Skip to main content

The Active Site of Nitrile Hydratase: An Assembly of Unusual Coordination Features by Nature

  • Chapter
  • First Online:
Molecular Design in Inorganic Biochemistry

Part of the book series: Structure and Bonding ((STRUCTURE,volume 160))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lechtenberg M (2011) Cyanogenesis in higher plants and animals. eLS (Plant Science). doi:10.1002/9780470015902.a0001921.pub2

    Google Scholar 

  2. Conn EE (1980) Cyanogenic compounds. Annu Rev Plant Physiol 31:433–451

    Article  CAS  Google Scholar 

  3. Moller BL, Selgler DS (1999) Biosynthesis of cyanogenic glycosides, cyanolipids, and related compounds. In: Singh B (ed) Plant amino acids: biochemistry and biotechnology. Marcel Dekker, New York

    Google Scholar 

  4. Mylerová V, Martinková L (2003) Synthetic applications of nitrile-converting enzymes. Curr Org Chem 7:1–17

    Google Scholar 

  5. Singh R, Sharma R, Tewari N, Rawat G, Rawat DS (2006) Nitrilase and its application as a “green” catalyst. Chem Biodivers 3:1279–1287

    Article  CAS  Google Scholar 

  6. Raczynska JE, Vorgias CE, Antranikian G, Rypniewski W (2010) Crystallographic analysis of a thermoactive nitrilase. J Struct Biol 173:294–302

    Article  Google Scholar 

  7. Pace HC, Brenner C (2001) The nitrilase superfamily: classification, structure and function. Genome Biol 2:1–9

    Article  Google Scholar 

  8. Kobayashi M, Shimizu S (1998) Metalloenzyme nitrile hydratase: structure, regulation, and application to biotechnology. Nat Biotechnol 16:733–736

    Article  CAS  Google Scholar 

  9. Prasad S, Bhalla TC (2010) Nitrile hydratses (NHases): at the interface of academia and industry. Biotechnol Adv 28:725–741

    Article  CAS  Google Scholar 

  10. Kobayashi M, Shimizu S (2000) Nitrile hydrolases. Curr Opin Chem Biol 4:95–102

    Article  CAS  Google Scholar 

  11. Yamada H, Kobayashi M (1996) Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem 60:1391–1400

    Article  CAS  Google Scholar 

  12. Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44

    Article  CAS  Google Scholar 

  13. Harrop TC, Mascharak PK (2004) Fe(III) and Co(III) centers with carboxamido nitrogen and modified sulfur coordination: lessons learned from nitrile hydratase. Acc Chem Res 37:253–260

    Article  CAS  Google Scholar 

  14. Kovacs JA (2004) Synthetic analogues of cysteinate-ligated non-heme iron and non-corrinoid cobalt enzymes. Chem Rev 104:825–848

    Article  CAS  Google Scholar 

  15. Mascharak PK (2002) Structural and functional models of nitrile hydratase. Coord Chem Rev 225:201–214

    Article  CAS  Google Scholar 

  16. Artaud I, Chatel S, Chauvin AS, Bonnet D, Kopf MA, Leduc P (1999) Nitrile hydratase and related non-heme iron sulfur complexes. Coord Chem Rev 190–192:577–586

    Article  Google Scholar 

  17. Huang W, Jia J, Cummings J, Nelson M, Schneider G, Lindqvist Y (1997) Crystal structure of nitrile hydratase reveals novel iron center in a novel fold. Structure 5:691–699

    Article  CAS  Google Scholar 

  18. Nagashima S, Nakasako M, Dohmae N, Tsujimura M, Takio K, Odaka M, Yohda M, Kamiya N, Endo I (1998) Novel non-heme iron center of nitrile hydratase with a claw setting of oxygen atoms. Nat Struct Biol 5:347–351

    Article  CAS  Google Scholar 

  19. Miyanaga A, Fushinobu S, Ito K, Wakagi T (2001) Crystal structure of cobalt-containing nitrile hydratase. Biochem Biophys Res Commun 288:1169–1174

    Article  CAS  Google Scholar 

  20. Song L, Wang M, Shi J, Xue Z, Wang M, Qian S (2007) High-resolution X-ray molecular structure of the nitrile hydratase from Rhodococcus erythropolis AJ270 reveals post-translational oxidation of two cysteines into sulfinic acids and a novel biocatalytic nitrile hydration mechanism. Biochem Biophys Res Commun 362:319–324

    Article  CAS  Google Scholar 

  21. Costas M, Mehn MP, Jensen MP, Que L Jr (2004) Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem Rev 104:939–986

    Article  CAS  Google Scholar 

  22. Solomon EI, Wong SD, Liu LV, Decker A, Chow MS (2009) Peroxo and oxo intermediates in mononuclear non-heme iron enzymes and related active sites. Curr Opin Chem Biol 13:99–113

    Article  CAS  Google Scholar 

  23. Sugiura Y, Kuwahara J, Nagasawa T, Yamada H (1987) The first non-heme iron enzyme with a typical low-spin iron(III) active center. J Am Chem Soc 109:5848–5850

    Article  CAS  Google Scholar 

  24. Nelson MJ, Jin H, Turner IM, Grove G, Scarrow RC, Brennan BA, Que L Jr (1991) A novel iron-sulfur center in nitrile hydratase from Brevibacterium sp. J Am Chem Soc 113:7072–7073

    Article  CAS  Google Scholar 

  25. Scarrow RC, Brennan BA, Cummings JG, Jin H, Duong DJ, Kindt JT, Nelson MJ (1996) X-ray spectroscopy of nitrile hydratase at pH 7 and 9. Biochemistry 35:10078–10088

    Article  CAS  Google Scholar 

  26. Peters JW, Stowell MHB, Soltis SM, Finnegan MG, Johnson MK, Rees DC (1997) Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry 36:1181–1187

    Article  CAS  Google Scholar 

  27. Murakami T, Nojiri M, Nakayama H, Odaka M, Yohda M, Dohmae N, Takio K, Nagamune T, Endo I (2000) Post-translational modification is essential for catalytic activity of nitrile hydratase. Protein Sci 9:1024–1030

    Article  CAS  Google Scholar 

  28. Johnson D, Dean DR, Smith AD, Johnson MK (2005) Structure, function and formation of biological iron–sulfur clusters. Annu Rev Biochem 74:247–281

    Article  CAS  Google Scholar 

  29. Ortiz de Montellano PR (ed) (2005) Cytochrome P450: structure mechanism, and biochemistry, 3rd edn. Kluwar Academic/Plenum, New York

    Google Scholar 

  30. Bonnet D, Artaud I, Moali C, Petre D, Mansuy D (1997) Highly efficient control of iron-containing nitrile hydratases by stoichiometric amounts of nitric oxide and light. FEBS Lett 409:216–220

    Article  CAS  Google Scholar 

  31. Endo I, Odaka M, Yohda M (1999) An enzyme controlled by light: the molecular mechanism of photoactivity in nitrile hydratase. Trends Biotechnol 17:244–248

    Article  CAS  Google Scholar 

  32. Noguchi T, Hoshino M, Tsujimura M, Odaka M, Inoue Y, Endo I (1996) Resonance Raman evidence that photodissociation of nitric oxide from the non-heme iron center activates nitrile hydratase from Rhodococcus sp. N-771. Biochemistry 35:16777–16781

    Article  CAS  Google Scholar 

  33. Odaka M, Fuji K, Hoshino M, Noguchi T, Tsujimura M, Nagashima S, Yohda M, Nagamune T, Inoue Y, Endo I (1997) Activity regulation of photoactive nitrile hydratase by nitric oxide. J Am Chem Soc 119:3785–3791

    Article  CAS  Google Scholar 

  34. Popescu VC, Munck E, Fox BG, Sanakis Y, Cummings JG, Turner IM, Nelson MJ (2001) Mossbauer and EPR studies of the photoactivation of nitrile hydratase. Biochemistry 40:7984–7991

    Article  CAS  Google Scholar 

  35. Jin H, Turner IM, Nelson MJ, Gurbiel RJ, Doan PE, Hoffman BM (1993) Coordination sphere of the ferric ion in nitrile hydratase. J Am Chem Soc 115:5290–5291

    Article  CAS  Google Scholar 

  36. Sari MA, Moali C, Boucher JL, Jaouen M, Mansuy D (1998) Detection of a nitric oxide synthase possibly involved in the regulation of Rhodococcus sp. R312 nitrile hydratase. Biochem Biophys Res Commun 250:364–368

    Article  CAS  Google Scholar 

  37. Nagao H, Hirano T, Tsuboya N, Shiota S, Mukaida M, Oi T, Yamasaki M (2002) Reactions of acetonitrile coordinated to a nitrosylruthenium complex with H2O or CH3OH under mild conditions: structural characterization of imido-type complexes. Inorg Chem 41:6267–6273

    Article  CAS  Google Scholar 

  38. Curtis NJ, Sargeson AM (1984) Synthesis and base hydrolysis of pentaammine N, N-dimethylforamide and acetonitrile complexes of Rh(III) and Ir(III). J Am Chem Soc 106:625–630

    Article  CAS  Google Scholar 

  39. Zanella A, Ford PC (1975) Base hydrolysis of coordinated organonitriles: reactions of ruthenium(III) and rhodium(III) complexes. Inorg Chem 14:42–47

    Article  CAS  Google Scholar 

  40. Pinnell D, Wright GB, Jordan RB (1972) Hydrolysis of coordinated nitriles to carboxamide complexes of pentaamminecobalt(III). J Am Chem Soc 94:6104–6106

    Article  CAS  Google Scholar 

  41. Marlin DS, Olmstead MM, Mascharak PK (1999) Carboxamido nitrogens are good donors for Fe(III): syntheses, structures, and properties of two low-spin nonmacrocyclic iron(III) complexes with tetracarboxamido-N coordination. Inorg Chem 38:3258–3260

    Article  CAS  Google Scholar 

  42. Marlin DS, Mascharak PK (2000) Coordination of carboxamido nitrogen to tervalent iron: insight into a new chapter of iron chemistry. Chem Soc Rev 29:69–74

    Article  CAS  Google Scholar 

  43. Noveron JC, Olmstead MM, Mascharak PK (1998) Effect of carboxamido N coordination to iron on the redox potential of low-spin non-heme iron centers with N, S coordination: relevance to the iron site of nitrile hydratase. Inorg Chem 37:1138–1139

    Article  CAS  Google Scholar 

  44. Tyler LA, Noveron JC, Olmstead MM, Mascharak PK (1999) Oxidation of metal-bound thiolato sulfur centers in Fe(III) and Co(III) complexes with carboxamido nitrogens and thiolato sulfurs as donors; relevance to the active sites of nitrile hydratases. Inorg Chem 38:616–617

    Article  CAS  Google Scholar 

  45. Noveron JC, Olmstead MM, Mascharak PK (2001) A synthetic analogue of the active site of Fe-containing nitrile hydrates with carboxamido N and thiolato S as donors: synthesis, structure and reactivities. J Am Chem Soc 123:3247–3259

    Article  CAS  Google Scholar 

  46. Noveron JC, Olmstead MM, Mascharak PK (1999) Co(III) complexes with carboxamido N and thiolato S donor centers: models for the active site of Co-containing nitrile Hydratase. J Am Chem Soc 121:3553–3554

    Article  CAS  Google Scholar 

  47. Chavez FA, Nguyen CV, Olmstead MM, Mascharak PK (1996) Synthesis, properties, and structure of a stable cobalt(III) alkyl peroxide complex and its role in the oxidation of cyclohexane. Inorg Chem 35:6282–6291

    Article  CAS  Google Scholar 

  48. Shoner SC, Barnhart D, Kovacs JA (1995) A model for the low-spin, non-heme, thiolate-ligated iron site of nitrile hydratase. Inorg Chem 34:4517–4518

    Article  CAS  Google Scholar 

  49. Jackson HL, Shoner SC, Rittenberg D, Cowen JA, Lovell S, Barnhart D, Kovacs JA (2001) Probing the influence of local coordination environment on the properties of the Fe-type nitrile hydratase model complexes. Inorg Chem 40:1646–1653

    Article  CAS  Google Scholar 

  50. Ellison JJ, Nienstedt A, Shoner SC, Barnhart D, Cowen JA, Kovacs JA (1998) Reactivity of five-coordinate models for the thiolate-ligated Fe site of nitrile hydratase. J Am Chem Soc 120:5691–5700

    Article  CAS  Google Scholar 

  51. Kung I, Schweitzer D, Shearer J, Taylor WD, Jackson HL, Lovell S, Kovacs JA (2000) How does oxidized thiolate ligands affect the electronic and reactivity properties of a nitrile hydratase model compound? J Am Chem Soc 122:8299–8300

    Article  CAS  Google Scholar 

  52. Shearer J, Kung IY, Lovell S, Kaminsky W, Kovacs JA (2001) Why is there an “inert” metal center in the active site of nitrile hydratase? Reactivity and ligand dissociation from a five-coordinate Co(III) nitrile hydratase model. J Am Chem Soc 123:463–468

    Article  CAS  Google Scholar 

  53. Schweitzer D, Shearer J, Rittenberg DK, Shoner SC, Ellison JJ, Loloee R, Lovell S, Barnhart D, Kovacs JA (2002) Enhancing reactivity via structural distortion. Inorg Chem 41:3128–3136

    Article  CAS  Google Scholar 

  54. Shearer J, Jackson HL, Schweitzer D, Rittenberg DK, Leavy TM, Kaminsky W, Scarrow RC, Kovacs JA (2002) The first example of a nitrile hydratase model complex that reversibly binds nitriles. J Am Chem Soc 124:11417–11428

    Article  CAS  Google Scholar 

  55. Scarrow RC, Strickler BS, Ellison JJ, Shoner SC, Kovacs JA, Cummings JG, Nelson MJ (1998) X-ray spectroscopy of nitric oxide binding to iron in inactive nitrile hydratase and a synthetic model compound. J Am Chem Soc 120:9237–9245

    Article  CAS  Google Scholar 

  56. Schweitzer D, Ellison JJ, Shoner SC, Lovell S, Kovacs JA (1998) A synthetic model for the NO-inactivated form of nitrile hydratase. J Am Chem Soc 120:10996–10997

    Article  CAS  Google Scholar 

  57. Rose MJ, Betterley NM, Mascharak PK (2009) Thiolato S-oxygenation controls nitric oxide (NO) photolability of a synthetic iron nitrile hydratase (Fe-NHase) model derived from mixed carboxamide/thiolate ligand. J Am Chem Soc 131:83410–88341

    Article  Google Scholar 

  58. Rose MJ, Betterley NM, Oliver AG, Mascharak PK (2010) Binding of nitric oxide to a synthetic model of iron-containing nitrile hydratase (Fe-NHase) and its photorelease: relevance to photo-regulation of Fe-NHase by NO. Inorg Chem 49:1854–1864

    Article  CAS  Google Scholar 

  59. Reddie KG, Carroll KS (2008) Expanding the functional diversity of proteins through cysteine modification. Curr Opin Chem Biol 12:746–754

    Article  CAS  Google Scholar 

  60. Poole LB, Nelson KJ (2008) Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol 12:18–24

    Article  CAS  Google Scholar 

  61. Tyler LA, Noveron JC, Olmstead MM, Mascharak PK (2003) Modulation of the pKa of metal-bound water via oxidation of thiolato sulfur in model complexes of Co(III) containing nitrile hydratase: insight into the possible effect of cysteine oxidation in Co-nitrile hydratase. Inorg Chem 42:5751–5761

    Article  CAS  Google Scholar 

  62. Dey A, Chow M, Taniguchi K, Lugo-Mas P, Davin S, Maeda M, Kovacs JA, Odaka M, Hodgson KO, Hedman B, Solomon EI (2006) Sulfur K-edge XAS and DFT calculations on nitrile hydratase: geometric and electronic structure of the non-heme iron active site. J Am Chem Soc 128:533–541

    Article  CAS  Google Scholar 

  63. Chatel S, Rat M, Dijols S, Leduc P, Tuchagues JP, Mansuy D, Artaud I (2000) Toward model complexes of Co-containing nitrile hydratases: synthesis, complete characterization and reactivity towards ligands such as CN and NO of the first square planar Co(III) complex with two different carboxamido nitrogens and two thiolato sulfur donors. J Inorg Biochem 80:239–246

    Article  CAS  Google Scholar 

  64. Rat M, de Sousa RA, Vaissermann J, Leduc P, Mansuy D, Artaud I (2001) Clean oxidation of thiolates to sulfinates in a four-coordinate Co(III) complex with a mixed carboxamido N-thiolato S donor set: relevance to nitrile hydratase. J Inorg Biochem 84:207–213

    Article  CAS  Google Scholar 

  65. Heinrich L, Li Y, Vaissermann J, Chottard J-C (2001) A bis(carboxamido-N)diisocyanidobis(sulfenato-S)cobalt(III) complex, model for the post-translational oxygenation of nitrile hydratase thiolato ligands. Eur J Inorg Chem 1407–1409

    Google Scholar 

  66. Heinrich L, Mary-Verla A, Li Y, Vaissermann J, Chottard J-C (2001) Cobalt(III) complexes with carboxamido-N and sulfenato-S or sulfinato-S ligands suggest that a coordinated sulfenato-S is essential for the catalytic activity of nitrile hydratases. Eur J Inorg Chem 2203–2206

    Google Scholar 

  67. Boone AJ, Cory MG, Scott MJ, Zerner MC, Richards NGJ (2001) Investigating the structural and electronic properties of nitrile hydratase model iron(III) complexes using projected unrestricted Hartree–Fock (PUHF) calculations. Inorg Chem 40:1837–1845

    Article  CAS  Google Scholar 

  68. Greene SN, Richards NGJ (2006) Electronic structure, bonding, spectroscopy and energetics of Fe-dependent nitrile hydratase active-site models. Inorg Chem 45:17–36

    Article  CAS  Google Scholar 

  69. Kennepohl P, Neese F, Schweitzer D, Jackson HL, Kovacs JA, Solomon EI (2006) Spectroscopy of non-heme iron thiolate complexes: insight into the electronic structure of the low-spin active site of nitrile hydratase. Inorg Chem 44:1826–1836

    Article  Google Scholar 

  70. Patra AK, Afshar R, Olmstead MM, Mascharak PK (2002) The first non-heme iron(III) complex with a ligated carboxamido group that exhibits photolability of a bound NO ligand. Angew Chem Int Ed 41:2512–2515

    Article  CAS  Google Scholar 

  71. Patra AK, Rowland JM, Marlin DS, Bill E, Olmstead MM, Mascharak PK (2003) Iron nitrosyls of pentadentate ligand containing a single carboxamide group: syntheses, structures, electronic properties, and photolability of NO. Inorg Chem 42:6812–6823

    Article  CAS  Google Scholar 

  72. Grapperhaus CA, Patra AK, Mashuta MS (2002) First {Fe–NO}6 complex with an N3S3Fe–NO core as a model of NO-inactivated iron-containing nitrile hydratase: are thiolates and thioethers equivalent donors in low-spin iron complexes? Inorg Chem 41:1039–1041

    Article  CAS  Google Scholar 

  73. Greene SN, Richards NGJ (2004) Theoretical investigations of the electronic structure and spectroscopy of mononuclear, non-heme {Fe–NO}6 complexes. Inorg Chem 43:7030–7041

    Article  CAS  Google Scholar 

  74. Greene SN, Chang CH, Richards NGJ (2002) The role of post-translational modification in the photoregulation of Fe-type nitrile hydratase. Chem Commun 2386–2387

    Google Scholar 

  75. Nowak W, Ohtsuka Y, Hasegawa J, Nakatsuji H (2002) Density functional study on geometry and electronic structure of nitrile hydratase active site model. Int J Quantum Chem 90:1174–1187

    Article  CAS  Google Scholar 

  76. Kubiak K, Nowak W (2008) Molecular dynamics simulations of the photoactive protein nitrile hydratase. Biophys J 94:3824–3838

    Article  CAS  Google Scholar 

  77. Mitra S, Holz RC (2007) Unraveling the catalytic mechanism of nitrile hydratases. J Biol Chem 282:7397–7404

    Article  CAS  Google Scholar 

  78. Miyanaga A, Fushinobu S, Ito K, Shoun H, Wakagi T (2004) Mutational and structural analysis of cobalt-containing nitrile hydratase on substrate and metal binding. Eur J Biochem 271:429–438

    Article  CAS  Google Scholar 

  79. Nakasako M, Odaka M, Yohda M, Dohmae N, Takio K, Kamiya N, Endo I (1999) Tertiary and quaternary structures of photoactive Fe-type nitrile hydratase from Rhodococcus sp. N-7771: roles of hydration water molecules in stabilizing the structures and the structural origin of the substrate specificity of the enzyme. Biochemistry 38:9887–9898

    Article  CAS  Google Scholar 

  80. Hopmann KH, Guo J-D, Himo F (2007) Theoretical investigation of the first-shell mechanism of nitrile hydratase. Inorg Chem 46:4850–4856

    Article  CAS  Google Scholar 

  81. Peplowski L, Kubiak K, Nowak W (2007) Insights into catalytic activity of industrial enzyme Co-nitrile hydratase: docking studies of nitriles and amides. J Mol Model 13:725–730

    Article  CAS  Google Scholar 

  82. Wuerges J, Lee JW, Yim YI, Yim HS, Kang SO, Carugo KD (2004) Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc Natl Acad Sci USA 101:8569–8574

    Article  CAS  Google Scholar 

  83. Dobbek H, Svetlitchnyl V, Gremer L, Huber R, Meyer O (2001) Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-4S] cluster. Science 293:1281–1285

    Article  CAS  Google Scholar 

  84. Vivancos AP, Castillo EA, Biteau B, Nicot C, Ayte J, Toledano MB, Hidalgo EA (2005) A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap 1 pathway. Proc Natl Acad Sci USA 102:8875–8880

    Article  CAS  Google Scholar 

  85. Barford D, Flint AJ, Tonks NK (1994) Crystal structure of human protein tyrosine phosphatase 1B. Science 263:1397–1404

    Article  CAS  Google Scholar 

  86. Kobayashi M, Shimizu S (1999) Cobalt proteins. Eur J Biochem 261:1–9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradip K. Mascharak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mascharak, P.K. (2013). The Active Site of Nitrile Hydratase: An Assembly of Unusual Coordination Features by Nature. In: Rabinovich, D. (eds) Molecular Design in Inorganic Biochemistry. Structure and Bonding, vol 160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2012_85

Download citation

Publish with us

Policies and ethics