Skip to main content

Part of the book series: Structure and Bonding ((STRUCTURE,volume 153))

Abstract

This review provides a historical introduction to nitrosyl complexes. In the 1960s and 1970s, the renaissance of coordination chemistry led to the detailed study of nitrosyl complexes, and the emerging of new spectroscopic and structural techniques were used to define the metrics of nitric oxide when coordinated to transition metals and established that unlike CO and CN, NO adopted alternative geometries. The development of theoretical models to account for this geometric ambivalence was initially based on semiempirical molecular orbital calculations in the early 1970s. Subsequently more accurate and sophisticated calculations have deepened our understanding of the bonding in transition metal-nitrosyl complexes. The discovery in the 1980s of the key importance of these complexes as models for the biological functions and transformations of NO encouraged these studies. NO is produced in vivo by the nitric oxide synthase (NOS) family of enzymes and plays a key role in the nerve-signal transreduction, vasodilation, blood clotting, and immune response by white blood cells. In these biological processes, the coordination of nitric oxide to metal centres is crucial, and therefore, their detailed study is essential for an understanding of nitric oxide’s functions at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

acac:

Acetylacetonate

Ar:

Aryl

Bn:

Benzyl

Bpy:

2,2'-Bipyridyl

But :

Tert-butyl

cod:

Cyclooctadiene

Cp:

Cyclopentadienyl

cyclam:

1,4,8,11-Tetraazocyclotetradecane

DFT:

Density functional theory

DME:

1,2-Dimethoxyethane

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

dppe:

Bis(diphenylphosphino)ethane

dppm:

Bis(diphenylphosphino)methane

EAN:

Effective atomic number

en:

Ethylenediamine

Et:

Ethyl

Me:

Methyl

Mes:

Mesityl, 2,4,6-trimethylphenyl

Nu:

Nucleophile

Ph:

Phenyl

Pr:

Propyl

Pri :

Isopropyl

py:

Pyridine

THF:

Tetrahydrofuran

VSEPR:

Valence shell electron pair repulsion

References

  1. Butler A, Nicholson R (2003) Life death and nitric oxide. Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Bauer G (1963) Handbook of preparative inorganic chemistry. Academic, New York

    Google Scholar 

  3. Sharpe AG (1976) The Chemistry of cyano-complexes of the transition metals. Academic, London

    Google Scholar 

  4. Rucki R (1977) Anal Profiles Drug Subst 6:487

    Google Scholar 

  5. Rucki R (1986) Anal Profiles Drug Subst 15:781

    Google Scholar 

  6. Toledo JC, Ohara A (2012) Chem Res Toxicol 25:975

    CAS  Google Scholar 

  7. Wilkinson G, Gillard RD, McCleverty JA (1987) Comprehensive coordination chemistry. Pergamon, Oxford

    Google Scholar 

  8. Lipscomb WN, Wang FE, May WR, Lippert EL (1961) Acta Cryst 14:1100

    Google Scholar 

  9. Dulmage WJ, Meyers EA, Lipscomb WN (1953) Acta Crys 6:760

    CAS  Google Scholar 

  10. Halland A (2008) Molecules and models – the molecular structures of main group compounds. Oxford University Press, Oxford, 298

    Google Scholar 

  11. Jorgensen WL, Salem L (1973) The organic chemists book of orbitals. Academic, New York, 80

    Google Scholar 

  12. Mingos DMP, Yau J (1994) J Organometal Chem 479:C16

    CAS  Google Scholar 

  13. Wright AM, Wu G, Hayton TW (2010) J Amer Chem Soc 132:14336

    CAS  Google Scholar 

  14. Wright AM, Wu G, Hayton TW (2011) Inorg Chem 50:11746

    CAS  Google Scholar 

  15. Cotton FA, Wilkinson G (1962) Advanced inorganic chemistry. Wiley, New York, 333

    Google Scholar 

  16. Sherman DJ, Mingos DMP (1989) Adv Inorg Radiochem 34:293

    Google Scholar 

  17. Walsh AD (1953) J Chem Soc 2260, 2266, 2296, 2301, 2306

    Google Scholar 

  18. Hodgson DJ, Payne NC, McGinnety JA, Pearson RG, Ibers JA (1968) J Amer Chem Soc 90:4487

    Google Scholar 

  19. Pierpont CG, Eisenberg R (1972) Inorg Chem 12:1088

    Google Scholar 

  20. Snyder DA, Weaver DL (1970) J Chem Soc

    Google Scholar 

  21. Coppens P, Novozhilova I, Kovalovsky A (2002) Chem Rev 102:61

    Google Scholar 

  22. Lehnert N, Berto TC, Sage J, Silvernail N, Scheidt WR Alp EE, Sherhan W, Zhao J (2013) Coord Chem Rev 257:244

    Google Scholar 

  23. Praneeth VKK, Nether C, Peters G, Lehnert N (2006) Inorg Chem 45:2795

    CAS  Google Scholar 

  24. Lehnert N, Scheidt WR, Wolf A (2013) Struct Bond 155

    Google Scholar 

  25. Wells AF (1975) Structural inorganic chemistry, 4th edn. Oxford University Press, Oxford, 651

    Google Scholar 

  26. De La Cruz C, Sheppard N (2011) Spectrochim Acta A Mol Biomol Spectrosc 78:7

    Google Scholar 

  27. Cambridge Crystallographic Data Base, Cambridge. www.ccdc.cam.ac.uk/products/csd/

  28. Lichtenberger DL, Gruhn NE, Renshaw SK (1997) J Mol Struct 405:709

    Google Scholar 

  29. Green JC (2006) In: Crabtree RH, Mingos DMP (eds) Comprehensive organometallic chemistry III. Elsevier, Oxford, 1:381

    Google Scholar 

  30. Dodle B, Kanjenpillar R, Blaque O, Berke H (2011) J Amer Chem Soc 133:8168

    Google Scholar 

  31. Dodle B, Kanjenpillar R, Blaque O, Berke H (2013) Struct Bond 152

    Google Scholar 

  32. Berto TC, Praneeth VKK, Goodrich IC, Lenhert N (2009) J Amer Chem Soc 131:17116

    CAS  Google Scholar 

  33. Lenhert N, Sage JT, Silvernail NJ, Scheidt WR, Alp EE, Sturhahn W, Zhao J (2010) Inorg Chem 49:7197

    Google Scholar 

  34. Hursthouse MB, Motavelli M (1979) J C S Dalton Trans 1362

    Google Scholar 

  35. Pandey KK (1990) J Coord Chem 22:307

    Google Scholar 

  36. Manoharan PT, Gray HB (1966) Inorg Chem 5:823

    CAS  Google Scholar 

  37. Landry VK, Pan K, Quan SM, Parkin G (2007) J Chem Soc. Dalton Trans 820

    Google Scholar 

  38. Lyne PD, Mingos DMP (1995) J Chem Soc Dalton Trans 1635

    Google Scholar 

  39. Sivova OV, Lyubimova OO, Sizov VV (2002) Russ J Gen Chem 74:317

    Google Scholar 

  40. Bright D, Ibers JA (1969) Inorg Chem 8:709

    CAS  Google Scholar 

  41. Akashi H, Yamauchi T, Shibahara T (2004) Inorg Chim Acta 357:325

    CAS  Google Scholar 

  42. Pratt CS, Coyle BA, Ibers JA (1971) J Chem Soc A 2146

    Google Scholar 

  43. Mingos DMP (1974) Inorg Chem 10:1479

    Google Scholar 

  44. Mingos DMP (1980) Trans Amer Crystallog Assoc 16:17

    CAS  Google Scholar 

  45. Perutz MF, Kilmartin JV, Nagai K, Szabo A (1976) Biochemistry 15:378

    CAS  Google Scholar 

  46. Li H, Bonnet D, Bul E, Neese F, Weyhermuller F, Blum N, Sellmann D, Wieghardt K (2002) Inorg Chem 41:3444

    CAS  Google Scholar 

  47. Mingos DMP, Ibers JA (1971) Inorg Chem 10:1035

    Google Scholar 

  48. Mingos DMP, Robinson WT, Ibers JA (1971) Inorg Chem 10:1043

    Google Scholar 

  49. Ibers JA (1971) Acta Cryst B27:250

    Google Scholar 

  50. Formitchev DV, Furlani TR, Coppens P (1998) Inorg Chem 37:1519

    Google Scholar 

  51. Lynch MS, Cheng M, van Kuikan BE, Khalil (2011) J Amer Chem Soc 133:5255

    Google Scholar 

  52. Tocheva EI, Rosssell FI, Mauk AG, Murphy MP (2007) Biochemistry 46:12366

    Google Scholar 

  53. Tocheva EI, Rosssell FI, Mauk AG, Murphy MP (2004) Science 304:867

    CAS  Google Scholar 

  54. Merkle AC, Lehnert N (2009) Inorg Chem 58:11504

    Google Scholar 

  55. Li L, Enright GD, Preston KF (1994) Organomet 13:4686

    Google Scholar 

  56. Li L, Enright GD, Preston KF (2013) Struct Bond 155

    Google Scholar 

  57. Mingos DMP, Ibers JA (1970) Inorg Chem 9:1105

    Google Scholar 

  58. Barybin HV, Young VG, Ellis JE (1999) Organomet 18:2744

    CAS  Google Scholar 

  59. Tonzetich ZJ, McQuade LE, Lippard SJ (2010) Inorg Chem 49:6338

    Google Scholar 

  60. Tonzetich ZJ, Heroguel F, Do LH, Lippard SJ (2011) Inorg Chem 50:1570

    CAS  Google Scholar 

  61. Pluth MD, Lippard SJ (2012) Chem Commun 48:11981

    CAS  Google Scholar 

  62. Mingos DMP (1979) J Organometal Chem 179:C29

    CAS  Google Scholar 

  63. Hayton TW, Legzdins P, Sharp WB (2002) Chem Rev 102:935

    CAS  Google Scholar 

  64. Hsieh C-H, Darensbourg MY (2010) J Amer Chem Soc 122:14119

    Google Scholar 

  65. Zong-Sian L, Tzung-Wen C, Kuan-Yu L, Chang-Chih H, Jen-Shiang YK, Wen-Feng L (2012) Inorg Chem 51:10092

    Google Scholar 

  66. Mingos DMP (1984) Acc Chem. Res 17:311

    CAS  Google Scholar 

  67. Berringhelli T, Ciani G, d’Alfonso G, Molinan H, Sironi A, Freni M (1984) JCS Chem Commun 1327

    Google Scholar 

  68. Norton JR, Collman JP, Dolcetti R, Robinson WR (1972) Inorg Chem 11:382

    CAS  Google Scholar 

  69. Calderon JL, Fontana S, Fraundhiofer E, Day VW (1974) J Organometal Chem 64:C10

    CAS  Google Scholar 

  70. Siladke NA, Meihas KR, Ziller SW, Fang M, Furche F, Long JR, Evans JW (2012) J Amer Chem Soc 134:1243

    CAS  Google Scholar 

  71. Evans WJ, Fang M, Bates JE, Furche F, Ziller JW, Kiesz MD, Zink JI (2010) Nature Chem 2:644

    CAS  Google Scholar 

  72. Adams DM (1968) Metal ligand and related vibrations. St Martin’s, New York

    Google Scholar 

  73. McCleverty JA (2004) Chem Rev 104:403

    CAS  Google Scholar 

  74. Haymore BL, Ibers JA (1975) Inorg Chem 14:3060

    CAS  Google Scholar 

  75. Collman JP, Farham P, Dolcelli G (1971) J Amer Chem Soc 93:1788

    CAS  Google Scholar 

  76. Lehnert N, Sage JT, Silvernail NJ, Scheidt WR, Alp EE, Sturhahn W, Zhao J (2010) Inorg Chem 49:7197

    CAS  Google Scholar 

  77. Pavlik JW, Barabanschikov A, Oliver AG, Alp EE, Sturhahn W, Zhao J, Sage JT, Scheidt WR (2010) Angew Chem Int Ed 49:4400

    CAS  Google Scholar 

  78. Bell LK, Mason J, Mingos DMP, Tew DG (1983) Inorg Chem 22:3497

    CAS  Google Scholar 

  79. Evans DH, Mingos DMP, Mason J, Richards A (1983) J Organometal Chem 249:293

    CAS  Google Scholar 

  80. Bultide J, Larkworthy LF, Mason J, Povey DC, Mason J, Sandell B (1984) Inorg Chem 23:3629

    Google Scholar 

  81. Bell LK, Mingos DMP, Tew DG, Larkworthy LF, Sandell B Povey PC, Mason J (1983) J C S Chem Commun 125

    Google Scholar 

  82. Mason J, Mingos DMP, Sherman DJ, Schaffer J, Stejskal EO (1985) J C S Chem Commun 444

    Google Scholar 

  83. Mingos DMP, Sherman DJ (1984) J C S Chem Commun 1223

    Google Scholar 

  84. Mingos DMP, Sherman DJ (1987) Trans Met Chem 12:400

    Google Scholar 

  85. Mingos DMP, Sherman DJ (1987) Trans Met Chem 12:897

    Google Scholar 

  86. Mason J, Larkworthy LF, Moore EA (2002) Chem Rev 102:913

    CAS  Google Scholar 

  87. Botto RE, Kolthammer I, Legzdins P, Roberts JD (1979) Inorg Chem 18:2049

    CAS  Google Scholar 

  88. Gaviglio C, Ben-David Y, Shimon LJW, Dotorovisch F, Milstein D (2009) Organomet 28:1917

    CAS  Google Scholar 

  89. Finn P, Pearson RK, Hollander JM, Jolly WL (1971) Inorg Chem 10:378

    Google Scholar 

  90. Gary AN, Goel PS (1971) Inorg Chem 10:1314

    Google Scholar 

  91. Greatrex R, Greenwood NN, Kaspi P (1971) J C S Dalton 1873

    Google Scholar 

  92. Wayland BB, Olsen LW (1974) Inorg Chim Acta 11:L23

    CAS  Google Scholar 

  93. Gibson J (1962) Nature (Lond) 1962:64

    Google Scholar 

  94. Manoharan PT, Kuska HA, Roger MT (1967) J Amer Chem Soc 89:4564

    CAS  Google Scholar 

  95. Krzystek J, Sevenson, DC, Zuyagu SA, SmirnovD, Ozarowski A (2010) J Amer Chem Soc 132:5241

    Google Scholar 

  96. Tomson NC, Crimm MR, Petrenko T, Roseburgh LE, Sproules S, Boyd WC, Bergman RG, DeBeer S, Toste FD, Wieghardt K (2011) J Amer Chem Soc 133:18785

    CAS  Google Scholar 

  97. Kaim W (2011) Angew Chem Int Ed 50:10498

    Google Scholar 

  98. Kaim W (2011) Inorg Chem 50:9752

    CAS  Google Scholar 

  99. Sproules S, Wieghardt K (2010) Coord Chem Rev (2010) 254:1358

    Google Scholar 

  100. Sproules S, Weyhermueller T, De Beer S, Wieghardt K (2010) Inorg Chem 49:5241

    CAS  Google Scholar 

  101. Jorgenson CK (1962) Coord Chem Rev 1:164

    Google Scholar 

  102. Schonherr T (2004) Struct Bond 106:1

    Google Scholar 

  103. Enemark JH, Feltham RD (1974) Coord Chem Rev 13:339

    CAS  Google Scholar 

  104. Mingos DMP (1998) Essential trends in inorganic chemistry. Oxford University Press, Oxford

    Google Scholar 

  105. Westre CE, Di Cicco, Filiponi A, Natoli CR, Hedman B, Solomon EI, Hodgson KO (1994) J Amer Chem Soc 116:6757

    Google Scholar 

  106. Wylie RA, Scheidt WR (2002) Chem Rev 102:1067

    Google Scholar 

  107. Elison MK, Schulz CE, Scheidt WR (2000) Inorg Chem 39:5102

    Google Scholar 

  108. McCleverty JA, Atherton NM, Locke J, Wharton EJ, Winscom CJ (1967) J Amer Chem Soc 89:6082

    CAS  Google Scholar 

  109. Wells FV, McCann SW, Wickman HH, Kessel SL, Hendrickson DN, Feltham RD (1982) Inorg Chem 21:2306

    CAS  Google Scholar 

  110. Fitzsimmons BW, Larkworthy LF, Rogers KA (1980) Inorg Chim Acta 44:L53

    CAS  Google Scholar 

  111. Harding DJ, Harding P, Adams H, Tuntulani T (2007) Inorg Chem 360:3335

    CAS  Google Scholar 

  112. Manoharan PT, Gray HB (1966) Inorg Chem 5:873

    Google Scholar 

  113. Fenske RF, DeKock RL (1972) Inorg Chem 11:437

    CAS  Google Scholar 

  114. Wayland BB, Olson LW (1974) J Amer Chem Soc 96:6037

    CAS  Google Scholar 

  115. Mingos DMP (1971) Nature Phys Sci (Lond) 229:193

    CAS  Google Scholar 

  116. Mingos DMP (1971) Nature Phys Sci (Lond) 230:154

    Google Scholar 

  117. Pierpont CG, Eisenberg R (1971) J Amer Chem Soc 93:4905

    Google Scholar 

  118. Feltham RD, Enemark JH (1974) J Amer Chem Soc 97:5002

    Google Scholar 

  119. Hoffmann R, Chen MML, Elian M, Rossi AR, Mingos DMP (1974) Inorg Chem 13:2666

    CAS  Google Scholar 

  120. Berto TC, Praneeth VKK, Goodrich IC, Lenhert N (2009) J Amer Chem Soc 131:17116

    Google Scholar 

  121. Richter-Addo GB, Wheeler RA, Hixson CA, Chen L, Khan MA, Ellison MK, Schulz CE, Scheidt WR (2001) J Am Chem Soc 123:6314

    CAS  Google Scholar 

  122. Goodrich LE, Paulat F, Praneeth VKK, Lehnert N (2010) Inorg Chem 49:6293

    Google Scholar 

  123. Ghosh A, Hopmann KH, Conradie J (2009) Electronic structure calculations: transition Metal–NO complexes. In: Solomon EI, King RB, Scott RA (eds) Computational inorganic and bioinorganic chemistry. Wiley, Chichester

    Google Scholar 

  124. Kaltsoyanis N, McGrady JE (2004) Principles and applications of density functional theory I & II. Struct Bond 112:1;113:1

    Google Scholar 

  125. Mingos DMP, Putz MV (2013) Applications of density functional theory to chemical reactivity. Struct Bond 149:1

    Google Scholar 

  126. Mingos DMP, Putz MV (2013) Applications of density functional theory to biological and bioinorganic chemistry. Struct Bond 150:1

    Google Scholar 

  127. Lyubinova C, Sizova OV, Losden C, Frenking G (2008) J Molecular Struct Theo Chem 865:28

    Google Scholar 

  128. Caramori GF, Kunitz AG, Andriaru KF, Doro FG, Frenking G, Thiouni E (2012) Dalton Trans 41:7327

    CAS  Google Scholar 

  129. Scheidt WR, Barabanschikov A, Paolek JW, Silvernail NJ, Sage JT (2010) Inorg Chem 49:6240

    Google Scholar 

  130. Scheidt WR (2008) J Porphyrins Phthalocyan 12:979

    CAS  Google Scholar 

  131. Lehnert N, Praneeth VKK, Paulat F (2006) J Comput Chem 27:1338

    CAS  Google Scholar 

  132. Silaghi-Dumitrescu R (2013) Struct Bond 150:97

    CAS  Google Scholar 

  133. Ghosh A (2005) Acc Chem Res 38:943

    CAS  Google Scholar 

  134. Ghosh A (2006) Biol Inorg Chem 11:712

    CAS  Google Scholar 

  135. Radon M, Pieloot KJ (2008) J Phys Chem 112:11824

    CAS  Google Scholar 

  136. Olah J, Harvey JN (2009) J Phys Chem 113:7338

    CAS  Google Scholar 

  137. Ghosh A (2009) J Inorg Biochem 253:523

    CAS  Google Scholar 

  138. Conradie J, Ghosh A (2007) J Phys Chem 111:12621

    CAS  Google Scholar 

  139. Conradie J, Ghosh A (2006) J Inorg Biochem 100:2069

    CAS  Google Scholar 

  140. Ghosh A (2006) J Biol Inorg Chem 11:671

    CAS  Google Scholar 

  141. Blomberg MRA, Siegbahn PEM (2012) Biochemistry 51:5173

    CAS  Google Scholar 

  142. Riplinger C, Neese F (2011) Chem Phys Chem 12:3192

    CAS  Google Scholar 

  143. Bykov D, Neese F (2012) J Biol Inorg Chem 17:741

    CAS  Google Scholar 

  144. Paulat F, Lehnert N (2007) Inorg Chem 46:1547

    CAS  Google Scholar 

Download references

Acknowledgement

I would like to dedicate these volumes to Professor Jim Ibers who encouraged my interest in the structures of nitrosyl complexes when I held a Fulbright Fellowship at Northwestern University from 1968 to 1970 and Professor Roald Hoffmann who invited me to join him for a month at Cornell University in the summer of 1973, where we spent many hours talking about the bonding in transition metal compounds and developing the bonding picture for linear and bent nitrosyl complexes and the isolobal analogy. I would also like to thank Professor Karl Wieghardt, Professor Nicolai Lehnert, Professor John McGrady and Professor Gerard Parkin for helpful comments on parts of the manuscript and Dr Rene Frank for completing the analysis of nitrosyl structures from the Cambridge Crystallographic Data Base.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Michael P. Mingos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mingos, D.M.P. (2014). Historical Introduction to Nitrosyl Complexes. In: Mingos, D. (eds) Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine I. Structure and Bonding, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2013_116

Download citation

Publish with us

Policies and ethics