Skip to main content

Metal-Organic Frameworks for Photocatalysis

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 157))

Abstract

Metal-organic frameworks (MOFs) have recently been investigated as a platform for developing single-site photocatalysts and multifunctional photocatalytic assemblies. This chapter aims to summarize the recent progress on photocatalysis with MOFs, including hydrogen evolution, carbon dioxide reduction, and degradation and transformation of organic compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Google Scholar 

  2. Youngblood WJ, Lee SA, Kobayashi Y, Hernandez-Pagan E, Hoertz PG, Moore TA, Moore AL, Gust D, Mallouk TE (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131:926–927

    Article  CAS  Google Scholar 

  3. Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334:645–648

    Article  CAS  Google Scholar 

  4. Ohno T, Bai L, Hisatomi T, Maeda K, Domen K (2012) Photocatalytic water splitting using modified GaN:ZnO Solid solution under visible light: long-time operation and regeneration of activity. J Am Chem Soc 134:8254–8259

    Article  CAS  Google Scholar 

  5. Wang X, Xu Q, Li M, Shen S, Wang X, Wang Y, Feng Z, Shi J, Han H, Li C (2012) Photocatalytic overall water splitting promoted by an phase junction on Ga2O3. Angew Chem Int Ed 51:13089–13092

    Article  CAS  Google Scholar 

  6. Teets TS, Nocera DG (2011) Photocatalytic hydrogen production. Chem Commun 47:9268–9274

    Article  CAS  Google Scholar 

  7. Du P, Eisenberg R (2012) Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ Sci 5:6012–6021

    Article  CAS  Google Scholar 

  8. Lakadamyali F, Kato M, Muresan NM, Reisner E (2012) Selective reduction of aqueous protons to hydrogen with a synthetic cobaloxime catalyst in the presence of atmospheric oxygen. Angew Chem Int Ed 51:9381–9384

    Article  CAS  Google Scholar 

  9. Luo S, Mejía E, Friedrich A, Pazidis A, Junge H, Surkus A, Jackstell R, Denurra S, Gladiali S, Lochbrunner S, Beller M (2013) Photocatalytic water reduction with copper-based photosensitizers: a noble-metal-free system. Angew Chem Int Ed 52:419–423

    Article  CAS  Google Scholar 

  10. Hetterscheid DGH, Reek JNH (2012) Mononuclear water oxidation catalysts. Angew Chem Int Ed 51:9740–9747

    Article  CAS  Google Scholar 

  11. Duan L, Bozoglian F, Mandal S, Stewart B, Privalov T, Llobet A, Sun L (2012) A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat Chem 4:418–423

    Article  CAS  Google Scholar 

  12. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O'Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129

    Article  CAS  Google Scholar 

  13. Murray LJ, Dinca M, Long JR (2009) Hydrogen storage in metal-organic frameworks. Chem Soc Rev 38:1294–1314

    Article  CAS  Google Scholar 

  14. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38:1450–1459

    Article  CAS  Google Scholar 

  15. Ma L, Abney C, Lin W (2009) Enantioselective catalysis with homochiral metal-organic frameworks. Chem Soc Rev 38:1248–1256

    Article  CAS  Google Scholar 

  16. Della Rocca J, Liu D, Lin W (2011) Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44:957–968

    Article  CAS  Google Scholar 

  17. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C (2012) Metal-organic frameworks in biomedicine. Chem Rev 112:1232–1268

    Article  CAS  Google Scholar 

  18. Li J, Sculley J, Zhou H (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932

    Article  CAS  Google Scholar 

  19. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125

    Article  CAS  Google Scholar 

  20. Nicewicz DA, MacMillan DWC (2008) Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322:77–80

    Article  CAS  Google Scholar 

  21. Nagib DA, Scott ME, MacMillan DWC (2009) Enantioselective α-trifluoromethylation of aldehydes via photoredox organocatalysis. J Am Chem Soc 131:10875–10877

    Article  CAS  Google Scholar 

  22. Du J, Yoon TP (2009) Crossed intermolecular [2+2] cycloadditions of acyclic enones via visible light photocatalysis. J Am Chem Soc 131:14604–14605

    Article  CAS  Google Scholar 

  23. Condie AG, González-Gómez JC, Stephenson CRJ (2010) Visible-light photoredox catalysis: Aza-Henry reactions via C−H functionalization. J Am Chem Soc 132:1464–1465

    Article  CAS  Google Scholar 

  24. Lang X, Ji H, Chen C, Ma W, Zhao J (2011) Selective formation of imines by aerobic photocatalytic oxidation of amines on TiO2. Angew Chem Int Ed 50:3934–3937

    Article  CAS  Google Scholar 

  25. Kataoka Y, Sato K, Miyazaki Y, Masuda K, Tanaka H, Naito S, Mori W (2009) Photocatalytic hydrogen production from water using porous material [Ru2(p-BDC)2]n. Energy Environ Sci 2:397–400

    Article  CAS  Google Scholar 

  26. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

    Article  Google Scholar 

  27. Gomes Silva C, Luz I, Llabrés i Xamena FX, Corma A, García H (2010) Water stable Zr–benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. Chem Eur J 16:11133–11138

    Google Scholar 

  28. Wang C, deKrafft KE, Lin W (2012) Pt nanoparticles@photoactive metal-organic frameworks: efficient hydrogen evolution via synergistic photoexcitation and electron injection. J Am Chem Soc 134:7211–7214

    Article  CAS  Google Scholar 

  29. Fateeva A, Chater PA, Ireland CP, Tahir AA, Khimyak YZ, Wiper PV, Darwent JR, Rosseinsky MJ (2012) A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angew Chem Int Ed 51:7440–7444

    Article  CAS  Google Scholar 

  30. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krausz N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  Google Scholar 

  31. Hawecker J, Lehn J, Ziessel R (1983)Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy)32+-Co2+ combinations as homogeneous catalysts. J Chem Soc Chem Commun 0:536–538

    Google Scholar 

  32. Lin W, Frei H (2005) Photochemical CO2 splitting by metal-to-metal charge-transfer excitation in mesoporous ZrCu(I)-MCM-41 silicate sieve. J Am Chem Soc 127:1610–1611

    Article  CAS  Google Scholar 

  33. Liu Q, Zhou Y, Kou J, Chen X, Tian Z, Gao J, Yan S, Zou Z (2010) High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J Am Chem Soc 132:14385–14387

    Article  CAS  Google Scholar 

  34. Yan S, Ouyang S, Gao J, Yang M, Feng J, Fan X, Wan L, Li Z, Ye J, Zhou Y, Zou Z (2010) A room-temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2. Angew Chem Int Ed 49:6400–6404

    Article  CAS  Google Scholar 

  35. Wang C, Xie Z, deKrafft KE, Lin W (2011) Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc 133:13445–13454

    Article  CAS  Google Scholar 

  36. Koike K, Hori H, Ishizuka M, Westwell JR, Takeuchi K, Ibusuki T, Enjouji K, Konno H, Sakamoto K, Ishitani O (1997) Key process of the photocatalytic reduction of CO2 using [Re(4,4′-X2-bipyridine)(CO)3PR3]+ (X = CH3, H, CF3; PR3 = Phosphorus Ligands): dark reaction of the one-electron-reduced complexes with CO2. Organometallics 16:5724–5729

    Google Scholar 

  37. Takeda H, Koike K, Inoue H, Ishitani O (2008) Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J Am Chem Soc 130:2023–2031

    Article  CAS  Google Scholar 

  38. Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X, Li Z (2012) An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem Int Ed 51:3364–3367

    Article  CAS  Google Scholar 

  39. Llabrés IX, Corma A, Garcia H (2007) Applications for metal−organic frameworks (MOFs) as quantum dot semiconductors. J Phys Chem C 111:80–85

    Article  Google Scholar 

  40. Alvaro M, Carbonell E, Ferrer B, Llabrési Xamena F, Garcia H (2007) Semiconductor behavior of a metal-organic framework (MOF) Chem Eur J 13:5106–5112

    Article  CAS  Google Scholar 

  41. Wen L, Wang F, Feng J, Lv K, Wang C, Li D (2009) Structures, photoluminescence, and photocatalytic properties of six new metal−organic frameworks based on aromatic polycarboxylate acids and rigid imidazole-based synthons. Cryst Growth Des 9:3581–3589

    Google Scholar 

  42. Wang X, Wang Y, Liu G, Tian A, Zhang J, Lin H (2011) Novel inorganic-organic hybrids constructed from multinuclear copper cluster and Keggin polyanions: from 1D wave-like chain to 2D network. Dalton Trans 40:9299–9305

    Article  CAS  Google Scholar 

  43. Wang F, Ke X, Zhao J, Deng K, Leng X, Tian Z, Wen L, Li D (2011) Six new metal-organic frameworks with multi-carboxylic acids and imidazole-based spacers: syntheses, structures and properties. Dalton Trans 40:11856–11865

    Article  CAS  Google Scholar 

  44. Du J, Yuan Y, Sun J, Peng F, Jiang X, Qiu L, Xie A, Shen Y, Zhu J (2011) New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye. J Hazard Mater 190:945–951

    Article  CAS  Google Scholar 

  45. Das MC, Xu H, Wang Z, Srinivas G, Zhou W, Yue Y, Nesterov VN, Qian G, Chen B (2011) A Zn4O-containing doubly interpenetrated porous metal-organic framework for photocatalytic decomposition of methyl orange. Chem Commun 47:11715–11717

    Article  CAS  Google Scholar 

  46. Zhou S, Kong Z, Wang Q, Li C (2012) Synthesis, structure and photocatalytic property of a novel 3D (3,8)-connected metal-organic framework based on a flexible triphosphonate and a pentanuclear Cu(II) unit. Inorg Chem Commun 25:1–4

    Article  Google Scholar 

  47. Wen L, Zhao J, Lv K, Wu Y, Deng K, Leng X, Li D (2012) Visible-light-driven photocatalysts of metal-organic frameworks derived from multi-carboxylic acid and imidazole-based spacer. Cryst Growth Des 12:1603–1612

    Google Scholar 

  48. Kan W, Liu B, Yang J, Liu Y, Ma J (2012) A series of highly connected metal-organic frameworks based on triangular ligands and d10 metals: syntheses, structures, photoluminescence, and photocatalysis. Cryst Growth Des 12:2288–2298

    Google Scholar 

  49. Guo J, Yang J, Liu Y, Ma J (2012) Two novel 3D metal-organic frameworks based on two tetrahedral ligands: syntheses, structures, photoluminescence and photocatalytic properties. CrystEngComm 14:6609–6617

    Article  CAS  Google Scholar 

  50. Zhang Z, Yang J, Liu Y, Ma J (2013) Five polyoxometalate-based inorganic–organic hybrid compounds constructed by a multidentate N-donor ligand: syntheses, structures, electrochemistry, and photocatalysis properties. CrystEngComm 15:3843–3853

    Article  CAS  Google Scholar 

  51. Du P, Yang Y, Yang J, Liu B, Ma J (2013) Syntheses, structures, photoluminescence, photocatalysis, and photoelectronic effects of 3D mixed high-connected metal-organic frameworks based on octanuclear and dodecanuclear secondary building units. Dalton Trans 42:1567–1580

    Article  CAS  Google Scholar 

  52. Li H, Eddaoudi M, O'Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    Article  CAS  Google Scholar 

  53. Son H, Jin S, Patwardhan S, Wezenberg SJ, Jeong NC, So M, Wilmer CE, Sarjeant AA, Schatz GC, Snurr RQ, Farha OK, Wiederrecht GP, Hupp JT (2013) Light-harvesting and ultrafast energy migration in porphyrin-based metal-organic frameworks. J Am Chem Soc 135:862–869

    Article  CAS  Google Scholar 

  54. Lee CY, Farha OK, Hong BJ, Sarjeant AA, Nguyen ST, Hupp JT (2011) Light-harvesting metal-organic frameworks (MOFs): efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs. J Am Chem Soc 133:15858–15861

    Article  CAS  Google Scholar 

  55. Xie M, Yang X, Zou C, Wu C (2011) A SnIV–porphyrin-based metal-organic framework for the selective photo-oxygenation of phenol and sulfides. Inorg Chem 50:5318–5320

    Article  CAS  Google Scholar 

  56. Wu P, He C, Wang J, Peng X, Li X, An Y, Duan C (2012) Photoactive chiral metal-organic frameworks for light-driven asymmetric α-alkylation of aldehydes. J Am Chem Soc 134:14991–14999

    Article  CAS  Google Scholar 

  57. Xie Z, Wang C, deKrafft KE, Lin W (2011) Highly stable and porous cross-linked polymers for efficient photocatalysis. J Am Chem Soc 133:2056–2059

    Article  CAS  Google Scholar 

  58. Wang C, Xie Z, deKrafft KE, Lin W (2012) Light-harvesting cross-linked polymers for efficient heterogeneous photpcatalysis. ACS Appl Mater Interfaces 4:2288–2294

    Article  CAS  Google Scholar 

  59. Wang J, Wang C, deKrafft KE, Lin W (2012) Cross-linked polymers with exceptionally high Ru(bipy)32+ loadings for efficient heterogeneous photocatalysis. ACS Catal 2:417–424

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank NSF (DMR-1308229) for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, T., Lin, W. (2013). Metal-Organic Frameworks for Photocatalysis. In: Chen, B., Qian, G. (eds) Metal-Organic Frameworks for Photonics Applications. Structure and Bonding, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2013_131

Download citation

Publish with us

Policies and ethics