Skip to main content

The Recent Development of Borate SF-Conversion Laser Crystal

  • Chapter
  • First Online:
Structure-Property Relationships in Non-Linear Optical Crystals I

Part of the book series: Structure and Bonding ((STRUCTURE,volume 144))

Abstract

As a laser host, Borates possess favorable chemical and physical characteristics as well as higher damnification threshold. Especially, Borates usually have higher nonlinear optical efficiency resulted from its B–O structure. When doped with active ions, Borates can serve as a self-frequency conversion multifunction laser medium. For example, rare-earth ions and Cr3+-doped RX3(BO3)4, especially GdAl3(BO3)4 and TmAl3(BO3)4, are typical self-frequency conversion multifunction laser crystals. After wide surveys of known research on the growth, crystal structure, and properties including thermal, optical, and spectral characteristics and laser property, this chapter reviews the recent advances in the development of these crystals. Self-frequency conversion laser technology including the self-frequency doubling, self-difference-frequency mixing and self-sum-frequency mixing methods were dealt with. As a result, the laser outputs with high efficiency at various wavelengths ranged from UV to IR have been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ishibashi S, Itoh H, Kaino T et al (1996) Opt Commun 125:177

    CAS  Google Scholar 

  2. Yamamoto JK, Sugimoto A, Yamagishi K (1994) Opt Lett 19(17):1311

    CAS  Google Scholar 

  3. Fan TY, Cordove Plaza A, Digonnet MJ et al (1986) J Opt Soc Am B3:140–148

    Google Scholar 

  4. Hemmati H (1992) IEEE J Quantum Electron 28(4):1169

    CAS  Google Scholar 

  5. Qui W, Fan YX et al (1993) Mol Cryst Liq Cryst Sci Technol Sec B; Nonlinear Opt 4:31

    Google Scholar 

  6. Amano S, Mochizuki T (1991) Nonlinear Opt 1:297

    CAS  Google Scholar 

  7. Schutz I, Freitag I, Wallenstein R (1990) Opt Commun 77(2, 3):221

    Google Scholar 

  8. Wang SC, Stone RE (1990) Advance solid state lasers, Topical Meeting of OSA, Salt Lake City, UT, March 1990

    Google Scholar 

  9. Bartschke J, Knappe R, Boller KJ et al (1997) IEEE Quant Electron 33(12):2295

    CAS  Google Scholar 

  10. Zhang S et al (1999) J Cryst Growth 206:197

    CAS  Google Scholar 

  11. Auge F, Mougel F, Balembois F et al. Advanced solid state lasers, Topical Meeting of OSA, MF7-1/185

    Google Scholar 

  12. Elchenholz M, Hammons DA, Shah L et al (1999) Appl Phys Lett 74(14):1954

    Google Scholar 

  13. Capmany J, Jaque D, Garcia Sole J, Kaminskii A (1998) Appl Phys Lett 72(5):531

    CAS  Google Scholar 

  14. Kaminskii AA, Jaque D, Nbagaev S et al (1999) J Capmany, Quant Electron 29(2):95

    CAS  Google Scholar 

  15. Capmany J, Jaque D, Sanz Garcia JA, Garcia Sole J (1999) Opt Commun 161:253

    CAS  Google Scholar 

  16. Li R, Xie C, Wang J, Liang X, Peng K, Xu G (1993) IEEE Quant Electron 29(9):2419

    CAS  Google Scholar 

  17. Dekker P, Huo Y, Dawes JM, Piper JA, Wang P, Lu BS (1998) Opt Commun 151:406

    CAS  Google Scholar 

  18. Ballman AA (1962) Am Mineral 47:1380–1383

    CAS  Google Scholar 

  19. Mills D (1962) Inorg Chem 1:960

    CAS  Google Scholar 

  20. Hong HH-p, Dwight K (1974) Mater Res Bull 9:1661

    CAS  Google Scholar 

  21. Lutz F, Huber G (1981) J Cryst Growth 52:646

    CAS  Google Scholar 

  22. Belokoneva EL, Timchenko TI (1983) Spv Phys Crystallorgr 28(1983):658

    Google Scholar 

  23. Wang GF, He MY, Chen WZ et al (1999) Mater Res Innovations 23:41

    CAS  Google Scholar 

  24. He MY, Wang GF, Chen WZ et al (1999) Mater Res Innovations 2:345

    CAS  Google Scholar 

  25. Wang GF, He MY, Luo ZD (1991) Mater Res Bull 26:1085

    CAS  Google Scholar 

  26. Jia G, Tu C, Li J et al (2006) Inorg Chem 45:9326

    CAS  Google Scholar 

  27. Hong HY-P (1975) Res Bull 10:1105

    CAS  Google Scholar 

  28. Zumsteg FC et al (1976) J Appl Phys 47:4980

    CAS  Google Scholar 

  29. Kuroda R et al (1981) J Chem Soc Faraday Trans 2 77:2125

    Google Scholar 

  30. Leonyuk NI (1976) Izv Aka Nauk SSSR, Neorg Matter 12:554

    CAS  Google Scholar 

  31. Akhmetov SF, Akhmetova GL, Leonyuk NI et al (1978) Kristtolografiya 23:230

    Google Scholar 

  32. Azizov V, Leonyuk NI, Timchenko STI et al (1979) Sov Phys Dokpl 24:313

    Google Scholar 

  33. Leonyuk NI, Pashkova AV, Timchenko TI et al (1979) Sov Phys Dokpl 24:233

    Google Scholar 

  34. Azizov AV, Leonyuk NI, Rezvyi VR et al (1982) Sov Phys Dokpel 27:95

    Google Scholar 

  35. Kolov VN, Peshev P (1994) J Cryst Growth 144:187

    Google Scholar 

  36. Leonyuk NI, Azizov AV, Belov ANV (1978) Sov Phys Dokpl 27:374

    Google Scholar 

  37. Azizov AV, Leonyuk NI, Rezvyi VR et al (1982) Sov Phys Dokpl 27:95

    Google Scholar 

  38. Kellendonk F, Blasse G (1981) J Chem Phys 75:561

    CAS  Google Scholar 

  39. Dianov EM, Dmitruk MV, Karasik AY et al (1980) Sov Quantum Electron 10:1222

    Google Scholar 

  40. Chani VI, Shimamura K, Inoue K et al (1993) J Cryst Growth 132:174

    Google Scholar 

  41. Jung ST, Choi DY, Kaug JK et al (1995) J Cryst Growth 148:207

    CAS  Google Scholar 

  42. Jung ST, Kaug JK, Chung SJ et al (1995) J Cryst Growth 149:345

    Google Scholar 

  43. Chin SR, Hong HY-P (1975) Opt Commun 15:345

    Google Scholar 

  44. Chen C (1988) J Cryst Growth 89:295

    CAS  Google Scholar 

  45. Timchenko TI, Leonyuk NI, Butzuova GS (1980) Sov Phys Crystallogr 25:515

    Google Scholar 

  46. Lutz F, Ieiss M, Muller J (1979) J Cryst Growth 47:130

    CAS  Google Scholar 

  47. Lutz F, Ruppel D, Ieiss M (1980) J Cryst Growth 48:4

    Google Scholar 

  48. Leonyuk NI, Pashkova AV, Semenova TDL et al (1975) Izv Aka Nauk SSSR, Neorg Matter 11:181

    CAS  Google Scholar 

  49. Elwell D, Scheel HJ (1974) Crystal growth from high temperature solutions. Academic, New York, pp 86–107

    Google Scholar 

  50. Wang GF, Gallagher HG, Han TPJ et al (1995) J Cryst Growth 153:169

    CAS  Google Scholar 

  51. Tu C, Zhu Z, Li J et al (2004) Opt Mater 27(2):167–171

    CAS  Google Scholar 

  52. Ye N, Zhang Y, Chen W et al (2006) J Cryst Growth 292(2):464–467

    CAS  Google Scholar 

  53. Wang GF, Gallagher HG, Han TPJ et al (1996) J Cryst Growth 163:272

    CAS  Google Scholar 

  54. Li W, Huang L, Zhang G, Ye N (2007) J Cryst Growth 307(2):405–409

    CAS  Google Scholar 

  55. Liu H (2011) Doctoral dissertation. Crystal growth and research on YAl3(BO3)4 crystals. Graduated School of Chinese Academy of Sciences

    Google Scholar 

  56. Meyn J-P, Jensen T, Huber G (1994) IEEE J Quant Electron 30:913

    CAS  Google Scholar 

  57. Long XF, Wang GF, Han TPJ (2003) J Cryst Growth 249:191

    CAS  Google Scholar 

  58. Wang GF, Han TPJ, Han HPJ et al (1997) J Cryst Growth 181:48

    CAS  Google Scholar 

  59. Luo ZD, Jiang AD, Huang YC et al (1989) Chin Phys Lett 6:440

    CAS  Google Scholar 

  60. Zhu Z, Li J, Brenier A, Jia G et al (2007) J Appl Phys B 86:71

    CAS  Google Scholar 

  61. Jia GH, Tu CY, Li JF et al (2005) Cryst Growth Des 5:949

    CAS  Google Scholar 

  62. Jia GH, Tu CY, Li JF et al (2006) J Appl Phys 99:083502

    Google Scholar 

  63. Tu C, Qiu M, Li J et al (2000) J Cryst Growth 208:487

    CAS  Google Scholar 

  64. Zhu Z, Li J, Wu B et al (2008) J Synth Cryst 37(3):507–513 (in Chinese)

    CAS  Google Scholar 

  65. Tu CY, Zhu Z, Li J et al (2003) Spectrosc Spectral Anal (Chinese) 23(4):669–671

    CAS  Google Scholar 

  66. Tu C, Huang Y, Qiu M (1999) J Cryst Growth 206(3):249–251

    CAS  Google Scholar 

  67. Wang GF, Lin ZB, Hu ZS et al (2001) J Cryst Growth 233:755

    CAS  Google Scholar 

  68. Liao JS, Lin YF, Chen YJ et al (2004) J Cryst Growth 267:134

    CAS  Google Scholar 

  69. Jiang HD, Li J, Wang JY et al (2001) J Cryst Growth 233:248

    CAS  Google Scholar 

  70. Liao JS, Lin YF, Chen YJ et al (2004) J Cryst Growth 269:484

    CAS  Google Scholar 

  71. Oishi S, Teshima K, Kondo H (2004) J Am Chem Soc 126:4768

    CAS  Google Scholar 

  72. Choosuwan H, Guo R, Bhalla AS, Balachandran U (2002) J Appl Phys 91:5051

    CAS  Google Scholar 

  73. Carvajal JJ, Sole R, Gavalsa J et al (2003) Chem Mater 15:2730

    CAS  Google Scholar 

  74. Mu GG, Zhan YL (1978) Optics (in Chinese). People’s Education press, Beijing

    Google Scholar 

  75. Born M, Wolf E (1975) Principles of optics. Pergamon, Oxford

    Google Scholar 

  76. Zhu Z, Li J, Wu B et al (2008) Chin J Cryst Growth 37(3):507–513

    CAS  Google Scholar 

  77. Zhu Z, Li J, Alain B et al (2007) Appl Phys B 86(1):71–75

    CAS  Google Scholar 

  78. Liao J, Lin Y, Chen Y, Luo Z, Huan Y (2004) J Cryst Growth 269:484

    CAS  Google Scholar 

  79. Wang P, Dawes JM, Dekker P et al (1999) J Opt Soc Am B 16:63

    CAS  Google Scholar 

  80. Deloach LD, Payne SA, Chase LL et al (1993) IEEE J Quantum Electron QE-29:1179

    Google Scholar 

  81. Payne SA, DeLoach LD, Smith LK et al (1994) J Appl Phys 76:497

    CAS  Google Scholar 

  82. Jiang H, Wang J, Zhang H et al (2002) Chem Phys Lett 361:499

    CAS  Google Scholar 

  83. Mougel F, Dardenne K, Aka G et al (1999) J Opt Soc Am B 16:164

    CAS  Google Scholar 

  84. Tu C, Huang Y, Qiu M et al (1999) J Cryst Growth 206:249–251

    CAS  Google Scholar 

  85. Carnall WT (1968) J Chem Phys 49:4424

    CAS  Google Scholar 

  86. Brenier A (2001) Opt Commun 200:355

    CAS  Google Scholar 

  87. Tian L (1998) Chin Sci Bull 43:1973

    CAS  Google Scholar 

  88. Long X et al (2002) J Alloys Compd 347:52

    CAS  Google Scholar 

  89. Imbush GF, Kogelman R (1981) Laser spectroscopy of solids. In: Yen WA, Selzer PM (eds) Topics applied physics. Springer, Berlin

    Google Scholar 

  90. Andrzej B et al (1987) J Lumin 37:29–44

    Google Scholar 

  91. Wang G et al (1995) Appl Phys Lett 67:3906

    Google Scholar 

  92. Andrews LJ et al (1989) J Lumin 42:365

    Google Scholar 

  93. Caird JA et al (1988) IEEE J Quant Electron QE-24:1077

    Google Scholar 

  94. Huber G et al (1988) J Lumin 39(5):259

    CAS  Google Scholar 

  95. Jia G (2005) Master dissertation. The study on the growth, structure, spectral, and laser properties of TmxGd1-xAl(BO3)4 and rare-earth doped SrWO4 crystals. Graduated School of Chinese Academy of Sciences

    Google Scholar 

  96. Jia G, Tu C, You Z et al (2006) J Appl Phys 99:083502

    Google Scholar 

  97. Jia G, Tu C, Li J et al (2004) J Cryst Growth 264(1–3):346–350

    CAS  Google Scholar 

  98. Ohta K, Saito H, Obara M (1993) J Appl Phys 73:3149

    CAS  Google Scholar 

  99. Fan TY, Huber G, Byer RL et al (1988) IEEE J Quantum Electron 24:924

    CAS  Google Scholar 

  100. Jia G, Tu C, You Z et al (2004) J Appl Phys 96:6262

    CAS  Google Scholar 

  101. Ryba-Romanowski W, Golab S et al (1999) Appl Phys B: Laser Opt 68:199

    CAS  Google Scholar 

  102. Payne SA, Chase LL, Smith LK et al (1992) IEEE J Quantum Electron 28:2619

    CAS  Google Scholar 

  103. Guell F, Gavalda J, Sole R et al (2004) J Appl Phys 95:919

    CAS  Google Scholar 

  104. Bagaev SN, Vatnik SM, Maiorvo AP et al (2004) Quantum Electron 30:310

    Google Scholar 

  105. Braud A, Tigreat PY, Doualan JL et al (2001) Appl Phys B: Laser Opt 72:909

    CAS  Google Scholar 

  106. Rustacd G, Stenerse K (1996) IEEE J Quantum Electron 32:1645

    Google Scholar 

  107. Sokolska I, Ryba-Romanowski W, Golab G et al (1998) J Appl Phys 84:5348

    CAS  Google Scholar 

  108. Yamanouchi T, Tanaka M (1985) J Quant Spectrosc Radiat Transfer 34:463

    CAS  Google Scholar 

  109. Krupke WF, Chase LL (1990) Opt Quantum Electron 22:51

    Google Scholar 

  110. Guohua Jia (2005) Master dissertation. The study on the growth, structure, spectral, and laser properties of TmxGd1-xAl(BO3)4 and rare-earth doped SrWO4 crystals. Graduated School of Chinese Academy of Sciences

    Google Scholar 

  111. Jia G, Tu C, Li J et al (2005) J Cryst Growth Des 5:949–952

    CAS  Google Scholar 

  112. Zhu Z, Li J, Wu B et al (2008) J Synth Cryst (Chinese) 37(3):507–513

    CAS  Google Scholar 

  113. Zhu Z (2006) Master dissertation. The study of pure and active ions doped GdAl3(BO3)4 laser crystal. Graduated School of Chinese Academy of Sciences

    Google Scholar 

  114. Brenier A, Chaoyang Tu, Minwang Qiu et al (2001) J Opt Soc Am B 18(8):1104

    Google Scholar 

  115. Brenier A, Chaoyang Tu, Zhaojie Zhu et al (2001) Opt Commun 200:355–358

    Google Scholar 

  116. Mougel F, Aka G, Kahn A et al (1999) Opt Mater 13:293–297

    CAS  Google Scholar 

  117. Brenier A, Boulon G, Jaque D et al (1999) Opt Mater 13:311–317

    CAS  Google Scholar 

  118. Brenier A, Boulon G (2000) J Lumin 86:125–128

    CAS  Google Scholar 

  119. Brenier A, Tu C, Zhu Z et al (2002) Opt Lett 27:240–242

    CAS  Google Scholar 

  120. Brenier A, Tu C, Zhu Z et al (2005) J Appl Phys 97:013503

    Google Scholar 

  121. Brenier A, Tu C, Zhu Z et al (2004) Appl Phys Lett 84:16

    CAS  Google Scholar 

Download references

Acknowledgements

Some works of this chapter were supported by National Nature Science Foundation of China (No.50902129, 61078076, 91122033), Major Projects from FJIRSM (SZD09001), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-H03), Science and Technology Plan Major Project of Fujian Province of China (Grant No. 2010I0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoyang Tu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tu, C., Zhu, Z., You, Z., Li, J., Wang, Y., Brenier, A. (2012). The Recent Development of Borate SF-Conversion Laser Crystal. In: Wu, XT., Chen, L. (eds) Structure-Property Relationships in Non-Linear Optical Crystals I. Structure and Bonding, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2011_66

Download citation

Publish with us

Policies and ethics