Skip to main content

Modeling and Analysis of Hydrogen Atoms

  • Chapter
  • First Online:
Electron Density and Chemical Bonding I

Part of the book series: Structure and Bonding ((STRUCTURE,volume 146))

Abstract

Hydrogen atoms are elusive seen from the point of view of the X-ray crystallographer. But they are also extremely important, being involved in a wealth of intermolecular interactions and thereby defining the way molecules interact. Most experimental charge density studies are performed on compounds containing hydrogen, yet a commonly accepted strategy to deal with these elusive but so important atoms is only just about to surface. We review the efforts to determine a strategy for the modeling of hydrogen atoms, as well as a number of recent studies where the modeling of hydrogen atoms has had a major impact on the chemical conclusions drawn from analysis of the experimental charge densities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

Anisotropic displacement parameter

BCP:

Bond critical point

DFT:

Density functional theory

HF:

Hartree–Fock

IAM:

Independent atom model

MSD:

Mean square displacement

PES:

Potential energy surface

SDS:

Scattering factor for hydrogen by Stewart, Davidson, and Simpson

References

  1. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

    Google Scholar 

  2. Munshi P, Madsen AØ, Spackman MA, Larsen S, Destro R (2008) Estimated H-atom anisotropic displacement parameters: a comparison between different methods and with neutron diffraction results. Acta Crystallogr A 64(4):465–475

    Article  CAS  Google Scholar 

  3. Willis BTM, Pryor AW (1975) Thermal vibrations in crystallography. Cambridge University Press, Cambridge

    Google Scholar 

  4. Trueblood KN, Bürgi HB, Burzlaff H, Dunitz J, Gramaccioli CM, Schulz HH, Shmueli U, Abrahams SC (1996) Atomic dispacement parameter nomenclature. Report of a subcommittee on atomic displacement parameter nomenclature. Acta Crystallogr A 52(5):770–781

    Article  Google Scholar 

  5. Stewart RF, Davidson ER, Simpson WT (1965) Coherent X-ray scattering for the hydrogen atom in the hydrogen molecule. J Chem Phys 42(9):3175–3187

    Article  CAS  Google Scholar 

  6. Chandler GS, Spackman MA (1982) Pseudoatom expansions of the first-row diatomic hydride electron densities. Acta Crystallogr A 38:225–239

    Article  Google Scholar 

  7. Netzel J, Hofman A, van Smaalen S (2008) Accurate charge density of α-glycine by the maximum entropy method. Cryst Eng Comm 10:335–343

    Article  CAS  Google Scholar 

  8. Netzel J, van Smaalen S (2009) Topological properties of hydrogen bonds and covalent bonds from charge densities obtained by the maximun entropy method (MEM). Acta Crystallogr B 65:624–638

    Article  CAS  Google Scholar 

  9. Dietrich H (1976) ‘Core electrons’ of bonded hydrogen atoms. Acta Crystallogr A 32:347–348

    Article  Google Scholar 

  10. Madsen AØ, Sørensen HO, Stewart RF, Flensburg C, Larsen S (2004) Modeling of nuclear parameters for hydrogen atoms in X-ray charge density studies. Acta Crystallogr A 60:550–561

    Article  Google Scholar 

  11. Madsen AØ, Mason S, Larsen S (2003) A neutron diffraction study of xylitol: derivation of mean square internal vibrations for hydrogen atoms from a rigid-body description. Acta Crystallogr B 59:653–663

    Article  Google Scholar 

  12. Birkedal H, Madsen D, Mathiesen RH, Knudsen K, Weber HP, Pattison P, Schwarzenbach D (2004) The charge density of urea from synchrotron diffraction data. Acta Crystallogr A 60(5):371–381

    Article  Google Scholar 

  13. Flensburg C, Larsen S, Stewart RF (1995) Experimental charge density study of methylammonium hydrogen succinate monohydrate. A salt with a very short O-H-O hydrogen bond. J Phys Chem 99(25):10130–10141

    Article  CAS  Google Scholar 

  14. Madsen D, Flensburg C, Larsen S (1998) Properties of the experimental crystal charge density of methylammonium hydrogen maleate. A salt with a very short intramolecular O-H-O hydrogen bond. J Phys Chem A 102(12):2177–2188

    Article  CAS  Google Scholar 

  15. Whitten A, Spackman M (2006) Anisotropic displacement parameters for H atoms using an ONIOM approach. Acta Cryst 62:875–888. doi:101107/S0108768106020787, pp 1–14

    Article  Google Scholar 

  16. Bader R (1994) Atoms in molecules. Oxford University Press, Oxford

    Google Scholar 

  17. Hoser AA, Dominiak PM, Wozniak K (2009) Towards the best model for H atoms in experimental charge-density refinement. Acta Crystallogr A 65(4):300–311

    Article  CAS  Google Scholar 

  18. Roversi P, Destro M (2004) Approximate anisotropic displacement parameters for H atoms in molecular crystals. Chem Phys Lett 386:472–478

    Article  CAS  Google Scholar 

  19. Roversi P, Barzaghi M, Merati F, Destro R (1996) Charge density in crystalline citrinin from X-ray diffraction at 19 K. Can J Chem 74:1145–1161

    Article  CAS  Google Scholar 

  20. Bürgi HB, Capelli SC, Goeta AE, Howard JAK, Spackman MA, Yufit DS (2002) Electron distribution and molecular motion in crystalline benzene: an accurate experimental study combining CCD X-ray data on C6H6 with multitemperature neutron-diffraction results on C6H6. Chem A Eur J 8(15):3512–3521

    Article  Google Scholar 

  21. Mata I, Espinosa E, Molins E, Veintemillas S, Maniukiewicz W, Lecomte C, Cousson A, Paulus W (2006) Contributions to the application of the transferability principle and the multipolar modeling of H atoms: electron-density study of l-histidinium dihydrogen orthophosphate orthophosphoric acid. I. Acta Crystallogr A 62(5):365–378

    Article  Google Scholar 

  22. Rousseau B, Maes ST, Lenstra ATH (2000) Systematic intensity errors and model imperfection as the consequence of spectral truncation. Acta Crystallogr A 56:300–307

    Article  Google Scholar 

  23. Becker PJ, Coppens P (1975) Extinction within the limit of validity of the Darwin transfer equations. I. General formalisms for primary and secondary extinction and their application to spherical crystals. Acta Crystallogr A 31:129–147

    Article  Google Scholar 

  24. Becker PJ, Coppens P (1975) Extinction within the limit of validity of the Darwin transfer equations. III. Non-spherical crystals and anisotropy of extinction. Acta Crystallogr A 31:417

    Article  Google Scholar 

  25. Morgenroth W, Overgaard J, Clausen HF, Svendsen H, Jørgensen MRV, Larsen FK, Iversen BB (2008) Helium cryostat synchrotron charge densities determined using a large CCD detector – the upgraded beamline D3 at DESY. J Appl Cryst 41(5):846–853

    Article  CAS  Google Scholar 

  26. Blessing RH (1995) On the differences between X-ray and neutron thermal vibration parameters. Acta Crystallogr B 51:816–823

    Article  Google Scholar 

  27. Wilson C (2000) Single crystal neutron diffraction from molecular materials. World Scientific, Singapore

    Book  Google Scholar 

  28. Kuhs WF (2003) International tables for crystallography. Kluwer Academic, Dordrecht, pp 228–242

    Google Scholar 

  29. Kuhs WF (1992) Generalized atomic displacements in crystallographic structure analysis. Acta Crystallogr A 48:80–98

    Article  Google Scholar 

  30. Ruysink AFJ, Vos A (1974) Systematic errors in structure models obtained by X-ray diffraction. Acta Crystallogr A 30(4):503–506

    Article  CAS  Google Scholar 

  31. Coppens P (1968) Evidence for systematic errors in X-ray temperature parameters resulting from bonding effects. Acta Crystallogr B 24(9):1272–1274

    Article  CAS  Google Scholar 

  32. Hope H, Ottersen T (1978) Accurate determination of hydrogen positions from X-ray data. I. The structure of s-diformohydrazide at 85 K. Acta Crystallogr B 34:3623–3626

    Article  Google Scholar 

  33. Almlöf J, Otterson T (1979) X-ray high-order refinements of hydrogen atoms: a theoretical approach. Acta Crystallogr A 35:137–139

    Article  Google Scholar 

  34. Stewart RF, Bentley J, Goodman B (1975) Generalized x-ray scattering factors in diatomic molecules. J Chem Phys 63(9):3786–3793

    Article  CAS  Google Scholar 

  35. Stewart RF, Spackman M, Flensburg C (1998) VALRAY98 users manual

    Google Scholar 

  36. Destro R, Marsh R, Bianchi R (1988) A low-temperature (23-K) study Of L-alanine. J Phys Chem 92(4):966–973

    Article  CAS  Google Scholar 

  37. Destro R, Roversi P, Barzaghi M, Marsh RE (2000) Experimental charge density of α-Glycine at 23 K. J Phys Chem A 104:1047–1054

    Article  CAS  Google Scholar 

  38. Destro R, Soave R, Barzaghi M, Lo Presti L (2005) Progress in the understanding of drug-receptor interactions, Part 1: experimental charge-density study of an angiotensin II receptor antagonist (C30H30N6O3S) at T=17 K. Chem A Eur J 11(16):4621–4634

    Article  CAS  Google Scholar 

  39. Allen FH, Watson DG, Brammer L, Orpen AG, Taylor R (1999) Typical interatomic distances: organic compounds. In: Wilson AJC, Prince E (eds) International tables for crystallography. Kluwer Academic, Dordrect, pp 782–803

    Google Scholar 

  40. Overgaard J, Platts JA, Iversen BB (2009) Experimental and theoretical charge-density study of a tetranuclear cobalt carbonyl complex. Acta Crystallogr B 65(6):715–723

    Article  CAS  Google Scholar 

  41. Steiner T, Saenger W (1994) Lengthening of the covalent O-H bond in O-H…O hydrogen bonds re-examined from low-temperature neutron diffraction data of organic compounds. Acta Crystallogr B 50:348–357

    Article  Google Scholar 

  42. Jayatilaka D, Dittrich B (2008) X-ray structure refinement using aspherical atomic density functions obtained from quantum-mechanical calculations. Acta Crystallogr A 64(Pt 3):383–393

    Article  CAS  Google Scholar 

  43. Hirshfeld F (1977) Bonded-atom fragments for describing molecular charge-densities. Theor Chim Acta 44(2):129–138

    Article  CAS  Google Scholar 

  44. Harel M, Hirshfeld F (1975) Difference densities by least-squares refinement. II. Tetracyanocyclobutane. Acta Crystallogr B 31:162–172

    Article  Google Scholar 

  45. Hirshfeld F (1976) Can X-ray data distinguish bonding effects from vibrational smearing? Acta Crystallogr A 32:239–244

    Article  Google Scholar 

  46. Hirshfeld F, Hope H (1980) An X-ray determination of the charge deformation density in 2-cyanoguanidine. Acta Crystallogr B 36:406–415

    Article  Google Scholar 

  47. Eisenstein M, Hirshfeld F (1983) Experimental versus theoretical charge densities: a hydrogen-bonded derivative of bicyclobutane at 85 K. Acta Crystallogr B 39:61–75

    Article  Google Scholar 

  48. Cruickshank DWJ (1956) The analysis of the anisotropic thermal motion of molecules in crystals. Acta Crystallogr 9:754

    Article  CAS  Google Scholar 

  49. Schomaker V, Trueblood KN (1968) On the rigid-body motion of molecules in crystals. Acta Crystallogr B 24:63–76

    Article  CAS  Google Scholar 

  50. Dunitz JD, Maverick EF, Trueblood KN (1988) Atomic motions in molecular crystals from diffraction measurements. Angew Chem Int Ed Engl 27:880–895

    Article  Google Scholar 

  51. Dunitz JD (1978) X-ray analysis and the structure of organic molecules. Cornell University Press, Ithaca

    Google Scholar 

  52. Schomaker V, Trueblood KN (1998) Correlation of internal torsional motion with overall molecular motion in crystals. Acta Crystallogr B 54:507–514

    Article  Google Scholar 

  53. Spek A (1990) PLATON, an integrated tool for the analysis of the results of a single crystal structure determination. Acta Crystallogr A 46:C34

    Google Scholar 

  54. He XM, Craven B (1985) Internal molecular vibrations from crystal diffraction data by quasinormal mode analysis. Acta Crystallogr A 41:244–251

    Article  Google Scholar 

  55. He XM, Craven B (1993) Internal vibrations of a molecule consisting of rigid segments. I. Non-interacting internal vibrations. Acta Crystallogr A 49:10–22

    Article  Google Scholar 

  56. Capelli S, Hauser J (2004) NKA user manual, 16th edn. Universität Bern

    Google Scholar 

  57. Burgi H, Capelli S (2000) Dynamics of molecules in crystals from multi-temperature anisotropic displacement parameters. I. Theory. Acta Crystallogr A 56:403–412

    Article  Google Scholar 

  58. Capelli S, Förtsch M, Burgi H (2000) Dynamics of molecules in crystals from multi-temperature anisotropic displacement parameters. II. Application to benzene (C6D6) and urea [OC(NH)2]. Acta Crystallogr A 56(5):413–424

    Article  Google Scholar 

  59. Rosenfield RE Jr, Trueblood KN, Dunitz J (1978) A test for rigid-body vibrations, based on a generalization of Hirshfeld’s ‘rigid-bond’ postulate. Acta Crystallogr A 34:828–829

    Article  Google Scholar 

  60. Klooster W, Ruble J, Craven B, McMullan RK (1991) Structure and thermal vibrations of adenosine from neutron diffraction data at 123 K. Acta Crystallogr B 47(3):376–383

    Article  Google Scholar 

  61. May E, Destro R, Gatti C (2001) The unexpected and large enhancement of the dipole moment in the 3,4-bis(dimethylamino)-3-cyclobutene-l,2-dione (DMACB) molecule upon crystallization: A new role of the intermolecular CH…O interactions. J Am Chem Soc 123(49):12248–12254

    Article  CAS  Google Scholar 

  62. Forni A, Destro R (2003) Electron density investigation of a push-pull ethylene(C14H12NO2 · H2O) by x-ray diffraction at T=21 K. Chem A Eur J 9(22):5528–5537

    Article  CAS  Google Scholar 

  63. Soave R, Barzaghi M, Destro R (2007) Progress in the understanding of drug-receptor interactions, part 2: experimental and theoretical electrostatic moments and interaction energies of an angiotensin II receptor antagonist (C30H30N6O3S). Chem A Eur J 13(24):6942–6956

    Article  CAS  Google Scholar 

  64. Johnson CK (1970) Thermal neutron diffraction. Oxford University Press, Oxford

    Google Scholar 

  65. Weber HP, Craven B, Sawzip P, McMullan R (1991) Crystal structure and thermal vibrations of Cholesteryl Acetate from neutron diffraction at 123 and 20 K. Acta Crystallogr B 47:116–127

    Article  Google Scholar 

  66. Gao Q, Weber HP, Craven B, McMullan R (1994) Structure of suberic acid at 18.4, 75 and 123 K from neutron diffraction data. Acta Crystallogr B 50(6):695–703

    Article  Google Scholar 

  67. Kampermann SP, Sabine TM, Craven B, McMullan R (1995) Hexamethylenetetramine: extinction and thermal vibrations from neutron diffraction at six temperatures. Acta CrystallogrA 51:489–497. doi:101107/S0108767394013711, pp 1–9

    Article  Google Scholar 

  68. Luo J, Ruble J, Craven B, McMullan R (1996) Effects of H/D substitution on thermal vibrations in piperazinium hexanoate-H11, D11. Acta Crystallogr B 52(2):357–368

    Article  Google Scholar 

  69. Trueblood KN, Dunitz JD (1983) Internal molecular motions in crystals. The estimation of force constants, frequencies and barriers from diffraction data. A feasibility study. Acta Crystallogr B 39:120–133

    Article  Google Scholar 

  70. Madsen AØ (2006) SHADE web server for estimation of hydrogen anisotropic displacement parameters. J Appl Crystallogr 39:757–758

    Article  CAS  Google Scholar 

  71. Hall SR, Allen FH, Brown ID (1991) The crystallographic information file (CIF): a new standard archive file for crystallography. Acta Crystallogr A 47:655–685

    Article  Google Scholar 

  72. Koritsanszky T, Howard S, Mallinson P, Su Z, Richter T, Hansen NK (1996) XD: a computer program package for multipole refinement and analysis of electron densities from diffraction data, 1st edn

    Google Scholar 

  73. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision C.02. Tech. Rep., Gaussian, Inc., Wallingford, 2004

    Google Scholar 

  74. Flaig R, Koritsanszky T, Zobel D, Luger P (1998) Topological analysis of the experimental electron densities of amino acids. 1. D, L-aspartic acid at 20 K. J Am Chem Soc 120:2227–2238

    Article  CAS  Google Scholar 

  75. Oddershede J, Larsen S (2004) Charge density study of naphthalene based on X-ray diffraction data at four different temperatures and theoretical calculations. J Phys Chem A 108:1057–1063

    Article  CAS  Google Scholar 

  76. Whitten AE, Spackman MA (2006) Anisotropic displacement parameters for H atoms using an ONIOM approach. Acta Crystallogr B 62:875–888

    Article  Google Scholar 

  77. Madsen AØ, Civalleri B, Pascale F, Dovesi R (2012) Anisotropic displacement parameters for molecular crystals from periodic HF and DFT calculations. Acta Crystallogr A (in press)

    Google Scholar 

  78. Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Moller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  79. Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon, Oxford

    Google Scholar 

  80. Filippini G, Gramaccioli CM, Simonetta M, Suffritti BG (1974) On some problems connected with thermal motion in molecular crystals and a lattice-dynamical interpretation. Acta Crystallogr A 30:189–196

    Article  Google Scholar 

  81. Gramaccioli CM, Filippini G (1983) Lattice-dynamical evaluation of temperature factors in non-rigid molecular crystals: a first application to aromatic hydrocarbons. Acta Crystallogr A 39:784–791

    Article  Google Scholar 

  82. Gramaccioli CM, Filippini G, Simonetta M (1982) Lattice-dynamical evaluation of temperature factors for aromatic hydrocarbos, including internal molecular motion: a straightforward systematic procedure. Acta Crystallogr A 38:350–356

    Article  Google Scholar 

  83. Criado A (1990) Lattice dynamics and thermal parameters in azahydrocarbons. Acta Crystallogr A 46:489–494

    Article  Google Scholar 

  84. Willis BTM, Howard J (1975) Do the ellipsoids of thermal vibration mean anything? – analysis of neutron diffraction measurements on hexamethylenetetramine. Acta Crystallogr A 31:514–520

    Article  Google Scholar 

  85. Flensburg C, Stewart RF (1999) Lattice dynamical Debye-Waller factor for silicon. Phys Rev 60(1):284–290

    Article  CAS  Google Scholar 

  86. Parlinski K, Li ZQ, Kawazoe Y (1997) First-principles determination of the soft mode in Cubic ZrO$_2$. Phys Rev Lett 78(21):4063–4066

    Article  CAS  Google Scholar 

  87. Lee C, Gonze X (1995) Ab initio calculation of the thermodynamic properties and atomic temperature factors of SiO2 α-quarts and stishovite. Phys Rev B 51(13):8610–8613

    Article  CAS  Google Scholar 

  88. Langkilde A, Kristensen SM, Lo Leggio L, Molgaard A, Jensen JH, Houk AR, Poulsen JCN, Kauppinen S, Larsen S (2008) Short strong hydrogen bonds in proteins: a case study of rhamnogalacturonan acetylesterase. Acta Crystallogr D Biol Crystallogr 64((Pt 8)):851–863

    Article  CAS  Google Scholar 

  89. Madsen G, Iversen B, Larsen F, Kapon M, Reisner G, Herbstein F (1998) Topological analysis of the charge density in short intramolecular O-H · hydrogen bonds. Very low temperature X-ray and neutron diffraction study of benzoylacetone. J Am Chem Soc 120(13):10040–10045

    Article  CAS  Google Scholar 

  90. Schmidtmann M, Farrugia LJ, Middlemiss DS, Gutmann MJ, McIntyre GJ, Wilson CC (2009) Experimental and theoretical charge density study of polymorphic isonicotinamide-oxalic acid molecular complexes with strong O · N hydrogen bonds. J Phys Chem A 113(50):13985–13997

    Article  CAS  Google Scholar 

  91. Brown AS, Spackman M (1994) The determination of electric-field gradients from X-Ray-diffraction data. Mol Phys 83(3):551–566

    Article  CAS  Google Scholar 

  92. Fournier B, Bendeif EE, Guillot B, Podjarny A, Lecomte C, Jelsch C (2009) Charge density and electrostatic interactions of fidarestat, an inhibitor of human aldose reductase. J Am Chem Soc 131:10929–10941

    Article  CAS  Google Scholar 

  93. Johnson CK (1976) ORTEPII. Report ORNL-5138. Tech. Rep., Tennessee

    Google Scholar 

  94. Delano WL (2006) The PyMOL molecular graphics system. Tech. Rep., Delano Scientific, San Carlos

    Google Scholar 

  95. Spackman M, Byron PG, Alfredsson M, Hermansson K (1999) Influence of intermolecular interactions on multipole-refined electron densities. Acta Crystallogr A 55:30–47

    Article  Google Scholar 

  96. de Vries RY, Feil D, Tsirelson VG (2000) Extracting charge density distributions from diffraction data: a model study on urea. Acta Crystallogr B 56:118–123

    Article  Google Scholar 

  97. Saunders VR, Dovesi R, Roetti C, Causa M, Harrisonk NM, Orlando R, Zicovich-Wilson CM (1998) Crystal 98 users manual

    Google Scholar 

  98. Dittrich B, Spackman M (2007) Can the interaction density be measured? The example of the non-standard amino acid sarcosine. Acta Crystallogr A 63(Pt 5):426–436

    Article  CAS  Google Scholar 

  99. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

  100. Espinosa E, Souhassou M, Lachekar H, Lecomte C (1999) Topological analysis of the electron density in hydrogen bonds. Acta Crystallogr B 55:563–572

    Article  Google Scholar 

  101. Espinosa E, Lecomte C, Molins E (1999) Experimental electron density overlapping in hydrogen bonds: topology vs. energetics. J Chem Phys 300:745–748

    CAS  Google Scholar 

  102. Mata I, Espinosa E, Molins E, Veintemillas S, Maniukiewicz W, Lecomte C, Cousson A, Paulus W (2006) Contributions to the application of the transferability principle and the multipolar modeling of H atoms: electron-density study of l-histidinium dihydrogen orthophosphate orthophosphoric acid. I Acta Crystallogr A62:365–378. doi:101107/S0108767306025141, pp 1–14

    Article  CAS  Google Scholar 

  103. Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H ··· F–Y systems. J Chem Phys 117(12):5529–5542

    Article  CAS  Google Scholar 

  104. Madsen AØ, Larsen S (2007) Insights into solid state thermodynamics from diffraction data. Angew Chemie Int Ed Engl 46:8609–8613

    Article  CAS  Google Scholar 

  105. Madsen AØ, Mattson R, Larsen S (2011) Understanding thermodynamic properties at the molecular level: multiple temperature charge density study of ribitol and xylitol. J Phys Chem A 115(26):7794–7804

    Article  CAS  Google Scholar 

  106. Bak J, Dominiak P, Wilson C, Wozniak K (2009) Experimental charge-density study of paracetamol – multipole refinement in the presence of a disordered methyl group. Acta Crystallogr A 65:490–500. doi:101107/S0108767309031729, pp 1–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Østergaard Madsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Madsen, A.Ø. (2012). Modeling and Analysis of Hydrogen Atoms. In: Stalke, D. (eds) Electron Density and Chemical Bonding I. Structure and Bonding, vol 146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2011_70

Download citation

Publish with us

Policies and ethics