Simulation and Design of Infrared Second-Order Nonlinear Optical Materials in Metal Cluster Compounds

  • Kechen WuEmail author
Part of the Structure and Bonding book series (STRUCTURE, volume 145)


In this minireview, we overview the recent advances and perspectives in the developments of the infrared second-order nonlinear optical materials. The traditional semiconductors are discussed first including the problems encountered such as the facility of large second-order nonlinearity but difficulty in practical materials for laser applications. We then focus our special interest on the area of the transition-metal polynuclear cluster compounds which is a great promising area for developing new-generation infrared second-order nonlinear optical materials and molecule-scaled photoelectronic devices. We present in detail the computational studies on the microscopic mechanism of second-order nonlinear optical response and the structure–property relationship insight of these metal cluster compounds.


Charge transfers Density functional calculations IR absorption Nonlinear optics Transition-metal compounds 



We acknowledge the financial supports from NSFC project (20973174 and 91122015) and MOST projects (2006DFA43020 and 2007CB815307).


  1. 1.
    Chai BHT (1995) Optical materials. In: Weber MJ (ed) CRC handbook of laser science and technology, vol 2. CRC, Boca RatonGoogle Scholar
  2. 2.
    Chemla DS (1971) Opt Commun 3:29Google Scholar
  3. 3.
    Boyd GD, Kasper H, McFee JH (1971) IEEE J QE-7:563Google Scholar
  4. 4.
    Shay LJ, Wernick JH (eds) (1975) Ternary chalcopyrite semiconductors. Growth, electronic properties and applications. Pergamon, New YorkGoogle Scholar
  5. 5.
    Schunemann PG (2006) Proc SPIE 6103:610303Google Scholar
  6. 6.
    Swain JE, Stokowski SE, Milam D, Kennedy GC (1982) Appl Phys Lett 41:12Google Scholar
  7. 7.
    Boyd GD, Buehler E, Storz FG (1971) Appl Phys Lett 18:301Google Scholar
  8. 8.
    Roberts DA (1992) IEEE J 28:2057Google Scholar
  9. 9.
    Mason PD, Jackson DJ, Gorton EK (1994) Opt Commun 110:163Google Scholar
  10. 10.
    Verozubova GA, Okunev AO, Gribenyukov AI, Trofimiv AYu, Trukhanov EM, Kolesnikov AV (2010) J Cryst Growth 312:1122Google Scholar
  11. 11.
    Byer RL, Choy MM, Herbst RL, Chemla DS, Feigelso RS (1974) Appl Phys Lett 24:65Google Scholar
  12. 12.
    Kildal H, Iseler GW (1976) Appl Opt 15:3062Google Scholar
  13. 13.
    Wu K, Chen C (1992) Appl Phys A54:209Google Scholar
  14. 14.
    Zhang G, Qin J, Liu T, Li Y, Wu Y, Chen C (2009) App Phys Lett 95:261104Google Scholar
  15. 15.
    Di Bella S (2001) Chem Soc Rev 30:355Google Scholar
  16. 16.
    Chemla DS, Zyss J (eds) (1987) Nonlinear optical properties of organic molecules and crystals. Academic, New YorkGoogle Scholar
  17. 17.
    Nalwa HS, Miyata S (eds) (1997) Nonlinear optics of organic molecules and polymers. CRC, New YorkGoogle Scholar
  18. 18.
    Marder SR, Gorman CB, Meyers F, Perry JW, Bourhill G, Bredas J-L, Pierce BM (1994) Science 265:632Google Scholar
  19. 19.
    Wolff JJ, Langle D, Hillenbrand D, Wortmann R, Matschiner R, Glania C, Kramer P (1997) Adv Mater 9:138Google Scholar
  20. 20.
    Lacroix PG, Malfant I, Iftime G, Razus AC, Nakatani K, Delaire JA (2000) Chem Eur J 6:2599Google Scholar
  21. 21.
    Brunel J, Ledoux I, Zyss J, Blanchard-Desce BM (2001) Chem Commun 923Google Scholar
  22. 22.
    Brunel J, Mongin O, Jutand A, Ledoux I, Zyss J, Blanchard-Desce M (2003) Chem Mater 15:4139Google Scholar
  23. 23.
    Goodson TG (2005) Acc Chem Res 38:99Google Scholar
  24. 24.
    Hennrich G, Murillo MT, Prados P, Al-Saraierh H, El-Dali A, Thompson DW, Collins J, Georghiou PE, Teshome A, Asselberghs I, Clays K (2007) Chem Eur J 13:7753Google Scholar
  25. 25.
    Frasier CC, Harvey MA, Cokerham MP, Hand HM, Chauchard EA, Lee CH (1986) J Phys Chem 90:5703Google Scholar
  26. 26.
    Green ML, Marder SR, Thompson ME, Bandy JA, Bloor D, Kolinsky PV, Jones RJ (1987) Nature 330:360Google Scholar
  27. 27.
    Nalwa HS (1991) Appl Organomet Chem 5:349Google Scholar
  28. 28.
    Tessore F, Roberto D, Ugo R, Quici PS, Ledoux-Rak I, Zyss J (2003) Angew Chem Int Ed 42:456Google Scholar
  29. 29.
    Powell CE, Humphery MG (2004) Coord Chem Rev 248:725Google Scholar
  30. 30.
    Cariati E, Pizzotti M, Roberto D, Tessore F, Ugo R (2006) Coord Chem Rev 250:1210Google Scholar
  31. 31.
    Coe BJ (2006) Acc Chem Res 39:383, and the references thereinGoogle Scholar
  32. 32.
    Morrall JPL, Humphrey MG, Dalton GT, Cifuentes MP, Samoc M (2006) In: Padadopoulos MG, Sadlej AJ, Leszczynski J (eds) Nonlinear optical properties of matter, from molecules to condensed phases. Springer, Dordrecht, p 537, and the references thereinGoogle Scholar
  33. 33.
    Senge MO, Fazekas M, Notaras EGA, Blau WJ, Zawadzka M, Locos OB, Ni Mhuircheartaigh EM (2007) Adv Mater 19:2737Google Scholar
  34. 34.
    Duncan TV, Song K, Hung S-T, Miloradovic I, Nayak A, Persoons A, Verbiest T, Therien MJ, Clays K (2008) Angew Chem Int Ed 47:2978Google Scholar
  35. 35.
    Kanis DR, Ratner MA, Marks TJ (1992) J Am Chem Soc 114:10338Google Scholar
  36. 36.
    Kanis DR, Lacroix PG, Ratner MA, Tobin JM (1994) J Am Chem Soc 116:10089Google Scholar
  37. 37.
    Matsuzawa N, Seto J, Dixon DA (1997) J Phys Chem A 101:9391Google Scholar
  38. 38.
    Karton A, Iron MA, van der Boom ME, Martin JML (2005) J Phys Chem A 109:5454Google Scholar
  39. 39.
    Asselberghs I, Therien MJ, Coe BJ, McCleverty JA, Clays K (2006) In: Schubert US, Newkome GR (eds) Metal-containing and metallosupramolecular polymers and materials. ACS symposium series, vol 928. American Chemical Society, Distributed by Oxford University Press, Washington, p 527Google Scholar
  40. 40.
    Coe BJ (2006) In: Padadopoulos MG, Sadlej AJ, Leszczynski J (eds) Nonlinear Optical Properties of Matter, From Molecules to Condensed Phases. Springer, Dordrecht, p 571, and the references thereinGoogle Scholar
  41. 41.
    Sophy KB, Calaminici P, Pal S (2007) J Chem Theory Comput 3:716Google Scholar
  42. 42.
    Laidlaw WM, Denning RG, Verbiest T, Chauchard E, Persoons A (1993) Nature 363:58Google Scholar
  43. 43.
    Lin CS, Wu KC, Snijders JG, Sa RJ, Chen XH (2002) Acta Chim Sinica 60:664Google Scholar
  44. 44.
    de Angelis F, Fantacci S, Sgamelotti A, Cariati F, Roberto D, Tessore F, Ugo R (2006) Dalton Trans 852Google Scholar
  45. 45.
    Wu K (2006) In: Maroulis G (ed) Atoms, Molecules and Clusters in Electric Fields. Imperial College Press, London, p 565Google Scholar
  46. 46.
    Liao Y, Eichinger BE, Firestone KA, Haller M, Luo J, Kaminsky W, Benedict JB, Reid PJ, Jen AK-Y, Dalton LR, Robinson BH (2005) J Am Chem Soc 127:2758Google Scholar
  47. 47.
    Coe BJ, Harris JA, Brunschwig BS, Asselberghs I, Clays K, Garin JJ, Orduna J (2005) J Am Chem Soc 127:13399Google Scholar
  48. 48.
    Roberto D, Ugo R, Tessore F, Lucenti E, Quici S, Vezza S, Fantucci PC, Invernizzi I, Brum S, Ledoux-Rak I, Zyss J (2002) Organometallic 21:161Google Scholar
  49. 49.
    Senechal K, Maury O, Le Bozec H, Ledoux I, Zyss J (2002) J Am Chem Soc 124:4561Google Scholar
  50. 50.
    Rigamonti L, Demartin F, Forni A, Righetto S, Pasini A (2006) Inorg Chem 45:10976Google Scholar
  51. 51.
    Fukui H, Kishi R, Minami T, Nagai H, Takahashi H, Kubo T, Kamada K, Ohta K, Champagne B, Botek M, Masayoshi Nakano M (2008) J Phys Chem A 112:8423Google Scholar
  52. 52.
    Muller TJJ, Netz A, Ansorge M, Schmalzlin E, Brauchle C, Meerholz K (1999) Organometallic 18:5066Google Scholar
  53. 53.
    Roberto D, Ugo R, Bruni S, Cariati E, Cariati F, Fantucci PC, Invernizzi I, Quici S, Ledoux I, Zyss J (2000) Organometallic 19:1775Google Scholar
  54. 54.
    Maury O, Viau L, Senechal K, Corre B, Guegan JP, Renouard T, Ledoux I, Zyss J, Le Bozec H (2004) Chem Eur J 10:4454Google Scholar
  55. 55.
    Labat L, Lamere J-F, Sasaki I, Lacroix PG, Vendier L, Asselberghs I, Perez-Moreno J, Clays K (2006) Eur J Inorg Chem 3105Google Scholar
  56. 56.
    Nguyen P, Lesley G, Marder TB, Ledoux I, Zyss J (1997) Chem Mater 9:406Google Scholar
  57. 57.
    McDonagh AM, Humphrey MG, Samoc M, Luther-Davies B, Houbrechts S, Wada T, Sasabe H, Persoons A (1999) J Am Chem Soc 121:1405Google Scholar
  58. 58.
    Weyland T, Ledoux I, Brasselet S, Zyss J, Lapinte C (2000) Organometallic 19:5235Google Scholar
  59. 59.
    Pizzotti M, Ugo R, Dragonetti C, Annoni E (2003) Organometallic 22:4001Google Scholar
  60. 60.
    Wu K, Li J, Lin C (2004) Chem Phys Lett 388:353Google Scholar
  61. 61.
    Wu K, Sa R, Lin C (2005) New J Chem 29:362Google Scholar
  62. 62.
    Li Q, Sa R, Wei Y, Wu K (2008) J Phys Chem A 112:4965Google Scholar
  63. 63.
    Isaenko L, Yelisseyev A, Lobanov S, Petrov V, Rotermund F, Slekys G, Zondy JJ (2002) J Appl Phys 91:9475Google Scholar
  64. 64.
    Gradinaru J, Forni A, Druta V, Tessore F, Zecchin S, Quici S, Garbalau N (2007) Inorg Chem 46:884Google Scholar
  65. 65.
    Coe BJ, Jones LA, Harris JA, Brunschwig BS, Asselbergh I, Clays K, Persoons A, Garin J, Orduna J (2004) J Am Chem Soc 126:3880Google Scholar
  66. 66.
    Inerbaev TM, Belosludov RV, Mizuseki H, Takahashi M, Kawazoe Y (2006) J Chem Theory Comput 2:1325Google Scholar
  67. 67.
    Senechal-David K, Hemeryck A, Tancrez N, Toupet L, Williams JAG, Ledoux I, Zyss J, Boucekkine A, Guegan JP, Le Bozec H, Maury O (2006) J Am Chem Soc 128:12243Google Scholar
  68. 68.
    Champagne B, Perpete EA, van Gisbergen SJA, Baerends EJ, Snijders JG, Soubra-Ghaoui C, Robins KA, Kirtman B (1998) J Chem Phys 109:10489Google Scholar
  69. 69.
    van Gisbergen SJA, Schipper PRT, Gritsenko OV, Baerends EJ, Snijders JG, Champagne B, Kirtman B (1999) Phys Rev Lett 83:694Google Scholar
  70. 70.
    Jacquemin D, Andre JM, Perpete EA, Sekino H, Yasuyuki M, Kamiya M, Hirao K (2004) J Chem Phys 121:4389Google Scholar
  71. 71.
    Jacquemin D, Perpete EA, Ciofini I, Adamo C (2005) Chem Phys Lett 405:376Google Scholar
  72. 72.
    Champagne B, Perpete EA, Jacquemin D, van Gisbergen SJA, Baerends EJ, Soubra-Ghaoui C, Robins KA, Kirtman B (2000) J Phys Chem A 104:4755Google Scholar
  73. 73.
    Zhang M, Wu KC, Liu C, Wei Y (2005) Acta Phys Sinica 54:1762Google Scholar
  74. 74.
    Bruschi M, Fantucci P, Pizzotti M (2005) J Phys Chem A 109:9637Google Scholar
  75. 75.
    van Faassen M, de Boeij PL, van Leeuwen R, Berger JA, Snijders JG (2002) Phys Rev Lett 88:186401Google Scholar
  76. 76.
    Gonze X, Ghosez P, Godby RW (1995) Phys Rev Lett 74:4035Google Scholar
  77. 77.
    Champagne B, Bulat FA, Yang WT, Bonness S, Kirtman B (2006) J Chem Phys 125:194114Google Scholar
  78. 78.
    Bulat FA, Toro-Labbe A, Champagne B, Kirtman B, Yang WT (2005) J Chem Phys 123:014309Google Scholar
  79. 79.
    Sexton JZ, Kummel AC (2003) J Vacuum Sci Technol B 21:1908Google Scholar
  80. 80.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785Google Scholar
  81. 81.
    Becke AD (1993) J Chem Phys 98:5648Google Scholar
  82. 82.
    Adamo C, Barone V (1998) J Chem Phys 108:664Google Scholar
  83. 83.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244Google Scholar
  84. 84.
    Hieringer W, Baerends EJ (2006) J Phys Chem A 110:1014Google Scholar
  85. 85.
    Cotton FA, Extine MW (1978) J Am Chem Soc 100:3788Google Scholar
  86. 86.
    Cai S, Hoffman DM, Wierda DA (1991) Inorg Chem 30:827Google Scholar
  87. 87.
    Becke AD (1988) Phys Rev A 38:3098Google Scholar
  88. 88.
    Perdew JP (1988) Phys Rev B 33:8822Google Scholar
  89. 89.
    Ceperly DM, Alder BJ (1980) Phys Rev Lett 45:566Google Scholar
  90. 90.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200Google Scholar
  91. 91.
    Stoll H, Pavlidou CME, Preuss H (1978) Theor Chim Acta 49:143Google Scholar
  92. 92.
    van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597Google Scholar
  93. 93.
    van Lenthe E, Baerends EJ, Snijders JG (1996) J Chem Phys 105:6505Google Scholar
  94. 94.
    van Lenthe E, Ehlers AE, Baerends EJ (1999) J Chem Phys 110:8943Google Scholar
  95. 95.
    van Gisbergen SJA, Snijders JG, Baerends EJ (1998) J Chem Phys 109:10644Google Scholar
  96. 96.
    te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca-Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931Google Scholar
  97. 97.
    Mayer I (1983) Chem Phys Lett 97:270Google Scholar
  98. 98.
    Barclay T, Eglin JL, Smith LT (2001) Polyhedron 20:767Google Scholar
  99. 99.
    Dequeant MQ, Bradley PM, Xu GL, Lutterman DA, Turro C, Ren T (2004) Inorg Chem 43:7887Google Scholar
  100. 100.
    Golichenko AA, Shtemenko AV (2006) Russ J Coord Chem 32:242Google Scholar
  101. 101.
    Landis CR, Weinhold F (2006) J Am Chem Soc 128:7335Google Scholar
  102. 102.
    Acott SR, Garner CD, Nicholson JR, Clegg W (1983) J Chem Soc Dalton Trans 713Google Scholar
  103. 103.
    Zhu NY, Zheng YF, Wu XT (1990) Inorg Chem 29:2705Google Scholar
  104. 104.
    Klamt A (1995) J Phys Chem 99:2224Google Scholar
  105. 105.
    Klamt A, Jones V (1996) J Chem Phys 105:9972Google Scholar
  106. 106.
    Pye CC, Ziegler T (1999) Theor Chem Acc 101:396Google Scholar
  107. 107.
    Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2 799Google Scholar
  108. 108.
    Clays K, Persoons A (1991) Phys Rev Lett 66:2980Google Scholar
  109. 109.
    Hendrickx E, Clays K, Persoons A (1998) Acc Chem Res 31:675, and the references thereinGoogle Scholar
  110. 110.
    Oudar JL, Chemla DS (1977) J Chem Phys 66:2664Google Scholar
  111. 111.
    Cyvin SJ, Rauch JE, Decius JC (1965) J Chem Phys 43:4083Google Scholar
  112. 112.
    Bersohn R, Pao YH, Frisch HL (1996) J Chem Phys 45:3184Google Scholar
  113. 113.
    Pizzotti M, Ugo R, Roberto D, Bruni S (2002) Organometallic 21:5830Google Scholar
  114. 114.
    Zhang C, Song YL, Kuhn FE, Wang Y, Fun H, Xin XQ (2002) J Mater Chem 12:239Google Scholar
  115. 115.
    Zhang C, Song YL, Kuhn FE, Wang Y, Xin XQ, Herrmann WA (2002) Adv Mater 14:818Google Scholar
  116. 116.
    Zhang QF, Zhan Y, Ding JH, Song YL, Rothenberger A, Fenke D, Leung WH (2006) Inorg Chem 45:5148Google Scholar
  117. 117.
    Muller A, Bogge H, Schimanski U (1983) Inorg Chim Acta 69:5Google Scholar
  118. 118.
    Chemla DS, Oudar JL, Jerphagnon J (1975) Phys Rev B 12:4534Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of Matter, Chinese Academy of SciencesFuzhouPeople’s Republic of China

Personalised recommendations