30:97–102

    CAS  Google Scholar 

  5. Noyori R, Kitamura M (1991) Enantioselective addition of organometallic reagents to carbonyl-compounds - chirality transfer, multiplication, and amplification. Angew Chem Int Ed 30:49–69

    Google Scholar 

  6. Noyori R, Yamakawa M, Hashiguchi S (2001) Metal-ligand bifunctional catalysis: a nonclassical mechanism for asymmetric hydrogen transfer between alcohols and carbonyl compounds. J Org Chem 66:7931–7944

    CAS  Google Scholar 

  7. Noyori R, Ohkuma T (2001) Asymmetric catalysis by architectural and functional molecular engineering: practical chemo- and stereoselective hydrogenation of ketones. Angew Chem Int Ed 40:40–73

    CAS  Google Scholar 

  8. Trnka TM, Grubbs RH (2001) The development of L2X2Ru = CHR olefin metathesis catalysts: an organometallic success story. Acc Chem Res 34:18–29

    CAS  Google Scholar 

  9. Schrock RR (2006) Multiple metal-carbon bonds for catalytic metathesis reactions (Nobel lecture). Angew Chem Int Ed 45:3748–3759

    CAS  Google Scholar 

  10. Grubbs RH (2006) Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel lecture). Angew Chem Int Ed 45:3760–3765

    CAS  Google Scholar 

  11. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483

    CAS  Google Scholar 

  12. Beletskaya IP, Cheprakov AV (2000) The heck reaction as a sharpening stone of palladium catalysis. Chem Rev 100:3009–3066

    CAS  Google Scholar 

  13. Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M (2002) Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem Rev 102:1359–1469

    CAS  Google Scholar 

  14. McCleverty JA (2004) Chemistry of nitric oxide relevant to biology. Chem Rev 104:403–418

    CAS  Google Scholar 

  15. Miranda KM (2005) The chemistry of nitroxyl (HNO) and implications in biology. Coord Chem Rev 249:433–455

    CAS  Google Scholar 

  16. Derry TTK, Williams TI (1993) A short history of technology: from the earliest time to A.D. 1900. Dover, Mineola

    Google Scholar 

  17. Enemark JH, Feltham RD (1974) Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coord Chem Rev 13:339–406

    CAS  Google Scholar 

  18. Hayton TW, Legzdins P, Sharp WB (2002) Coordination and organometallic chemistry of metal-NO complexes. Chem Rev 102:935–991

    CAS  Google Scholar 

  19. Richter-Addo GB, Legzdins P, Burstyn J (2002) Introduction: nitric oxide chemistry. Chem Rev 102:857–859

    CAS  Google Scholar 

  20. Ford PC, Lorkovic IM (2002) Mechanistic aspects of the reactions of nitric oxide with transition-metal complexes. Chem Rev 102:993–1017

    CAS  Google Scholar 

  21. Hoshino M, Laverman L, Ford PC (1999) Nitric oxide complexes of metalloporphyrins: an overview of some mechanistic studies. Coord Chem Rev 187:75–102

    CAS  Google Scholar 

  22. Grützmacher H (2008) Cooperating ligands in catalysis. Angew Chem Int Ed 47:1814–1818

    Google Scholar 

  23. Hindson K, de Bruin B (2012) Cooperative & redox non-innocent ligands in directing organometallic reactivity (Eur. J. Inorg. Chem. 3/2012). Eur J Inorg Chem 2012:340–342

    CAS  Google Scholar 

  24. Jiang Y, Hess J, Fox T, Berke H (2010) Rhenium hydride/boron lewis acid cocatalysis of alkene hydrogenations: activities comparable to those of precious metal systems. J Am Chem Soc 132:18233–18247

    CAS  Google Scholar 

  25. Kubas GJ (2007) Fundamentals of H-2 binding and reactivity on transition metals underlying hydrogenase function and H-2 production and storage. Chem Rev 107:4152–4205

    CAS  Google Scholar 

  26. Kubas GJ (2004) In: van Eldik R (ed) Advances in inorganic chemistry – including bioinorganic studies, vol 56. Advances in inorganic chemistry. Elsevier Academic Press, Amsterdam, pp 127–177

    Google Scholar 

  27. Heinekey DM, Lledos A, Lluch JM (2004) Elongated dihydrogen complexes: what remains of the H-H Bond? Chem Soc Rev 33:175–182

    CAS  Google Scholar 

  28. Heinekey DM, Oldham WJ (1993) Coordination chemistry of dihydrogen. Chem Rev 93:913–926

    CAS  Google Scholar 

  29. Bullock RM (2004) Catalytic ionic hydrogenations. Chem Eur J 10:2366–2374

    CAS  Google Scholar 

  30. Esteruelas MA, Oro LA (2001) The chemical and catalytic reactions of hydrido-chloro-carbonylbis (triisopropylphosphine)osmium(II) and its major derivatives. Adv Organomet Chem 47(47):1–59

    CAS  Google Scholar 

  31. Jiang Y, Schirmer B, Blacque O, Fox T, Grimme S, Berke H (2013) The “Catalytic Nitrosyl Effect”: NO bending boosting the efficiency of rhenium based alkene hydrogenations. J Am Chem Soc 135(10):4088–4102

    CAS  Google Scholar 

  32. Llamazares A, Schmalle HW, Berke H (2001) Ligand-assisted heterolytic activation of hydrogen and silanes mediated by nitrosyl rhenium complexes. Organometallics 20:5277–5288

    CAS  Google Scholar 

  33. Gusev D, Llamazares A, Artus G, Jacobsen H, Berke H (1999) Classical and nonclassical nitrosyl hydride complexes of rhenium in various oxidation states. Organometallics 18:75–89

    CAS  Google Scholar 

  34. Goodwin J, Bailey R, Pennington W, Rasberry R, Green T, Shasho S, Yongsavanh M, Echevarria V, Tiedeken J, Brown C, Fromm G, Lyerly S, Watson N, Long A, De Nitto N (2001) Structural and oxo-transfer reactivity differences of hexacoordinate and pentacoordinate (nitro) (tetraphenylporphinato)cobalt(III) derivatives. Inorg Chem 40:4217–4225

    CAS  Google Scholar 

  35. Kurtikyan TS, Gulyan GM, Dalaloyan AM, Kidd BE, Goodwin JA (2010) Six-coordinate nitrosyl and nitro complexes of meso-tetratolylporphyrinatocobalt with trans sulfur-donor ligands. Inorg Chem 49:7793–7798

    CAS  Google Scholar 

  36. Afshar RK, Eroy-Reveles AA, Olmstead MM, Mascharak PK (2006) Stoichiometric and catalytic secondary O-atom transfer by Fe(III)-NO2 complexes derived from a planar tetradentate non-heme ligand: reminiscence of heme chemistry. Inorg Chem 45:10347–10354

    CAS  Google Scholar 

  37. Clapham SE, Hadzovic A, Morris RH (2004) Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes. Coord Chem Rev 248:2201–2237

    CAS  Google Scholar 

  38. Berke H, Burger P (1994) Nitrosyl substituted hydride complexes - an activated class of compounds. Comments Inorg Chem 16:279–312

    CAS  Google Scholar 

  39. Jacobsen H, Berke H (2002) Tuning of the transition metal hydrogen bond: how do trans ligands influence bond strength and hydridicity? J Chem Soc Dalton Trans:3117–3122

    Google Scholar 

  40. Liang FP, Jacobsen H, Schmalle HW, Fox T, Berke H (2000) Carbonylhydridonitrosyltris(trimethylphosphine)molybdenum(0): an activated hydride complex. Organometallics 19:1950–1962

    CAS  Google Scholar 

  41. Liang FP, Schmalle HW, Fox T, Berke H (2003) Hydridic character and reactivity of Di 1,2-bis(dimethylphosphino)ethane hydridonitrosylmolybdenum(0). Organometallics 22:3382–3393

    CAS  Google Scholar 

  42. Chen Z, Schmalle HW, Fox T, Berke H (2005) Insertion reactions of hydridonitrosyltetrakis(trimethylphosphine) tungsten(0). Dalton Trans:580–587

    Google Scholar 

  43. Zhao Y, Schmalle HW, Fox T, Blacque O, Berke H (2006) Hydride transfer reactivity of tetrakis(trimethylphosphine) (hydrido)(nitrosyl)molybdenum(0). Dalton Trans:73–85

    Google Scholar 

  44. Dybov A, Blacque O, Berke H (2010) Molybdenum and tungsten nitrosyl complexes in hydrogen activation. Eur J Inorg Chem:3328–3337

    Google Scholar 

  45. Robinson SD, Wilkinson G (1966) New diene and carbonyl complexes of ruthenium. J Chem Soc A:300–301

    Google Scholar 

  46. Osborn JA, Jardine FH, Young JF, Wilkinson G (1966) Preparation and properties of tris(triphenylphosphine)halogenorhodium(1) and some reactions thereof including catalytic homogeneous hydrogenation of olefins and acetylenes and their derivatives. J Chem Soc A:1711–1729

    Google Scholar 

  47. Bullock RM, Song JS (1994) Ionic hydrogenations of hindered olefins at low-temperature - hydride transfer-reactions of transition-metal hydrides. J Am Chem Soc 116:8602–8612

    CAS  Google Scholar 

  48. Luan L, Song JS, Bullock RM (1995) Ionic hydrogenation of alkynes by HOTF and CP(CO)(3)WH. J Org Chem 60:7170–7176

    CAS  Google Scholar 

  49. Song JS, Szalda DJ, Bullock RM, Lawrie CJC, Rodkin MA, Norton JR (1992) Hydride transfer by hydride transition-metal complexes - ionic hydrogenation of aldehydes and ketones, and structural characterization of an alcohol complex. Angew Chem Int Ed 31:1233–1235

    Google Scholar 

  50. Dybov A, Blacque O, Berke H (2011) Molybdenum nitrosyl complexes and their application in catalytic imine hydrogenation reactions. Eur J Inorg Chem:652–659

    Google Scholar 

  51. Schnider P, Koch G, Pretot R, Wang GZ, Bohnen FM, Kruger C, Pfaltz A (1997) Enantioselective hydrogenation of imines with chiral (phosphanodihydrooxazole)iridium catalysts. Chem Eur J 3:887–892

    CAS  Google Scholar 

  52. Jiang Y, Blacque O, Fox T, Frech CM, Berke H (2009) Highly selective dehydrogenative silylation of alkenes catalyzed by rhenium complexes. Chem Eur J 15:2121–2128

    CAS  Google Scholar 

  53. Jiang Y, Blacque O, Fox T, Frech CM, Berke H (2009) Development of rhenium catalysts for amine borane dehydrocoupling and transfer hydrogenation of olefins. Organometallics 28:5493–5504

    CAS  Google Scholar 

  54. Jiang Y, Berke H (2007) Dehydrocoupling of dimethylamine-borane catalysed by rhenium complexes and its application in olefin transfer-hydrogenations. Chem Commun:3571–3573

    Google Scholar 

  55. Hamilton CW, Baker RT, Staubitz A, Manners I (2009) B-N compounds for chemical hydrogen storage. Chem Soc Rev 38:279–293

    CAS  Google Scholar 

  56. Marder TB (2007) Will we soon be fueling our automobiles with ammonia-borane? Angew Chem Int Ed 46:8116–8118

    CAS  Google Scholar 

  57. Denney MC, Pons V, Hebden TJ, Heinekey DM, Goldberg KI (2006) Efficient catalysis of ammonia borane dehydrogenation. J Am Chem Soc 128:12048–12049

    CAS  Google Scholar 

  58. Pons V, Baker RT, Szymczak NK, Heldebrant DJ, Linehan JC, Matus MH, Grant DJ, Dixon DA (2008) Coordination of aminoborane, NH2BH2, dictates selectivity and extent of H-2 release in metal-catalysed ammonia borane dehydrogenation. Chem Commun:6597–6599

    Google Scholar 

  59. Jaska CA, Temple K, Lough AJ, Manners I (2003) Transition metal-catalyzed formation of boron-nitrogen bonds: catalytic dehydrocoupling of amine-borane adducts to form aminoboranes and borazines. J Am Chem Soc 125:9424–9434

    CAS  Google Scholar 

  60. Clark TJ, Russell CA, Manners I (2006) Homogeneous, titanocene-catalyzed dehydrocoupling of amine-borane adducts. J Am Chem Soc 128:9582–9583

    CAS  Google Scholar 

  61. Corey JY, Braddock-Wilking J (1999) Reactions of hydrosilanes with transition-metal complexes: formation of stable transition-metal silyl compounds. Chem Rev 99:175–292

    CAS  Google Scholar 

  62. Marciniec B (2005) Catalysis by transition metal complexes of alkene silylation - recent progress and mechanistic implications. Coord Chem Rev 249:2374–2390

    CAS  Google Scholar 

  63. Marciniec B, Pietraszuk C (1997) Silylation of styrene with vinylsilanes catalyzed by RuCl(SiR3)(CO)(PPh3)(2) and RuHCl(CO)(PPh3)(3). Organometallics 16:4320–4326

    CAS  Google Scholar 

  64. LaPointe AM, Rix FC, Brookhart M (1997) Mechanistic studies of palladium(II)-catalyzed hydrosilation and dehydrogenative silation reactions. J Am Chem Soc 119:906–917

    CAS  Google Scholar 

  65. Christ ML, Saboetienne S, Chaudret B (1995) Highly selective dehydrogenative silylation of ethylene using the bis(dihydrogen) complex RUH2(H-2)(2)(PCY(3))(2) as catalyst precursor. Organometallics 14:1082–1084

    CAS  Google Scholar 

  66. Gutmann V (1976) Solvent effects on reactivities of organometallic compounds. Coord Chem Rev 18:225–255

    CAS  Google Scholar 

  67. Beckett MA, Brassington DS, Coles SJ, Hursthouse MB (2000) Lewis acidity of tris(pentafluorophenyl) borane: crystal and molecular structure of B(C(6)F(5))(3)center dot OPEt(3). Inorg Chem Commun 3:530–533

    CAS  Google Scholar 

  68. van der Veen LA, Keeven PH, Schoemaker GC, Reek JNH, Kamer PCJ, van Leeuwen P, Lutz M, Spek AL (2000) Origin of the bite angle effect on rhodium diphosphine catalyzed hydroformylation. Organometallics 19:872–883

    Google Scholar 

  69. Kranenburg M, Vanderburgt YEM, Kamer PCJ, Vanleeuwen P, Goubitz K, Fraanje J (1995) New diphosphine ligands based on heterocyclic aromatics inducing very high regioselectivity in rhodium-catalyzed hydroformylation - effect of the bite angle. Organometallics 14:3081–3089

    CAS  Google Scholar 

  70. Dudle B, Rajesh K, Blacque O, Berke H (2011) Rhenium nitrosyl complexes bearing large-bite-angle diphosphines. Organometallics 30:2986–2992

    CAS  Google Scholar 

  71. Dudle B, Rajesh K, Blacque O, Berke H (2011) Rhenium in homogeneous catalysis: ReBrH(NO)(labile ligand) (large-bite-angle diphosphine) complexes as highly active catalysts in olefin hydrogenations. J Am Chem Soc 133:8168–8178

    CAS  Google Scholar 

  72. Grey RA, Pez GP, Wallo A (1981) Anionic metal hydride catalysts.2. Application to the hydrogenation of ketones, aldehydes, carboxylic-acid esters, and nitriles. J Am Chem Soc 103:7536–7542

    CAS  Google Scholar 

  73. Reguillo R, Grellier M, Vautravers N, Vendier L, Sabo-Etienne S (2010) Ruthenium-catalyzed hydrogenation of nitriles: insights into the mechanism. J Am Chem Soc 132(23):7854–7855

    CAS  Google Scholar 

  74. Enthaler S, Addis D, Junge K, Erre G, Beller M (2008) A general and environmentally benign catalytic reduction of nitriles to primary amines. Chem Eur J 14:9491–9494

    CAS  Google Scholar 

  75. Rajesh K, Dudle B, Blacque O, Berke H (2011) Homogeneous hydrogenations of nitriles catalyzed by rhenium complexes. Adv Synth Catal 353:1479–1484

    CAS  Google Scholar 

  76. Morris RH (2009) Asymmetric hydrogenation, transfer hydrogenation and hydrosilylation of ketones catalyzed by iron complexes. Chem Soc Rev 38:2282–2291

    CAS  Google Scholar 

  77. Nishiyama H, Kondo M, Nakamura T, Itoh K (1991) Highly enantioselective hydrosilylation of ketones with chiral and c2-symmetrical bis(oxazolinyl)pyridine-rhodium catalysts. Organometallics 10:500–508

    CAS  Google Scholar 

  78. Shimada T, Mukaide K, Shinohara A, Han JW, Hayashi T (2002) Asymmetric synthesis of 1-aryl-1,2-ethanediols from arylacetylenes by palladium-catalyzed asymmetric hydrosilylation as a key step. J Am Chem Soc 124:1584–1585

    CAS  Google Scholar 

  79. Sprengers JW, de Greef M, Duin MA, Elsevier CJ (2003) Stable platinum(0) catalysts for catalytic hydrosilylation of styrene and synthesis of Pt(Ar-bian)(eta(2)-alkene) complexes. Eur J Inorg Chem:3811–3819

    Google Scholar 

  80. Choualeb A, Maccaroni E, Blacque O, Schmalle HW, Berke H (2008) Rhenium nitrosyl complexes for hydrogenations and hydrosilylations. Organometallics 27:3474–3481

    CAS  Google Scholar 

  81. Dong H, Berke H (2009) A convenient and efficient rhenium-catalyzed hydrosilylation of ketones and aldehydes. Adv Synth Catal 351:1783–1788

    CAS  Google Scholar 

  82. Jiang Y, Blacque O, Berke H (2011) Probing the catalytic potential of chloro nitrosyl rhenium(I) complexes. Dalton Trans 40:2578–2587

    CAS  Google Scholar 

  83. Casey CP, Singer SW, Powell DR, Hayashi RK, Kavana M (2001) Hydrogen transfer to carbonyls and imines from a hydroxycyclopentadienyl ruthenium hydride: evidence for concerted hydride and proton transfer. J Am Chem Soc 123:1090–1100

    CAS  Google Scholar 

  84. Shvo Y, Czarkie D, Rahamim Y, Chodosh DF (1986) A new group of ruthenium complexes - structure and catalysis. J Am Chem Soc 108:7400–7402

    CAS  Google Scholar 

  85. Blum Y, Czarkie D, Rahamim Y, Shvo Y (1985) (Cyclopentadienone)ruthenium carbonyl-complexes - a new class of homogeneous hydrogenation catalysts. Organometallics 4:1459–1461

    CAS  Google Scholar 

  86. Landwehr A, Dudle B, Fox T, Blacque O, Berke H (2012) Bifunctional rhenium complexes for the catalytic transfer-hydrogenation reactions of ketones and imines. Chem Eur J 18:5701–5714

    CAS  Google Scholar 

  87. Berke H (2010) Conceptual approach to the reactivity of dihydrogen. Chemphyschem 11:1837–1849

    CAS  Google Scholar 

  88. Berke H, Jiang Y, Yang X, Jiang C, Chakraborty S, Landwehr A (2013) Coexistence of Lewis acid and base functions: a generalized view of the frustrated lewis pair concept with novel implications for reactivity. Top Curr Chem 334. doi:10.1007/128_2012_400

    Google Scholar 

  89. Choualeb A, Lough AJ, Gusev DG (2007) Hydridic rhenium nitrosyl complexes with pincer-type PNP ligands. Organometallics 26:3509–3515

    CAS  Google Scholar 

  90. Choualeb A, Lough AJ, Gusev DG (2007) Hemilabile pincer-type hydride complexes of iridium. Organometallics 26:5224–5229

    CAS  Google Scholar 

  91. Plietker B, Dieskaul A (2009) The reincarnation of the Hieber anion Fe(CO)(3)(NO) (−) - a new venue in nucleophilic metal catalysis. Eur J Org Chem:775–787

    Google Scholar 

  92. Jegelka M, Plietker B (2011) In: Plietker B (ed) Iron catalysis: fundamentals and applications, vol 33. Topics in Organometallic Chemistry. Springer, Heidelberg, pp 177–213

    Google Scholar 

  93. Plietker B (2010) Sustainability in catalysis - concept or contradiction? Synlett:2049–2058

    Google Scholar 

  94. Roustan JL, Abedini M, Baer HH (1989) Catalytic alkylations of allylic carbonates under argon in the presence of nitrosylcarbonyliron complexes. J Organomet Chem 376:C20–C22

    CAS  Google Scholar 

  95. Zhou B, Xu YY (1988) Studies on the enantioselectivity in BU4N FE(CO)3NO -catalyzed nucleophilic-substitution of optically-active allylic carbonates with malonate. J Org Chem 53:4419–4421

    CAS  Google Scholar 

  96. Plietker B (2006) A highly regioselective salt-free iron-catalyzed allylic alkylation. Angew Chem Int Ed 45:1469–1473

    CAS  Google Scholar 

  97. Plietker B (2006) Regioselective iron-catalyzed allylic amination. Angew Chem Int Ed 45:6053–6056

    CAS  Google Scholar 

  98. Jegelka M, Plietker B (2009) Selective C-S bond formation via Fe-catalyzed allylic substitution. Org Lett 11:3462–3465

    CAS  Google Scholar 

  99. Plietker B, Dieskau A, Moews K, Jatsch A (2008) Ligand-dependent mechanistic dichotomy in iron-catalyzed allylic substitutions: sigma-allyl versus pi-allyl mechanism. Angew Chem Int Ed 47:198–201

    CAS  Google Scholar 

  100. Magens S, Plietker B (2010) Nucleophilic iron catalysis in transesterifications: scope and limitations. J Org Chem 75:3715–3721

    CAS  Google Scholar 

  101. Dieskau AP, Plietker B (2011) A mild ligand-free iron-catalyzed liberation of alcohols from allylcarbonates. Org Lett 13:5544–5547

    CAS  Google Scholar 

  102. Holzwarth MS, Alt I, Plietker B (2012) Catalytic activation of diazo compounds using electron-rich, defined iron complexes for carbene-transfer reactions. Angew Chem Int Ed 51:5351–5354

    CAS  Google Scholar 

  103. Seebach D (1979) Methods of reactivity umpolung. Angew Chem Int Ed 18:239–258

    Google Scholar 

  104. Dieskau AP, Holzwarth MS, Plietker B (2012) Fe-catalyzed allylic C-C-bond activation: vinylcyclopropanes as versatile a1, a3, d5-synthons in traceless allylic substitutions and 3+2 -cycloadditions. J Am Chem Soc 134:5048–5051

    CAS  Google Scholar 

  105. Huang WJ, Berke H (2005) Rhenium complexes as highly active catalysts for the hydrosilylation of carbonyl compounds. Chimia 59:113–115

    CAS  Google Scholar 

  106. Mewald M, Froehlich R, Oestreich M (2011) An axially chiral, electron-deficient borane: synthesis, coordination chemistry, lewis acidity, and reactivity. Chem Eur J 17:9406–9414

    CAS  Google Scholar 

  107. Rendler S, Oestreich M (2008) Conclusive evidence for an S(N)2-Si mechanism in the B(C(6)F(5))(3)-catalyzed hydrosilylation of carbonyl compounds: implications for the related hydrogenation. Angew Chem Int Ed 47:5997–6000

    CAS  Google Scholar 

  108. Parks DJ, Blackwell JM, Piers WE (2000) Studies on the mechanism of B(C6F5)(3)-catalyzed hydrosilation of carbonyl functions. J Org Chem 65:3090–3098

    CAS  Google Scholar 

  109. Blackwell JM, Sonmor ER, Scoccitti T, Piers WE (2000) B(C6F5)(3)-catalyzed hydrosilation of imines via silyliminium intermediates. Org Lett 2:3921–3923

    CAS  Google Scholar 

  110. Mayr H, Basso N, Hagen G (1992) Kinetics of hydride transfer-reactions from hydrosilanes to carbenium ions - substituent effects in silicenium ions. J Am Chem Soc 114:3060–3066

    CAS  Google Scholar 

  111. Egbert JD, Bullock RM, Heinekey DM (2007) Cationic dihydrogen/dihydride complexes of osmium: structure and dynamics. Organometallics 26:2291–2295

    CAS  Google Scholar 

  112. Jessop PG, Morris RH (1992) Reactions of transition-metal dihydrogen complexes. Coord Chem Rev 121:155–284

    CAS  Google Scholar 

  113. Tovrog BS, Diamond SE, Mares F (1979) Oxidation of ruthenium coordinated alcohols by molecular-oxygen to ketones and hydrogen-peroxide. J Am Chem Soc 101:5067–5069

    CAS  Google Scholar 

  114. Tovrog BS, Diamond SE, Mares F (1979) Oxygen-transfer from ligands - cobalt nitro complexes as oxygenation catalysts. J Am Chem Soc 101:270–272

    CAS  Google Scholar 

  115. Tovrog BS, Mares F, Diamond SE (1980) Cobalt-nitro complexes as oxygen-transfer agents - oxidation of olefins. J Am Chem Soc 102:6616–6618

    CAS  Google Scholar 

  116. Andrews MA, Kelly KP (1981) The transition-metal nitro-nitrosyl redox couple - catalytic-oxidation of olefins to ketones. J Am Chem Soc 103:2894–2896

    CAS  Google Scholar 

  117. Tovrog BS, Diamond SE, Mares F, Szalkiewicz A (1981) Activation of cobalt-nitro complexes by lewis-acids - catalytic-oxidation of alcohols by molecular-oxygen. J Am Chem Soc 103:3522–3526

    CAS  Google Scholar 

  118. Diamond SE, Mares F, Szalkiewicz A, Muccigrosso DA, Solar JP (1982) Cobalt nitro complexes as oxygen-transfer agents. 4. Epoxidation of olefins. J Am Chem Soc 104:4266–4268

    CAS  Google Scholar 

  119. Andrews MA, Chang TCT, Cheng CWF, Emge TJ, Kelly KP, Koetzle TF (1984) Synthesis, characterization, and equilibria of palladium(ii) nitrile, alkene, and heterometallacyclopentane complexes involved in metal nitro catalyzed alkene oxidation reactions. J Am Chem Soc 106:5913–5920

    CAS  Google Scholar 

  120. Andrews MA, Chang TCT, Cheng CWF, Kapustay LV, Kelly KP, Zweifel MJ (1984) Nitration of alkenes by palladium nitro complexes. Organometallics 3:1479–1484

    Google Scholar 

  121. Andrews MA, Chang TCT, Cheng CWF, Kelly KP (1984) A new approach to the air oxidation of alkenes employing metal nitro complexes as catalysts. Organometallics 3:1777–1785

    CAS  Google Scholar 

  122. Andrews MA, Chang TCT, Cheng CWF (1985) Observations regarding the mechanisms of o atom transfer from metal nitro ligands to oxidizable substrates. Organometallics 4:268–274

    CAS  Google Scholar 

  123. Clarkson SG, Basolo F (1973) Study of reaction of some cobalt nitrosyl complexes with oxygen. Inorg Chem 12:1528–1534

    CAS  Google Scholar 

  124. Takacs JM, Jiang XT (2003) The Wacker reaction and related alkene oxidation reactions. Curr Org Chem 7:369–396

    CAS  Google Scholar 

  125. Jira R (2009) Acetaldehyde from ethylene—a retrospective on the discovery of the Wacker process. Angew Chem Int Ed 48:9034–9037

    CAS  Google Scholar 

  126. Khan MMT, Venkatasubramanian K, Shirin Z, Bhadbhade MM (1992) (Ethylenediaminetetraacetato)nitrosylruthenium, an efficient oxygen-atom transfer agent. J Chem Soc Dalton Trans:1031–1035

    Google Scholar 

  127. Khan MMT, Venkatasubramanian K, Shirin Z, Bhadbhade MM (1992) Mixed-ligand complexes of ruthenium(III) and ruthenium(II) with ethylenediaminetetraacetate and bidentate phosphines and arsines. J Chem Soc Dalton Trans:885–890

    Google Scholar 

Download references

Acknowledgments

We are grateful to the financial support from the Swiss National Science Foundation, Lanxess AG, Leverkusen, Germany, the Funds of the University of Zurich, the DFG and SNF within the project “Forschergruppe FOR1175 – Unconventional Approaches to the Activation of Dihydrogen.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Berke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jiang, Y., Berke, H. (2013). Nitrosyl Complexes in Homogeneous Catalysis. In: Mingos, D. (eds) Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine I. Structure and Bonding, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2013_97

Download citation

Publish with us

Policies and ethics