Skip to main content

The Recent Development of SRS and SRS SF-Conversion Laser Crystal

  • Chapter
  • First Online:
Structure-Property Relationships in Non-Linear Optical Crystals II

Part of the book series: Structure and Bonding ((STRUCTURE,volume 145))

  • 1115 Accesses

Abstract

Although tungstates posses lower coefficient of thermal conductivity, tungstates doped with active ions have higher quanta efficiency of fluorescence owing to their higher doping concentration of active ions resulted from the higher covalence of WO 2−4 units. Therefore, they are favorable for the medium of low power laser when doped with active ions. On the other hand, they have higher stimulated Raman scattering (SRS) plus in a general way. Therefore, tungstates doped with active ions can serve as a SRS self-frequency conversion multifunctions laser medium. After wide surveys of known research on the growth, crystal structure, and properties including optical and spectra characteristics and laser property, this chapter reviews the recent advances in the development of KGd(WO4)2 and SrWO4 Raman and SRS self-frequency conversion laser crystal. The SRS self-frequency conversion laser technology was dealt with. As a result, the Raman and self-Raman laser outputs with high efficiency at ~1,180 nm wavelength and its frequency-doubling laser outputs at ~590 nm wavelength have been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hellwarth RW (1963) Phys Rev 130:1850

    Article  Google Scholar 

  2. Sen PK, Sen P (1986) Phys Rev B 33:5038

    Article  CAS  Google Scholar 

  3. Malkin VM, Tsidulko YA, Fisch NJ (2000) Phys Rev Lett 85:4068

    Article  CAS  Google Scholar 

  4. Li Z, Li L, Tian H, Zhou G, Spatschek KH (2002) Phys Rev Lett 89:263901

    Article  Google Scholar 

  5. Takahashi J, Matsubara E, Arima T, Hanamura E (2003) Phys Rev B 68:155102

    Article  Google Scholar 

  6. Shen YR (2003) The principles of nonlinear optics. Wiley-Interscience, Hoboken

    Google Scholar 

  7. Levenson MD (1974) IEEEE J Quant Electron QE 10:110

    Article  Google Scholar 

  8. Harris SE, Sokolo AV (1997) Phys Rev A 55:R4019

    Article  CAS  Google Scholar 

  9. Zverev PG, Basiev TT, Prokhorov AM (1999) Opt Mater 11:335

    Article  CAS  Google Scholar 

  10. Kaminskii AA, Eichler HJ, Grebe D et al (1998) Opt Mater 10:269

    Article  CAS  Google Scholar 

  11. Qi X, Luo Z, Liang J (2000) J Cryst Growth 246:363–366

    Article  Google Scholar 

  12. Kaminskii A, Ueda K, Eichler HJ, Lu J et al (2001) Opt Comm 194:201

    Article  CAS  Google Scholar 

  13. Chen W, Inagawa Y, Omatsu T et al (2001) Opt Comm 194:401

    Article  CAS  Google Scholar 

  14. Kaminskii A, Sarkiso SE, Pavlyuk A, Lyubchenko V (1980) Izv Akad Nauk SSSR Neorg Mater 16:501

    Google Scholar 

  15. Jia G (2005) The study on the growth, structure, spectral, and laser properties of TmxGd1−xAl(BO3)4 and rare-earth doped SrWO4 crystals. Master Dissertation, Graduated School of Chinese Academy of Sciences

    Google Scholar 

  16. Tu C, Luo Z, Chen G, Zhao T (1995) J Cryst Growth 152(3):235–237

    Article  CAS  Google Scholar 

  17. Johnson LF, Dietz RE, Guggenheim HJ (1963) Phys Rev Lett 11:318–320

    Article  CAS  Google Scholar 

  18. Tu C, Li J, Zhu Z et al (2003) J Cryst Growth 256(1–2):63–66

    Article  CAS  Google Scholar 

  19. Tu C, Li J, You Z et al (2004) Chin Laser 31:377

    Google Scholar 

  20. Tu C (2005) The study on the growth, structure, spectra and laser characteristics of new rare earth-actived laser crystals. Doctor Dissertation, Graduated School of Chinese Academy of Sciences

    Google Scholar 

  21. Yingwei W, Haobo C, Jinghe L et al (2004) Opt Tech (Chinese) 30(6):717

    Google Scholar 

  22. Brenier A, Tu C, Li J et al (2001) J Phys Condens Matter 13:4097–4103

    Article  CAS  Google Scholar 

  23. Zundu Luo, Xueyuan Chen, Tu C (1997) Acta Optica Sinica (Chinese) 17(8):1144

    Google Scholar 

  24. Tu C, Li J, Zhaojie Z et al (2003) Opt Comm 227(4–6):383–388

    Article  CAS  Google Scholar 

  25. Huang Jianhong, Lin Jipeng, Su Rongbing et al (2007) Opt Lett 32(9):1096

    Article  CAS  Google Scholar 

  26. Gurmen E, Daniels E, King JS (1971) J Chem Phys 55:1093–1097

    Article  Google Scholar 

  27. Ivleva LI, Basiev TT, Voronina IS et al (2003) Opt Mater 23:439

    Article  CAS  Google Scholar 

  28. Sattler JP, Nemarich J (1970) Phys Rev B1:4249

    Google Scholar 

  29. Choosuwan H, Guo R, Bhalla AS et al (2002) J Appl Phys 91:5051

    Article  CAS  Google Scholar 

  30. Carvajal JJ, Sole R, Gavalsa J et al (2003) Chem Matter 15:2730

    Article  CAS  Google Scholar 

  31. Chauhan AK (2003) J Cryst Growth 254:418

    Article  CAS  Google Scholar 

  32. Jia G, Tu C, You Z et al (2005) Solid State Comm 134(9):583–588

    Article  CAS  Google Scholar 

  33. Brixner LH, Sleight AW (1973) Mater Res Bull 8:1269

    Article  CAS  Google Scholar 

  34. Gongming Wang, Wencheng Wang (1982), Physics 11(3):164

    Google Scholar 

  35. Born M, Wolf E (1975) Principles of optics. Pergamon, Oxford

    Google Scholar 

  36. Jia G, Tu C, Brenier A (2005) Appl Phys B 81:627–633

    Article  CAS  Google Scholar 

  37. Métrat G, Muhlstein N, Brenier A et al (1997) Opt Matter 8:75

    Article  Google Scholar 

  38. Zubenko DA, Noginov MA, Semenkov SG et al (1992) Sov J Quant Electron 22:133

    Article  Google Scholar 

  39. Weber MJ, Varitimos TE (1971) J Appl Phys 42:4996

    Article  CAS  Google Scholar 

  40. Chen Y, Lin X, Luo Z et al (2003) Chem Phys Lett 381(5–6):598

    Article  CAS  Google Scholar 

  41. Chen W, Inagawa Y, Omatsu T et al (2001) Opt Comm 194:201

    Article  Google Scholar 

  42. Ohta K, Saito H, Obara M (1993) J Appl Phys 73:3149

    Article  CAS  Google Scholar 

  43. Sokolska I, Ryba-Romanowski W, Golab S et al (2000) J Chem Sol 61:1573

    Article  CAS  Google Scholar 

  44. Pujol MC, Guell F, Mateos X et al (2002) Phys Rev B 66:144304

    Article  Google Scholar 

  45. Jia GH, Tu CY, Li JF et al (2004) J Appl Phys 96:6262

    Article  CAS  Google Scholar 

  46. Jia G, Tu C, Zhenyu You et al (2005) J Appl Phys 98:093525

    Article  Google Scholar 

  47. Brenier A, Jia G, Tu C (2004) J Phys Condens Matter 16:9103–9108

    Article  CAS  Google Scholar 

  48. Fan L, Fan YX, Duan YH et al (2009) Appl Phys B 94:553–557

    Article  CAS  Google Scholar 

  49. Fan YX, Liu Y, Duan YH et al (2008) Appl Phys B 93:327–330

    Article  CAS  Google Scholar 

  50. Chen X, Zhang X, Wang Q et al (2008) Opt Lett 33(7):705–707

    Article  CAS  Google Scholar 

  51. Zhenhua C, Xingyu Z, Qingpu W, Liu Z et al (2009) Opt Lett 34(17):2610–2612

    Article  Google Scholar 

  52. Duan YM, Zhu HY, Zhang G, Huang CH, Wei Y, Tu CY, Zhu ZJ, Yang FG, You ZY (2010) Laser Phys Lett 7(7):491–494

    Article  CAS  Google Scholar 

  53. Yang FG, You ZY, Zhu ZJ et al (2010) Laser Phys Lett 7(1):14–16

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Some works of this chapter were supported by National Nature Science Foundation of China (No.50902129, 61078076, 91122033), Major Projects from FJIRSM (SZD09001), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-H03), Science and Technology Plan Major Project of Fujian Province of China (Grant No. 2010I0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoyang Tu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tu, C. (2012). The Recent Development of SRS and SRS SF-Conversion Laser Crystal. In: Wu, XT., Chen, L. (eds) Structure-Property Relationships in Non-Linear Optical Crystals II. Structure and Bonding, vol 145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2011_75

Download citation

Publish with us

Policies and ethics