Skip to main content

Part of the book series: Structure and Bonding ((STRUCTURE,volume 152))

Abstract

The application of electron paramagnetic resonance (EPR) spectroscopy to the study of biopolymer structure and dynamics has seen rapid growth in the last decade. In addition to advances in instrumentation – in particular, the development of high-field spectrometers and pulsed-EPR methods – spin-labeling techniques have evolved. Nitroxide spin labels can now routinely be incorporated at selected sites to interrogate how structure and dynamics at specific locations relate to biopolymer function. Furthermore, spin labels with improved properties have emerged, in particular, rigid labels that yield more accurate distance measurements, give information about orientation, and faithfully report site-specific dynamics. This review recounts how the three main approaches for site-directed spin labeling of biopolymers, namely, postsynthetic labeling, labeling during biopolymer synthesis, and noncovalent labeling, have been used to label proteins as well as nucleic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2AP:

2-Aminopurine

4-SU:

4-Thiouridine

ADP:

Adenosine diphosphate

AMP:

Adenosine monophosphate

Arg:

Arginine

ATP:

Adenosine triphosphate

BSA:

Bovine serum albumin

CoA:

Coenzyme A

CW:

Continuous wave

Cys-tRNA:

Cysteine tRNA

dA:

Deoxyadenosine

DEER:

Double electron–electron resonance

DNA:

Deoxyribonucleic acid

DQC:

Double-quantum coherence

EPR:

Electron paramagnetic resonance

Fmoc:

9-Fluorenylmethyloxycarbonyl

Glu-tRNA:

Glutamyl tRNA

GMPS:

Guanosine monophosphorothioate

HPLC:

High-performance liquid chromatography

mRNA:

Messenger ribonucleic acid

MTS:

1-Oxyl-2,2,5,5-tetramethylpyrrolinyl-3-methyl)-methanethiosulfonate

NAD+ :

Nicotinamide adenine dinucleotide

NC-SDSL:

Noncovalent and site-directed spin labeling

NMR:

Nuclear magnetic resonance

PELDOR:

Pulsed electron–electron double resonance

Phe-tRNA:

Phenylalanine tRNA

POAC:

2,2,5,5-Tetramethylpyrrolidine-N-oxyl-3-amino-4-carboxylic acid

RNA:

Ribonucleic acid

SDSL:

Site-directed spin labeling

Ser:

Serine

SPPS:

Solid-phase peptide synthesis

TAR RNA:

Trans-activation responsive RNA

TEMPO:

2,2,6,6-Tetramethylpiperidine-1-oxyl

TOAC:

2,2,6,6-Tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid

TPA:

2,2,5,5-Tetramethyl-pyrrolin-1-yloxy-3-acetylene

tRNA:

Transfer ribonucleic acid

Tyr:

Tyrosine

UDP:

Uridine diphosphate

References

  1. Hustedt EJ, Beth AH (1999) Nitroxide spin-spin interactions: applications to protein structure and dynamics. Annu Rev Biophys Biomol Struct 28:129–153

    CAS  Google Scholar 

  2. Prisner T, Rohrer M, MacMillan F (2001) Pulsed EPR spectroscopy: biological applications. Annu Rev Phys Chem 52:279–313

    CAS  Google Scholar 

  3. Schiemann O, Prisner TF (2007) Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q Rev Biophys 40(1):1–53. doi:10.1017/s003358350700460x

    CAS  Google Scholar 

  4. Hunsicker-Wang L, Vogt M, DeRose VJ (2009) EPR methods to study specific metal-ion binding sites in RNA. Methods Enzymol 468:335–367. doi:10.1016/s0076-6879(09)68016-2

    CAS  Google Scholar 

  5. Schiemann O (2009) Mapping global folds of oligonucleotides by pulsed electron–electron double resonance. Methods Enzymol 469:329–351. doi:10.1016/s0076-6879(09)69016-9

    CAS  Google Scholar 

  6. Schiemann O, Reginsson GW (2011) Studying bimolecular complexes with pulsed electron–electron double resonance spectroscopy. Biochem Soc Trans 39:128–139. doi:10.1042/Bst0390128

    Google Scholar 

  7. Edwards TE, Sigurdsson ST (2002) Electron paramagnetic resonance dynamic signatures of TAR RNA-small molecule complexes provide insight into RNA structure and recognition. Biochemistry-US 41(50):14843–14847. doi:bi026299a [pii]

    CAS  Google Scholar 

  8. Edwards TE, Okonogi TM, Sigurdsson ST (2002) Investigation of RNA-protein and RNA-metal ion interactions by electron paramagnetic resonance spectroscopy. The HIV TAR-Tat motif. Chem Biol 9(6):699–706. doi:S1074552102001503 [pii]

    CAS  Google Scholar 

  9. Altenbach C, Marti T, Khorana HG, Hubbell WL (1990) Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science 248(4959):1088–1092

    CAS  Google Scholar 

  10. Altenbach C, Greenhalgh DA, Khorana HG, Hubbell WL (1994) A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci USA 91(5):1667–1671

    CAS  Google Scholar 

  11. Lin Y, Nielsen R, Murray D, Hubbell WL, Mailer C, Robinson BH, Gelb MH (1998) Docking phospholipase A2 on membranes using electrostatic potential-modulated spin relaxation magnetic resonance. Science 279(5358):1925–1929

    CAS  Google Scholar 

  12. Ubbink M, Worrall J, Canters G, Groenen E, Huber M (2002) Paramagnetic resonance of biological metal centers. Annu Rev Biophys Biomol Struct 31:393–422. doi:091701.171000 [pii] 10.1146/annurev.biophys.31.091701.171000

    CAS  Google Scholar 

  13. Kisseleva N, Kraut S, Jaschke A, Schiemann O (2007) Characterizing multiple metal ion binding sites within a ribozyme by cadmium-induced EPR silencing. HFSP J 1(2):127–136. doi:10.2976/1.2756332

    CAS  Google Scholar 

  14. McConnell HM, McFarland BG (1970) Physics and chemistry of spin labels. Q Rev Biophys 3(1):91–136

    CAS  Google Scholar 

  15. Dugas H (1977) Spin-labeled nucleic-acids. Acc Chem Res 10(2):47–54

    CAS  Google Scholar 

  16. Berliner LJ (1983) The spin-label approach to labeling membrane-protein sulfhydryl-groups. Ann NY Acad Sci 414:153–161

    CAS  Google Scholar 

  17. Sowa GZ, Qin PZ (2008) Site-directed spin labeling studies on nucleic acid structure and dynamics. Prog Nucleic Acid Res Mol Biol 82:147–197. doi:Doi 10.1016/S0079-6603(08)00005-6

    CAS  Google Scholar 

  18. Smirnova TI, Voinov MA, Smirnov AI (2009) Spin probes and spin labels. Encyclopedia of analytical chemistry. Wiley

    Google Scholar 

  19. Zhang X, Cekan P, Sigurdsson ST, Qin PZ (2009) Studying RNA using site-directed spin-labeling and continuous-wave electron paramagnetic resonance spectroscopy. Methods Enzymol 469:303–328. doi:S0076-6879(09)69015-7 [pii] 10.1016/S0076-6879(09)69015-7

    CAS  Google Scholar 

  20. Sigurdsson ST (2011) Nitroxides and nucleic acids: chemistry and electron paramagnetic resonance (EPR) spectroscopy. Pure Appl Chem 83(3):677–686. doi:10.1351/Pac-Con-10-09-28

    CAS  Google Scholar 

  21. Kinoshita Y, Yamada KI, Yamasaki T, Sadasue H, Sakai K, Utsumi H (2009) Development of novel nitroxyl radicals for controlling reactivity with ascorbic acid. Free Radic Res 43(6):565–571. doi:10.1080/10715760902914575

    CAS  Google Scholar 

  22. Sakai K, Yamada K, Yamasaki T, Kinoshita Y, Mito F, Utsumi H (2010) Effective 2,6-substitution of piperidine nitroxyl radical by carbonyl compound. Tetrahedron 66(13):2311–2315. doi:10.1016/j.tet.2010.02.004

    CAS  Google Scholar 

  23. Yamasaki T, Mito F, Ito Y, Pandian S, Kinoshita Y, Nakano K, Murugesan R, Sakai K, Utsumi H, Yamada K (2011) Structure-reactivity relationship of piperidine nitroxide: electrochemical, ESR and computational studies. J Org Chem 76(2):435–440. doi:10.1021/Jo101961m

    CAS  Google Scholar 

  24. Zantema A, Trommer WE, Wenzel H, Robillard GT (1977) Binding studies of a spin-labelled oxidized coenzyme to bovine-liver glutamate dehydrogenase. Eur J Biochem 72(1):175–184

    CAS  Google Scholar 

  25. Naber N, Malnasi-Csizmadia A, Purcell TJ, Cooke R, Pate E (2010) Combining EPR with fluorescence spectroscopy to monitor conformational changes at the myosin nucleotide pocket. J Mol Biol 396(4):937–948. doi:10.1016/j.jmb.2009.12.035

    CAS  Google Scholar 

  26. Shelke SA, Sigurdsson ST (2010) Noncovalent and site-directed spin labeling of nucleic acids. Angew Chem Int Ed Engl 49(43):7984–7986. doi:10.1002/anie.201002637

    CAS  Google Scholar 

  27. Connolly BA (1991) In: Eckstein F (ed) Oligonucleotides and analogues. IRL Press, New York, pp 155–183

    Google Scholar 

  28. Farand J, Gosselin F (2009) De novo sequence determination of modified oligonucleotides. Anal Chem 81(10):3723–3730. doi:10.1021/ac802452p

    CAS  Google Scholar 

  29. Berliner LJ, Grunwald J, Hankovszky HO, Hideg K (1982) A novel reversible thiol-specific spin label: papain active site labeling and inhibition. Anal Biochem 119(2):450–455. doi:0003-2697(82)90612-1 [pii]

    CAS  Google Scholar 

  30. Horvath LI, Dux L, Hankovszky HO, Hideg K, Marsh D (1990) Saturation transfer electron-spin-resonance of Ca2+-ATPase covalently spin-labeled with beta-substituted vinyl ketone-nitroxide and maleimide-nitroxide derivatives - effects of segmental motion and labeling levels. Biophys J 58(1):231–241

    CAS  Google Scholar 

  31. Edwards TE, Sigurdsson ST (2005) EPR spectroscopic analysis of U7 hammerhead ribozyme dynamics during metal ion induced folding. Biochemistry-US 44(38):12870–12878. doi:10.1021/bi050549g

    CAS  Google Scholar 

  32. Kim NK, Murali A, DeRose VJ (2005) Separate metal requirements for loop interactions and catalysis in the extended hammerhead ribozyme. J Am Chem Soc 127(41):14134–14135. doi:10.1021/ja0541027

    CAS  Google Scholar 

  33. Kim NK, Bowman MK, DeRose VJ (2010) Precise mapping of RNA tertiary structure via nanometer distance measurements with double electron–electron resonance spectroscopy. J Am Chem Soc 132(26):8882–8884. doi:10.1021/ja101317g

    CAS  Google Scholar 

  34. Kosen PA (1989) Spin labeling of proteins. Methods Enzymol 177:86–121

    CAS  Google Scholar 

  35. Ohnishi SI, McConnell HM (1965) Interaction of the radical ion of chlorpromazine with deoxyribonucleic acid. J Am Chem Soc 87:2293

    CAS  Google Scholar 

  36. Stone TJ, Buckman T, Nordio PL, McConnell HM (1965) Spin-labeled biomolecules. Proc Natl Acad Sci USA 54(4):1010–1017

    CAS  Google Scholar 

  37. Griffith OH, McConnell HM (1966) A nitroxide-maleimide spin label. Proc Natl Acad Sci USA 55(1):8–11

    CAS  Google Scholar 

  38. Barratt MD, Davies AP, Evans MTA (1971) Maleimide and isomaleimide pyrrolidine-nitroxide spin labels. Eur J Biochem 24(2):280–283

    CAS  Google Scholar 

  39. Wagner TE, Hsu CJ (1970) Paramagnetic labeling studies.1. A new method for labeling proteins with a stable paramagnetic nitroxide radical. Anal Biochem 36(1):1–5

    CAS  Google Scholar 

  40. Berliner LJ, McConnell HM (1966) A spin-labeled substrate for alpha-chymotrypsin. Proc Natl Acad Sci USA 55(4):708–712

    CAS  Google Scholar 

  41. Adackaparayil M, Smith JH (1977) Preparation and reactivity of a new spin label reagent. J Org Chem 42(9):1655–1656

    CAS  Google Scholar 

  42. Chan DCF, Piette LH (1980) Electron-spin-resonance spin label studies of the nucleosome core particle and histone core. Biochim Biophys Acta 623(1):32–45

    CAS  Google Scholar 

  43. Chan DCF, Piette LH (1982) Effect of tyrosyl modifications on nucleosome reconstitution - a spin-labeling study. Biochemistry-US 21(12):3028–3035

    CAS  Google Scholar 

  44. Hankovszky OH, Hideg K, von Goldammer E, Matuszak E, Kolkenbrock H, Tschesche H, Wenzel HR (1987) New nitroxide reagents for the selective spin-labeling at the guanidino moiety of arginine residues in peptides and proteins. Biochim Biophys Acta 916(1):152–155

    CAS  Google Scholar 

  45. Ogawa S, McConnell HM (1967) Spin-label study of hemoglobin conformations in solution. Proc Natl Acad Sci USA 58(1):19–26

    CAS  Google Scholar 

  46. Boeyens JC, McConnell HM (1966) Spin-labeled hemoglobin. Proc Natl Acad Sci USA 56(1):22–25

    CAS  Google Scholar 

  47. Jallon JM, Di Franco A, Leterrier F, Piette L (1977) Spin-labeling studies of beef-liver glutamate dehydrogenase. Biochem Biophys Res Commun 74(3):1186–1191

    CAS  Google Scholar 

  48. Smirnov AI, Ruuge A, Reznikov VA, Voinov MA, Grigor'ev IA (2004) Site-directed electrostatic measurements with a thiol-specific ph-sensitive nitroxide: differentiating local pK and polarity effects by high-field EPR. J Am Chem Soc 126(29):8872–8873. doi:10.1021/ja048801f

    CAS  Google Scholar 

  49. Carter P (1986) Site-directed mutagenesis. Biochem J 237(1):1–7

    CAS  Google Scholar 

  50. Altenbach C, Flitsch SL, Khorana HG, Hubbell WL (1989) Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry-US 28(19):7806–7812

    CAS  Google Scholar 

  51. Todd AP, Cong J, Levinthal F, Levinthal C, Hubbell WL (1989) Site-directed mutagenesis of colicin E1 provides specific attachment sites for spin labels whose spectra are sensitive to local conformation. Proteins 6(3):294–305. doi:10.1002/prot.340060312

    CAS  Google Scholar 

  52. McHaourab HS, Lietzow MA, Hideg K, Hubbell WL (1996) Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry-US 35(24):7692–7704. doi:10.1021/bi960482k bi960482k [pii]

    CAS  Google Scholar 

  53. McHaourab HS, Kalai T, Hideg K, Hubbell WL (1999) Motion of spin-labeled side chains in T4 lysozyme: effect of side chain structure. Biochemistry-US 38(10):2947–2955. doi:10.1021/bi9826310 bi9826310 [pii]

    CAS  Google Scholar 

  54. Fleissner MR, Cascio D, Hubbell WL (2009) Structural origin of weakly ordered nitroxide motion in spin-labeled proteins. Protein Sci 18(5):893–908. doi:10.1002/pro.96

    CAS  Google Scholar 

  55. Kroncke BM, Horanyi PS, Columbus L (2010) Structural origins of nitroxide side chain dynamics on membrane protein alpha-helical sites. Biochemistry-US 49(47):10045–10060. doi:10.1021/Bi101148w

    CAS  Google Scholar 

  56. Bain JD, Glabe CG, Dix TA, Chamberlin AR, Diala ES (1989) Biosynthetic site-specific incorporation of a non-natural amino-acid into a polypeptide. J Am Chem Soc 111(20):8013–8014

    CAS  Google Scholar 

  57. Noren CJ, Anthonycahill SJ, Griffith MC, Schultz PG (1989) A general-method for site-specific incorporation of unnatural amino-acids into proteins. Science 244(4901):182–188

    CAS  Google Scholar 

  58. Cornish VW, Benson DR, Altenbach CA, Hideg K, Hubbell WL, Schultz PG (1994) Site-specific incorporation of biophysical probes into proteins. Proc Natl Acad Sci USA 91(8):2910–2914

    CAS  Google Scholar 

  59. Shafer AM, Kalai T, Bin Liu SQ, Hideg K, Voss JC (2004) Site-specific insertion of spin-labeled l-amino acids in Xenopus oocytes. Biochemistry-US 43(26):8470–8482. doi:10.1021/bi035542i

    CAS  Google Scholar 

  60. Wang L, Zhang ZW, Brock A, Schultz PG (2003) Addition of the keto functional group to the genetic code of Escherichia coli. Proc Natl Acad Sci USA 100(1):56–61

    CAS  Google Scholar 

  61. Fleissner MR, Brustad EM, Kalai T, Altenbach C, Cascio D, Peters FB, Hideg K, Peuker S, Schultz PG, Hubbell WL (2009) Site-directed spin labeling of a genetically encoded unnatural amino acid. Proc Natl Acad Sci USA 106(51):21637–21642. doi:0912009106 [pii] 10.1073/pnas.0912009106

    CAS  Google Scholar 

  62. Kent SB (1988) Chemical synthesis of peptides and proteins. Annu Rev Biochem 57:957–989. doi:10.1146/annurev.bi.57.070188.004521

    CAS  Google Scholar 

  63. Merrifield RB (1963) Solid phase peptide synthesis. 1. Synthesis of a tetrapeptide. J Am Chem Soc 85(14):2149–2154

    CAS  Google Scholar 

  64. Weinkam RJ, Jorgense Ec (1971) Angiotensin-II analogs. 8. Use of free radical containing peptides to indicate conformation of carboxyl terminal region of angiotensin-II. J Am Chem Soc 93(25):7033–7038

    CAS  Google Scholar 

  65. Nakaie CR, Goissis G, Schreier S, Paiva ACM (1981) pH-dependence of electron-paramagnetic-res spectra of nitroxides containing ionizable groups. Braz J Med Biol Res 14(2–3):173–180

    CAS  Google Scholar 

  66. Nakaie CR, Schreier S, Paiva ACM (1983) Synthesis and properties of spin-labeled angiotensin derivatives. Biochim Biophys Acta 742(1):63–71

    CAS  Google Scholar 

  67. Rassat A, Rey P (1967) Nitroxides. 23. Preparation of amino acid free radicals and their complex salts. Bull Soc Chim Fr 3:815–818

    CAS  Google Scholar 

  68. Marchetto R, Schreier S, Nakaie CR (1993) A novel spin-labeled amino-acid derivative for use in peptide-synthesis - (9-fluorenylmethyloxycarbonyl)-2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid. J Am Chem Soc 115(23):11042–11043

    CAS  Google Scholar 

  69. Becker CFW, Lausecker K, Balog M, Kalai T, Hideg K, Steinhoff HJ, Engelhard M (2005) Incorporation of spin-labelled amino acids into proteins. Magn Reson Chem 43:S34–S39. doi:Doi 10.1002/Mrc.1688

    CAS  Google Scholar 

  70. Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. Science 266(5186):776–779

    CAS  Google Scholar 

  71. Kumar KSA, Bavikar SN, Spasser L, Moyal T, Ohayon S, Brik A (2011) Total synthesis of a 304-residue, K48-linked tetraubiquitin peptide. Angew Chem Int Ed Engl 50:6137–6141. doi:10.1002/anie.201101920

    CAS  Google Scholar 

  72. Smythe ML, Nakaie CR, Marshall GR (1995) Alpha-helical versus 3(10)-helical conformation of alanine-based peptides in aqueous-solution - an electron-spin-resonance investigation. J Am Chem Soc 117(42):10555–10562

    CAS  Google Scholar 

  73. Toniolo C, Valente E, Formaggio F, Crisma M, Pilloni G, Corvaja C, Toffoletti A, Martinez GV, Hanson MP, Millhauser GL et al (1995) Synthesis and conformational studies of peptides containing TOAC, a spin-labelled C alpha, alpha-disubstituted glycine. J Pept Sci 1(1):45–57. doi:10.1002/psc.310010107

    CAS  Google Scholar 

  74. Hanson P, Millhauser G, Formaggio F, Crisma M, Toniolo C (1996) ESR characterization of hexameric, helical peptides using double TOAC spin labeling. J Am Chem Soc 118(32):7618–7625

    CAS  Google Scholar 

  75. Hanson P, Martinez G, Millhauser G, Formaggio F, Crisma M, Toniolo C, Vita C (1996) Distinguishing helix conformations in alanine-rich peptides using the unnatural amino acid TOAC and electron spin resonance. J Am Chem Soc 118(1):271–272

    CAS  Google Scholar 

  76. Anderson DJ, Hanson P, McNulty J, Millhauser G, Monaco V, Formaggio F, Crisma M, Toniolo C (1999) Solution structures of TOAC-labeled trichogin GA IV peptides from allowed (g approximate to 2) and half-field electron spin resonance. J Am Chem Soc 121(29):6919–6927

    CAS  Google Scholar 

  77. Bui TTT, Formaggio F, Crisma M, Monaco V, Toniolo C, Hussain R, Siligardi G (2000) TOAC: a useful C-alpha-tetrasubstituted alpha-amino acid for peptide conformational analysis by CD spectroscopy in the visible region. Part I. J Chem Soc Perk Trans 2(5):1043–1046

    Google Scholar 

  78. McNulty JC, Silapie JL, Carnevali M, Farrar CT, Griffin RG, Formaggio F, Crisma M, Toniolo C, Millhauser GL (2000) Electron spin resonance of TOAC labeled peptides: folding transitions and high frequency spectroscopy. Biopolymers 55(6):479–485. doi:10.1002/1097-0282(2000) 55:6<479::AID-BIP1023>3.0.CO;2-F [pii] 10.1002/1097-0282(2000)55:6<479::AID-BIP1023>3.0.CO;2-F

    CAS  Google Scholar 

  79. Martin L, Ivancich A, Vita C, Formaggio F, Toniolo C (2001) Solid-phase synthesis of peptides containing the spin-labeled 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC). J Pept Res 58(5):424–432

    CAS  Google Scholar 

  80. Van Eps N, Anderson LL, Kisselev OG, Baranski TJ, Hubbell WL, Marshall GR (2010) Electron paramagnetic resonance studies of functionally active, nitroxide spin-labeled peptide analogues of the C-terminus of a G-protein alpha subunit. Biochemistry-US 49(32):6877–6886. doi:Doi 10.1021/Bi100846c

    Google Scholar 

  81. Elsaber C, Monien B, Haehnel W, Bittl R (2005) Orientation of spin labels in de novo peptides. Magn Reson Chem 43:S26–S33. doi:10.1002/mrc.1692

    Google Scholar 

  82. Tominaga M, Barbosa SR, Poletti EF, Zukerman-Schpector J, Marchetto R, Schreier S, Paiva AC, Nakaie CR (2001) Fmoc-POAC: [(9-fluorenylmethyloxycarbonyl)-2,2,5,5-tetramethylpyrrolidine-N-oxyl-3-am ino-4-carboxylic acid]: a novel protected spin labeled beta-amino acid for peptide and protein chemistry. Chem Pharm Bull (Tokyo) 49(8):1027–1029

    CAS  Google Scholar 

  83. Odonnell MJ, Bennett WD, Wu SD (1989) The stereoselective synthesis of alpha-amino-acids by phase-transfer catalysis. J Am Chem Soc 111(6):2353–2355

    CAS  Google Scholar 

  84. Balog M, Kalai T, Jeko J, Berente Z, Steinhoff HJ, Engelhard M, Hideg K (2003) Synthesis of new conformationally rigid paramagnetic alpha-amino acids. Tetrahedron Lett 44(51):9213–9217. doi:10.1016/j.tetlet.2003.10.020

    CAS  Google Scholar 

  85. Balog MR, Kalai TK, Jeko J, Steinhoff HJ, Engelhard M, Hideg K (2004) Synthesis of new 2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxyl radicals and 2-substituted-2,5,5-trimethylpyrrolidin-1-yloxyl radicals based alpha-amino acids. Synlett (14):2591–2593. doi:10.1055/s-2004-834806

  86. Wright K, Sarciaux M, de Castries A, Wakselman M, Mazaleyrat JP, Toffoletti A, Corvaja C, Crisma M, Peggion C, Formaggio F, Toniolo C (2007) Synthesis of enantiomerically pure cis- and trans-4-amino-l-oxyl-2,2,6,6-tetramethylpiperidine-3-carboxylic acid: a spin-labelled, cyclic, chiral beta-amino acid, and 3D-Structural analysis of a doubly spin-labelled beta-hexapeptide. Eur J Org Chem (19):3133–3144. doi: 10.1002/ejoc.200700153

    Google Scholar 

  87. Kalai T, Schindler J, Balog M, Fogassy E, Hideg K (2008) Synthesis and resolution of new paramagnetic alpha-amino acids. Tetrahedron 64(6):1094–1100. doi:10.1016/j.tet.2007.11.020

    CAS  Google Scholar 

  88. Stryer L, Griffith OH (1965) A spin-labeled hapten. Proc Natl Acad Sci USA 54(6):1785–1791

    CAS  Google Scholar 

  89. Trommer WE, Wenzel H, Pfleider G (1974) Note on synthesis and biochemical properties of a spin-labeled nicotinamide adenine-dinucleotide. Liebigs Ann Chem (8):1357–1359

    Google Scholar 

  90. Wenzel HR, Pfleiderer G, Trommer WE, Paschenda K, Redhardt A (1976) Synthesis of spin-label derivatives of nad and its structural components and their binding to lactate-dehydrogenase. Biochim Biophys Acta 452(2):292–301

    CAS  Google Scholar 

  91. Wenzel HR, Trommer WE (1977) 8-Spin-label nicotinamide adenine-dinucleotide, synthesis and properties of a new spin-labeled coenzyme. FEBS Lett 78(2):184–188

    CAS  Google Scholar 

  92. Gloggler KG, Balasubramanian K, Beth A, Fritzsche TM, Park JH, Pearson DE, Venkataramu SD, Trommer WE (1982) The synthesis of deuterium-substituted, spin-labeled analogs of AMP and NAD+ and their use in electron-spin-resonance studies of lactate-dehydrogenase. Biochim Biophys Acta 701(2):224–228

    CAS  Google Scholar 

  93. Wolf A, Fritzsche TM, Rudy B, Trommer WE (1987) Synthesis of spin-labeled photoaffinity derivatives of NAD+ and their interaction with lactate-dehydrogenase. FEBS Lett 212(2):203–207

    CAS  Google Scholar 

  94. Trommer WE, Huth H, Wenzel HR (1979) Nature of the substrate-inhibition in lactate-dehydrogenases as studied by a spin-labeled derivative of NAD. Biochim Biophys Acta 567(1):49–59

    CAS  Google Scholar 

  95. Trommer WE, Gloggler K (1979) Solution conformation of lactate-dehydrogenase as studied by saturation transfer ESR spectroscopy. Biochim Biophys Acta 571(2):186–194

    CAS  Google Scholar 

  96. Deparade MP, Gloggler K, Trommer WE (1981) Isolation and properties of glyceraldehyde-3-phosphate dehydrogenase from a sturgeon from the Caspian Sea and its interaction with spin-labeled NAD+ derivatives. Biochim Biophys Acta 659(2):422–433

    CAS  Google Scholar 

  97. Beth AH, Robinson BH, Cobb CE, Dalton LR, Trommer WE, Birktoft JJ, Park JH (1984) Interactions and spatial arrangement of spin-labeled NAD+ bound to glyceraldehyde-3-phosphate dehydrogenase - comparison of electron-paramagnetic-res and X-ray modeling data. J Biol Chem 259(15):9717–9728

    CAS  Google Scholar 

  98. Hustedt EJ, Smirnov AI, Laub CF, Cobb CE, Beth AH (1997) Molecular distances from dipolar coupled spin-labels: the global analysis of multifrequency continuous wave electron paramagnetic resonance data. Biophys J 72(4):1861–1877. doi:S0006-3495(97)78832-5 [pii] 10.1016/S0006-3495(97)78832-5

    CAS  Google Scholar 

  99. Mildvan AS, Weiner H (1969) Interaction of a spin-labeled analogue of nicotinamide adenine dinucleotide with alcohol dehydrogenase. 3. Thermodynamic, kinetic, and structural properties of ternary complexes as determined by nuclear magnetic resonance. J Biol Chem 244(9):2465–2475

    CAS  Google Scholar 

  100. Roberts GC, Hannah J, Jardetzky O (1969) Noncovalent binding of a spin-labeled inhibitor to ribonuclease. Science 165(892):504–506

    CAS  Google Scholar 

  101. Ubom GA, Hunt JB, Timmons RB (1989) Spin-labeled analogues of ATP, ADP and AMP: substitutes for normal nucleotides in biochemical systems. Biochim Biophys Acta 997(1–2):1–8. doi:0167-4838(89)90128-3 [pii]

    CAS  Google Scholar 

  102. Weiner H (1969) Interaction of a spin-labeled analog of nicotinamide-adenine dinucleotide with alcohol dehydrogenase. I. Synthesis, kinetics, and electron paramagnetic resonance studies. Biochemistry-US 8(2):526–533

    CAS  Google Scholar 

  103. Mildvan AS, Weiner H (1969) Interaction of a spin-labeled analog of nicotinamide-adenine dinucleotide with alcohol dehydrogenase II. Proton relaxation rate and electron paramagnetic resonance studies of binary and ternary complexes. Biochemistry-US 8(2):552–562

    CAS  Google Scholar 

  104. Berliner LJ, Wong SS (1975) Manganese(II) and spin-labeled uridine 5'-diphosphate binding to bovine galactosyltransferase. Biochemistry-US 14(22):4977–4982

    CAS  Google Scholar 

  105. Koteiche HA, Narasimhan C, Runquist JA, Miziorko HM (1995) Utility of a novel spin-labeled nucleotide in investigation of the substrate and effector sites of phosphoribulokinase. Biochemistry-US 34(46):15068–15074

    CAS  Google Scholar 

  106. Streckenbach B, Schwarz D, Repke KRH (1980) Analysis of phosphoryl transfer mechanism and catalytic center geometries of transport ATPase by means of spin-labeled ATP. Biochim Biophys Acta 601(1):34–46

    CAS  Google Scholar 

  107. Crowder MS, Cooke R (1987) Orientation of spin-labeled nucleotides bound to myosin in glycerinated muscle-fibers. Biophys J 51(2):323–333

    CAS  Google Scholar 

  108. Oliveira CRG, Coan C, Verjovskialmeida S (1988) Interaction of spin-labeled nucleotides with sarcoplasmic-reticulum adenosine-triphosphatase. Biochemistry-US 27(16):5923–5927

    CAS  Google Scholar 

  109. Vogel-Claude P, Schafer G, Trommer WE (1988) Synthesis of a photoaffinity-spin-labeled derivative of ATP and its first application to F1-ATPase. FEBS Lett 227(2):107–109. doi:0014-5793(88)80878-0 [pii]

    CAS  Google Scholar 

  110. Jakobs P, Sauer HE, McIntyre JO, Fleischer S, Trommer WE (1989) Synthesis of spin-labeled 2-azido-ATP: evidence for distinct nucleotide-binding sites in calcium pump protein from sarcoplasmic reticulum. FEBS Lett 254(1–2):8–12. doi:0014-5793(89)80998-6 [pii]

    CAS  Google Scholar 

  111. Alessi DR, Corrie JET, Feeney J, Trayer IP, Trentham DR (1991) Conformationally restricted spin labeled nucleotides - a model study of the synthesis and properties of the 2',3'-O-spiro ketal of uridine and 4-oxo-2,2,6,6-tetramethyl-1-piperidyloxy. J Chem Soc Perk T 1 (9):2243–2247

    Google Scholar 

  112. Alessi DR, Corrie JET, Fajer PG, Ferenczi MA, Thomas DD, Trayer IP, Trentham DR (1992) synthesis and properties of a conformationally restricted spin-labeled analog of ATP and its interaction with myosin and skeletal-muscle. Biochemistry-US 31(34):8043–8054

    CAS  Google Scholar 

  113. Weidman SW, Drysdale GR, Mildvan AS (1973) Interaction of a spin-labeled analog of acetyl coenzyme a with citrate synthase - paramagnetic-resonance and proton relaxation rate studies of binary and ternary complexes. Biochemistry-US 12(10):1874–1883

    CAS  Google Scholar 

  114. Misra I, Narasimhan C, Miziorko HM (1993) Avian 3-hydroxy-3-methylglutaryl-CoA synthase - characterization of a recombinant cholesterogenic isozyme and demonstration of the requirement for a sulfhydryl functionality in formation of the acetyl-enzyme reaction intermediate. J Biol Chem 268(16):12129–12135

    CAS  Google Scholar 

  115. Narasimhan C, Roberts JR, Miziorko HM (1995) Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl-CoA lyase - testing the function of the active-site cysteine by site-directed mutagenesis. Biochemistry-US 34(31):9930–9935

    CAS  Google Scholar 

  116. Misharin AY, Polyanovsky OL, Timofeev VP (1979) Spin-labeled vitamin B6 derivatives: synthesis and interaction with aspartate aminotransferase. Methods Enzymol 62:495–510

    CAS  Google Scholar 

  117. Tripp BC, Smith K, Ferry JG (2001) Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem 276(52):48615–48618. doi:10.1074/jbc.R100045200 R100045200 [pii]

    CAS  Google Scholar 

  118. Chignell CF, Starkweather DK, Erlich RH (1972) The interaction of some spin-labeled sulfonamides with bovine erythrocyte carbonic anhydrase B. Biochim Biophys Acta 271(1):6–15

    CAS  Google Scholar 

  119. Mushak P, Coleman JE (1972) Electron spin resonance studies of spin-labeled carbonic anhydrase. J Biol Chem 247(2):373–380

    CAS  Google Scholar 

  120. Erlich RH, Starkweather DK, Chignell CF (1973) A spin label study of human erythrocyte carbonic anhydrases B and C. Mol Pharmacol 9(1):61–73

    CAS  Google Scholar 

  121. Wee VT, Feldmann RJ, Tanis RJ, Chignell CF (1976) A comparative study of mammalian erythrocyte carbonic anhydrases employing spin-labeled analogues of inhibitory sulfonamides. Mol Pharmacol 12(5):832–843

    CAS  Google Scholar 

  122. Smith IC (1968) A study of the conformational properties of bovine pancreatic ribonuclease A by electron paramagnetic resonance. Biochemistry-US 7(2):745–757

    CAS  Google Scholar 

  123. Ohnishi S, Boeyens JC, McConnell HM (1966) Spin-labeled hemoglobin crystals. Proc Natl Acad Sci USA 56(3):809–813

    CAS  Google Scholar 

  124. Smith IC, Yamane T (1967) Spin-labeled nucleic acids. Proc Natl Acad Sci USA 58(3):884–887

    CAS  Google Scholar 

  125. McConnell HM, Hamilton CL (1968) Spin-labeled hemoglobin derivatives in solution and in single crystals. Proc Natl Acad Sci USA 60(3):776–781

    CAS  Google Scholar 

  126. Bobst AM (1972) Studies on spin-labeled polyriboadenylic acid. Biopolymers 11(7):1421–1433. doi:10.1002/bip. 1972.360110710

    CAS  Google Scholar 

  127. Caspary WJ, Greene JJ, Stempel LM, Ts'o PO (1976) Spin labeled nucleic acids. Nucleic Acids Res 3(4):847–861

    CAS  Google Scholar 

  128. Raikova E, Ivanov I, Kaffalieva D, Demirov G, Raikov Z (1982) Spin-labelling of DNA with hydrazine mustard spin label (HMSL). Int J Biochem 14(1):41–46

    CAS  Google Scholar 

  129. Spielmann HP, Chi DY, Hunt NG, Klein MP, Hearst JE (1995) Spin-labeled psoralen probes for the study of DNA dynamics. Biochemistry-US 34(45):14801–14814

    CAS  Google Scholar 

  130. Dunham SU, Lippard SJ (1995) Long-range distance constraints in platinated nucleotides - structure determination of the 5'-orientational isomer of Cis-[Pt(NH3)(4-aminotempo)(D(GpG))](+) from combined paramagnetic and diamagnetic nmr constraints with molecular modeling. J Am Chem Soc 117(43):10702–10712

    CAS  Google Scholar 

  131. Dunham SU, Dunham SU, Turner CJ, Lippard SJ (1998) Solution structure of a DNA duplex containing a nitroxide spin-labeled platinum d(GpG) intrastrand cross-link refined with NMR-derived long-range electron-proton distance restraints. J Am Chem Soc 120(22):5395–5406

    CAS  Google Scholar 

  132. Hong SJ, Piette LH (1976) Electron-spin resonance spin-label studies of intercalation of ethidium-bromide and aromatic amine carcinogens in DNA. Cancer Res 36(3):1159–1171

    CAS  Google Scholar 

  133. Sinha BK, Chignell CF (1975) Acridine spin labels as probes for nucleic-acids. Life Sci 17(12):1829–1836

    CAS  Google Scholar 

  134. Hong SJ, Piette LH (1978) Electron-spin resonance spin label studies of intercalation of nitrobenzene in DNA. Arch Biochem Biophys 185(2):307–315

    CAS  Google Scholar 

  135. Belmont P, Chapelle C, Demeunynck M, Michon J, Michon P, Lhomme J (1998) Introduction of a nitroxide group on position 2 of 9-phenoxyacridine: easy access to spin labelled DNA-binding conjugates. Bioorg Med Chem Lett 8(6):669–674. doi:S0960894X98000894 [pii]

    CAS  Google Scholar 

  136. Thomas F, Michon J, Lhomme J (1999) Interaction of a spin-labeled adenine-acridine conjugate with a DNA duplex containing an abasic site model. Biochemistry-US 38(6):1930–1937

    CAS  Google Scholar 

  137. Hoffman BM, Schofield P, Rich A (1969) Spin-labeled transfer RNA. Proc Natl Acad Sci USA 62(4):1195–1202

    CAS  Google Scholar 

  138. Schofield P, Hoffman BM, Rich A (1970) Spin-labeling studies of aminoacyl transfer ribonucleic acid. Biochemistry-US 9(12):2525–2533

    CAS  Google Scholar 

  139. Kabat D, Hoffman B, Rich A (1970) Synthesis and Characterization of a Spin-Labeled Aminoacyl Transfer Ribonucleic Acid. Biopolymers 9(1):95–101

    CAS  Google Scholar 

  140. Hara H, Horiuchi T, Saneyosh M, Nishimur S (1970) 4-Thiouridine-specific spin-labeling of E Coli transfer RNA. Biochem Biophys Res Commun 38(2):305–311

    CAS  Google Scholar 

  141. Sprinzl M, Kramer E, Stehlik D (1974) Structure of phenylalanine transfer-RNA from yeast - spin-label studies. Eur J Biochem 49(3):595–605

    CAS  Google Scholar 

  142. Cedergre RJ, Beauchem N, Toupin J (1973) Incorporation of Acyl groups into anticodon of Escherichia coli glutamic-acid transfer ribonucleic-acid. Biochemistry-US 12(23):4566–4570

    Google Scholar 

  143. Mcintosh AR, Caron M, Dugas H (1973) Specific spin labeling of anticodon of Escherichia coli transfer-RNA Glu. Biochem Biophys Res Commun 55(4):1356–1363

    CAS  Google Scholar 

  144. Warwick PE, Hakam A, Bobst EV, Bobst AM (1980) Reactivity of reverse-transcriptase toward (S4u, U)N co-polymers and spin-labeled nucleic-acid lattices. Proc Natl Acad Sci USA 77(8):4574–4577

    CAS  Google Scholar 

  145. Toppin CR, Thomas IE, Bobst EV, Bobst AM (1983) Synthesis of spin labeled deoxynucleotide analogs and their incorporation with terminal deoxynucleotidyl transferase into DNA. Int J Biol Macromol 5(1):33–36

    CAS  Google Scholar 

  146. Kao SC, Polnaszek CF, Toppin CR, Bobst AM (1983) Internal motions in ribonucleic-acid duplexes as determined by electron-spin resonance with site-specifically spin-labeled uridines. Biochemistry-US 22(24):5563–5568

    CAS  Google Scholar 

  147. Bobst AM, Kao SC, Toppin RC, Ireland JC, Thomas IE (1984) Dipsticking the major groove of DNA with enzymatically incorporated spin-labeled deoxyuridines by electron-spin resonance spectroscopy. J Mol Biol 173(1):63–74

    CAS  Google Scholar 

  148. Pauly GT, Thomas IE, Bobst AM (1987) Base dynamics of nitroxide-labeled thymidine analogs incorporated into (Da-Dt)N by DNA-polymerase-I from Escherichia coli. Biochemistry-US 26(23):7304–7310

    CAS  Google Scholar 

  149. Strobel OK, Keyes RS, Bobst AM (1990) Base dynamics of local Z-DNA conformations as detected by electron-paramagnetic resonance with spin-labeled deoxycytidine analogs. Biochemistry-US 29(37):8522–8528

    CAS  Google Scholar 

  150. Bobst AM, Pauly GT, Keyes RS, Bobst EV (1988) Enzymatic sequence-specific spin labeling of a DNA fragment containing the recognition sequence of EcoRI endonuclease. FEBS Lett 228(1):33–36

    CAS  Google Scholar 

  151. Duh JL, Bobst AM (1991) Sequence-specific spin labeling of oligothymidylates by phosphotriester chemistry. Helv Chim Acta 74(4):739–747

    CAS  Google Scholar 

  152. Strobel OK, Kryak DD, Bobst EV, Bobst AM (1991) Preparation and characterization of spin-labeled oligonucleotides for DNA hybridization. Bioconjugate Chem 2(2):89–95

    CAS  Google Scholar 

  153. Strobel OK, Keyes RS, Bobst AM (1990) An electron-paramagnetic resonance probe to detect local Z-DNA conformations. Biochem Biophys Res Commun 166(3):1435–1440

    CAS  Google Scholar 

  154. Kao SC, Bobst AM (1985) Local base dynamics and local structural features in RNA and DNA duplexes. Biochemistry-US 24(20):5465–5469

    CAS  Google Scholar 

  155. Keyes RS, Bobst AM (1995) Detection of Internal and overall dynamics of a 2-atom-tethered spin-labeled DNA. Biochemistry-US 34(28):9265–9276

    CAS  Google Scholar 

  156. Keyes RS, Bobst EV, Cao YY, Bobst AM (1997) Overall and internal dynamics of DNA as monitored by five-atom-tethered spin labels. Biophys J 72(1):282–290

    CAS  Google Scholar 

  157. Liang ZC, Freed JH, Keyes RS, Bobst AM (2000) An electron spin resonance study of DNA dynamics using the slowly relaxing local structure model. J Phys Chem B 104(22):5372–5381. doi:Doi 10.1021/Jp994219f

    CAS  Google Scholar 

  158. Spaltenstein A, Robinson BH, Hopkins PB (1988) A rigid and nonperturbing probe for duplex DNA motion. J Am Chem Soc 110(4):1299–1301

    CAS  Google Scholar 

  159. Fischhaber PL, Reese AW, Nguyen T, Kirchner JJ, Hustedt EJ, Robinson BH, Hopkins PB (1997) Synthesis of duplex DNA containing a spin labeled analog of 2'-deoxycytidine. Nucleos Nucleot 16(4):365–377

    CAS  Google Scholar 

  160. Kirchner JJ, Hustedt EJ, Robinson BH, Hopkins PB (1990) DNA dynamics from a spin probe - dependence of probe motion on tether length. Tetrahedron Lett 31(5):593–596

    CAS  Google Scholar 

  161. Spaltenstein A, Robinson BH, Hopkins PB (1989) Sequence-dependent and structure-dependent DNA-base dynamics - synthesis, structure, and dynamics of site and sequence specifically spin-labeled DNA. Biochemistry-US 28(24):9484–9495

    CAS  Google Scholar 

  162. Spaltenstein A, Robinson BH, Hopkins PB (1989) DNA structural data from a dynamics probe - the dynamic signatures of single-stranded, hairpin-looped, and duplex forms of DNA are distinguishable. J Am Chem Soc 111(6):2303–2305

    CAS  Google Scholar 

  163. Schiemann O, Piton N, Mu YG, Stock G, Engels JW, Prisner TF (2004) A PELDOR-based nanometer distance ruler for oligonucleotides. J Am Chem Soc 126(18):5722–5729. doi:Doi 10.1021/Ja0393877

    CAS  Google Scholar 

  164. Piton N, Mu YG, Stock G, Prisner TF, Schiemann O, Engels JW (2007) Base-specific spin-labeling of RNA for structure determination. Nucleic Acids Res 35(9):3128–3143. doi:Doi 10.1093/Nar/Gkm169

    CAS  Google Scholar 

  165. Schiemann O, Piton N, Plackmeyer J, Bode BE, Prisner TF, Engels JW (2007) Spin labeling of oligonucleotides with the nitroxide TPA and use of PELDOR, a pulse EPR method, to measure intramolecular distances. Nat Protoc 2(4):904–923. doi:nprot.2007.97 [pii] 10.1038/nprot.2007.97

    CAS  Google Scholar 

  166. Krstic I, Frolow O, Sezer D, Endeward B, Weigand JE, Suess B, Engels JW, Prisner TF (2010) PELDOR spectroscopy reveals preorganization of the neomycin-responsive riboswitch tertiary structure. J Am Chem Soc 132(5):1454–1455. doi:10.1021/Ja9077914

    CAS  Google Scholar 

  167. Gannett PM, Darian E, Powell JH, Johnson EM (2001) A short procedure for synthesis of 4-ethynyl-2,2,6,6-tetramethyl-3,4-dehydro-piperidine-1-oxyl nitroxide. Synth Commun 31(14):2137–2141

    CAS  Google Scholar 

  168. Gannett PM, Darian E, Powell J, Johnson EM II, Mundoma C, Greenbaum NL, Ramsey CM, Dalal NS, Budil DE (2002) Probing triplex formation by EPR spectroscopy using a newly synthesized spin label for oligonucleotides. Nucleic Acids Res 30(23):5328–5337

    CAS  Google Scholar 

  169. Gannett PM, Powell JH, Johnson EM, Darian E, Dalal NS, Norton ML, Budil DE (2002) Solid-phase DNA binding detection by EPR spectroscopy. Tetrahedron Lett 43(11):1931–1933. doi:Pii S0040-4039(02)00161-2

    CAS  Google Scholar 

  170. Singh V, Azarkh M, Exner TE, Hartig JS, Drescher M (2009) Human telomeric quadruplex conformations studied by pulsed EPR. Angew Chem Int Ed Engl 48(51):9728–9730. doi:10.1002/anie.200902146

    CAS  Google Scholar 

  171. Jakobsen U, Shelke SA, Vogel S, Sigurdsson ST (2010) Site-directed spin-labeling of nucleic acids by click chemistry: detection of abasic sites in duplex DNA by EPR spectroscopy. J Am Chem Soc 132(30):10424–10428. doi:10.1021/ja102797k

    CAS  Google Scholar 

  172. Ding P, Wunnicke D, Steinhoff HJ, Seela F (2010) Site-directed spin-labeling of DNA by the azide-alkyne 'click' reaction: nanometer distance measurements on 7-deaza-2'-deoxyadenosine and 2'-deoxyuridine nitroxide conjugates spatially separated or linked to a 'dA-dT' base pair. Chem Eur J 16(48):14385–14396. doi:10.1002/chem.201001572

    CAS  Google Scholar 

  173. Ramos A, Varani G (1998) A new method to detect long-range protein-RNA contacts: NMR detection of electron-proton relaxation induced by nitroxide spin-labeled RNA. J Am Chem Soc 120(42):10992–10993

    CAS  Google Scholar 

  174. Leulliot N, Quevillon-Cheruel S, Graille M, van Tilbeurgh H, Leeper TC, Godin KS, Edwards TE, Sigurdsson STL, Rozenkrants N, Nagel RJ, Ares M, Varani G (2004) A new alpha-helical extension promotes RNA binding by the dsRBD of Rnt1p RNAse III. EMBO J 23(13):2468–2477. doi:10.1038/sj.emboj.7600260

    CAS  Google Scholar 

  175. Borbat PP, Davis JH, Butcher SE, Freed JH (2004) Measurement of large distances in biomolecules using double-quantum filtered refocused electron spin-echoes. J Am Chem Soc 126(25):7746–7747. doi:10.1021/Ja049372o

    CAS  Google Scholar 

  176. Qin PZ, Hideg K, Feigon J, Hubbell WL (2003) Monitoring RNA base structure and dynamics using site-directed spin labeling. Biochemistry-US 42(22):6772–6783. doi:10.1021/Bi027222p

    CAS  Google Scholar 

  177. Qin PZ, Feigon J, Hubbell WL (2005) Site-directed spin labeling studies reveal solution conformational changes in a GAAA tetraloop receptor upon Mg2+−dependent docking of a GAAA tetraloop. J Mol Biol 351(1):1–8. doi:10.1016/j.jmb.2005.06.007

    CAS  Google Scholar 

  178. Qin PZ, Iseri J, Oki A (2006) A model system for investigating lineshape/structure correlations in RNA site-directed spin labeling. Biochem Biophys Res Commun 343(1):117–124. doi:10.1016/j.bbrc.2006.02.138

    CAS  Google Scholar 

  179. Wunnicke D, Strohbach D, Weigand JE, Appel B, Feresin E, Suess B, Muller S, Steinhoff HJ (2011) Ligand-induced conformational capture of a synthetic tetracycline riboswitch revealed by pulse EPR. RNA 17(1):182–188. doi:Doi 10.1261/Rna.2222811

    CAS  Google Scholar 

  180. Bannwarth W, Schmidt D (1994) Oligonucleotides containing spin-labeled 2'-deoxycytidine and 5-methyl-2'-deoxycytidine as probes for structural motifs of DNA. Bioorg Med Chem Lett 4(8):977–980

    CAS  Google Scholar 

  181. Giordano C, Fratini F, Attanasio D, Cellai L (2001) Preparation of spin-labeled 2-amino-dA, dA, dC and 5-methyl-dC phosphoramidites for the automatic synthesis of EPR active oligonucleotides. Synthesis-Stuttgart (4):565–572

    Google Scholar 

  182. Cekan P, Sigurdsson ST (2009) Identification of single-base mismatches in duplex DNA by EPR spectroscopy. J Am Chem Soc 131(50):18054–18056. doi:10.1021/ja905623k

    CAS  Google Scholar 

  183. Macmillan AM, Verdine GL (1990) Synthesis of functionally tethered oligodeoxynucleotides by the convertible nucleoside approach. J Org Chem 55(24):5931–5933

    CAS  Google Scholar 

  184. Budil DE, Kolaczkowski SV, Perry A, Varaprasad C, Johnson F, Strauss PR (2000) Dynamics and ordering in a spin-labeled oligonucleotide observed by 220 GHz electron paramagnetic resonance. Biophys J 78(1):430–438

    CAS  Google Scholar 

  185. Kolaczkowski SV, Perry A, Mckenzie A, Johnson F, Budil DE, Strauss PR (2001) A spin-labeled abasic DNA substrate for AP endonuclease. Biochem Biophys Res Commun 288(3):722–726

    CAS  Google Scholar 

  186. Okamoto A, Inasaki T, Saito I (2004) Nitroxide-labeled guanine as an ESR spin probe for structural study of DNA. Bioorg Med Chem Lett 14(13):3415–3418. doi:10.1016/j.bmcl.2004.04.076

    CAS  Google Scholar 

  187. Sicoli G, Mathis G, Delalande O, Boulard Y, Gasparutto D, Gambarelli S (2008) Double electron–electron resonance (DEER): a convenient method to probe DNA conformational changes. Angew Chem Int Ed Engl 47(4):735–737. doi:10.1002/anie.200704133

    CAS  Google Scholar 

  188. Sicoli G, Mathis G, Aci-Seche S, Saint-Pierre C, Boulard Y, Gasparutto D, Gambarelli S (2009) Lesion-induced DNA weak structural changes detected by pulsed EPR spectroscopy combined with site-directed spin labelling. Nucleic Acids Res 37(10):3165–3176. doi:10.1093/Nar/Gkp165

    CAS  Google Scholar 

  189. Sicoli G, Wachowius F, Bennati M, Hobartner C (2010) Probing secondary structures of spin-labeled RNA by pulsed EPR spectroscopy. Angew Chem Int Ed Engl 49(36):6443–6447. doi:10.1002/anie.201000713

    CAS  Google Scholar 

  190. Okamoto A, Taiji T, Tainaka K, Saito I (2002) Oligonucleotides containing 7-vinyl-7-deazaguanine as a facile strategy for expanding the functional diversity of DNA. Bioorg Med Chem Lett 12(15):1895–1896. doi:S0960894X02003347 [pii]

    CAS  Google Scholar 

  191. Miller TR, Hopkins PB (1994) Toward the synthesis of a 2nd-generation nitroxide spin-probe for DNA dynamics studies. Bioorg Med Chem Lett 4(8):981–986

    CAS  Google Scholar 

  192. Miller TR, Alley SC, Reese AW, Solomon MS, Mccallister WV, Mailer C, Robinson BH, Hopkins PB (1995) A probe for sequence-dependent nucleic-acid dynamics. J Am Chem Soc 117(36):9377–9378

    CAS  Google Scholar 

  193. Okonogi T, Reese AW, Alley SC, Hopkins PB, Robinson BH (1999) Flexibility of duplex DNA on the submicrosecond timescale. Biophys J 77(6):3256–3276

    CAS  Google Scholar 

  194. Okonogi TM, Alley SC, Reese AW, Hopkins PB, Robinson BH (2000) Sequence-dependent dynamics in duplex DNA. Biophys J 78(5):2560–2571

    CAS  Google Scholar 

  195. Okonogi TM, Alley SC, Reese AW, Hopkins PB, Robinson BH (2002) Sequence-dependent dynamics of duplex DNA: the applicability of a dinucleotide model. Biophys J 83(6):3446–3459. doi:S0006-3495(02)75344-7 [pii] 10.1016/S0006-3495(02)75344-7

    CAS  Google Scholar 

  196. Barhate N, Cekan P, Massey AP, Sigurdsson ST (2007) A nucleoside that contains a rigid nitroxide spin label: a fluorophore in disguise. Angew Chem Int Ed Engl 46(15):2655–2658. doi:10.1002/anie.200603993

    CAS  Google Scholar 

  197. Edwards TE, Cekan P, Reginsson GW, Shelke SA, Ferre-D'Amare AR, Schiemann O, Sigurdsson ST (2011) Crystal structure of a DNA containing the planar, phenoxazine-derived bi-functional spectroscopic probe C. Nucleic Acids Res. doi:gkr015 [pii] 10.1093/nar/gkr015

  198. Schiemann O, Cekan P, Margraf D, Prisner TF, Sigurdsson ST (2009) Relative orientation of rigid nitroxides by PELDOR: beyond distance measurements in nucleic acids. Angew Chem Int Ed Engl 48(18):3292–3295. doi:10.1002/anie.200805152

    CAS  Google Scholar 

  199. Marko A, Margraf D, Cekan P, Sigurdsson ST, Schiemann O, Prisner TF (2010) Analytical method to determine the orientation of rigid spin labels in DNA. Phys Rev E 81(2):21911–21919 doi:10.1103/Physreve.81.021911

    Google Scholar 

  200. Marko A, Denysenkov V, Margraf D, Cekan P, Schiemann O, Sigurdsson ST, Prisner TF (2011) Conformational flexibility of DNA. J Am Chem Soc 133(34):13375–13379

    CAS  Google Scholar 

  201. Cekan P, Smith AL, Barhate N, Robinson BH, Sigurdsson ST (2008) Rigid spin-labeled nucleoside C: a nonperturbing EPR probe of nucleic acid conformation. Nucleic Acids Res 36(18):5946–5954. doi:gkn562 [pii] 10.1093/nar/gkn562

    CAS  Google Scholar 

  202. Cekan P, Sigurdsson ST (2008) Single base interrogation by a fluorescent nucleotide: each of the four DNA bases identified by fluorescence spectroscopy. Chem Commun (Camb) 29:3393–3395. doi:10.1039/b801833b

    Google Scholar 

  203. Gardarsson H, Sigurdsson ST (2010) Large flanking sequence effects in single nucleotide mismatch detection using fluorescent nucleoside C-f. Bioorg Med Chem 18(16):6121–6126. doi:10.1016/j.bmc.2010.06.060

    CAS  Google Scholar 

  204. Cekan P, Jonsson EO, Sigurdsson ST (2009) Folding of the cocaine aptamer studied by EPR and fluorescence spectroscopies using the bifunctional spectroscopic probe C. Nucleic Acids Res 37(12):3990–3995. doi:gkp277 [pii] 10.1093/nar/gkp277

    CAS  Google Scholar 

  205. Edwards TE, Okonogi TM, Robinson BH, Sigurdsson ST (2001) Site-specific incorporation of nitroxide spin-labels into internal sites of the TAR RNA; structure-dependent dynamics of RNA by EPR spectroscopy. J Am Chem Soc 123(7):1527–1528

    CAS  Google Scholar 

  206. Edwards TE, Sigurdsson ST (2007) Site-specific incorporation of nitroxide spin-labels into 2'-positions of nucleic acids. Nat Protoc 2(8):1954–1962. doi:nprot.2007.273 [pii] 10.1038/nprot.2007.273

    CAS  Google Scholar 

  207. Ward R, Keeble DJ, El-Mkami H, Norman DG (2007) Distance determination in heterogeneous DNA model systems by pulsed EPR. Chembiochem 8(16):1957–1964. doi:10.1002/cbic.200700245

    CAS  Google Scholar 

  208. Schiemann O, Weber A, Edwards TE, Prisner TF, Sigurdsson ST (2003) Nanometer distance measurements on RNA using PELDOR. J Am Chem Soc 125(12):3434–3435. doi:10.1021/ja0274610

    CAS  Google Scholar 

  209. Edwards TE, Sigurdsson ST (2003) EPR spectroscopic analysis of TAR RNA-metal ion interactions. Biochem Biophys Res Commun 303(2):721–725. doi:S0006291X0300411X [pii]

    CAS  Google Scholar 

  210. Edwards TE, Robinson BH, Sigurdsson ST (2005) Identification of amino acids that promote specific and rigid TAR RNA-tat protein complex formation. Chem Biol 12(3):329–337. doi:S1074-5521(05)00033-5 [pii] 10.1016/j.chembiol.2005.01.012

    CAS  Google Scholar 

  211. Kim NK, Murali A, DeRose VJ (2004) A distance ruler for RNA using EPR and site-directed spin labeling. Chem Biol 11(7):939–948. doi:10.1016/j.chembiol.2004.04.013 S1074552104001619 [pii]

    CAS  Google Scholar 

  212. Flaender M, Sicoli G, Fontecave T, Mathis G, Saint-Pierre C, Boulard Y, Gambarelli S, Gasparutto D (2008) Site-specific insertion of nitroxide-spin labels into DNA probes by click chemistry for structural analyses by ELDOR spectroscopy. Nucleic Acids Symp Ser (Oxf) (52):147–148. doi:nrn075 [pii] 10.1093/nass/nrn075

    Google Scholar 

  213. Gish G, Eckstein F (1988) DNA and RNA sequence determination based on phosphorothioate chemistry. Science 240(4858):1520–1522

    CAS  Google Scholar 

  214. Atherton FR, Openshaw HT, Todd AR (1945) Studies on phosphorylation .2. the reaction of dialkyl phosphites with polyhalogen compounds in presence of bases - a new method for the phosphorylation of amines. J Chem Soc 660–663

    Google Scholar 

  215. Makino K, Murakami A, Nagahara S, Nakatsuji Y, Takeuchi T (1989) A study on spin-labeled oligonucleotide synthesis and its electron-spin resonance behavior in solution. Free Radical Res Commun 6(5):311–316

    CAS  Google Scholar 

  216. Nagahara S, Murakami A, Makino K (1992) Spin-labeled oligonucleotides site specifically labeled at the internucleotide linkage - separation of stereoisomeric probes and EPR spectroscopical detection of hybrid formation in solution. Nucleos Nucleot 11(2–4):889–901

    CAS  Google Scholar 

  217. Burgers PMJ, Eckstein F (1979) Diastereomers of 5'-O-adenosyl 3'-O-uridyl phosphorothioate - chemical synthesis and enzymatic properties. Biochemistry-US 18(4):592–596

    CAS  Google Scholar 

  218. Fidanza JA, Mclaughlin LW (1989) Introduction of reporter groups at specific sites in DNA containing phosphorothioate diesters. J Am Chem Soc 111(25):9117–9119

    CAS  Google Scholar 

  219. Fidanza JA, Ozaki H, Mclaughlin LW (1992) Site-specific labeling of DNA-sequences containing phosphorothioate diesters. J Am Chem Soc 114(14):5509–5517

    CAS  Google Scholar 

  220. Qin PZ, Butcher SE, Feigon J, Hubbell WL (2001) Quantitative analysis of the isolated GAAA tetraloop/receptor interaction in solution: a site-directed spin labeling study. Biochemistry-US 40(23):6929–6936. doi:Doi 10.1021/Bi010294g

    CAS  Google Scholar 

  221. Qin PZ, Haworth IS, Cai Q, Kusnetzow AK, Grant GP, Price EA, Sowa GZ, Popova A, Herreros B, He H (2007) Measuring nanometer distances in nucleic acids using a sequence-independent nitroxide probe. Nat Protoc 2(10):2354–2365. doi:nprot.2007.308 [pii] 10.1038/nprot.2007.308

    CAS  Google Scholar 

  222. Popova AM, Kalai T, Hideg K, Qin PZ (2009) Site-specific DNA structural and dynamic features revealed by nucleotide-independent nitroxide probes. Biochemistry-US 48(36):8540–8550. doi:Doi 10.1021/Bi900860w

    CAS  Google Scholar 

  223. Cai Q, Kusnetzow AK, Hubbell WL, Haworth IS, Gacho GPC, Van Eps N, Hideg K, Chambers EJ, Qin PZ (2006) Site-directed spin labeling measurements of nanometer distances in nucleic acids using a sequence-independent nitroxide probe. Nucleic Acids Res 34(17):4722–4730. doi:Doi 10.1093/Nar/Gkl546

    CAS  Google Scholar 

  224. Cai Q, Kusnetzow AK, Hideg K, Price EA, Haworth IS, Qin PZ (2007) Nanometer distance measurements in RNA using site-directed spin labeling. Biophys J 93(6):2110–2117. doi:S0006-3495(07)71465-0 [pii] 10.1529/biophysj.107.109439

    CAS  Google Scholar 

  225. Grant GPG, Boyd N, Herschlag D, Qin PZ (2009) Motions of the substrate recognition duplex in a group I intron assessed by site-directed spin labeling. J Am Chem Soc 131(9):3136–3137. doi:10.1021/Ja808217s

    CAS  Google Scholar 

  226. Grant GPG, Popova A, Qin PZ (2008) Diastereomer characterizations of nitroxide-labeled nucleic acids. Biochem Biophys Res Commun 371(3):451–455. doi:10.1016/j.bbrc.2008.04.088

    CAS  Google Scholar 

  227. Popova AM, Qin PZ (2010) A nucleotide-independent nitroxide probe reports on site-specific stereomeric environment in DNA. Biophys J 99(7):2180–2189. doi:10.1016/j.bpj.2010.08.005

    CAS  Google Scholar 

  228. Caron M, Dugas H (1976) Specific spin-labeling of transfer ribonucleic acid molecules. Nucleic Acids Res 3(1):19–34

    CAS  Google Scholar 

  229. Pscheidt RH, Wells BD (1986) Different conformations of the 3' termini of initiator and elongator transfer-ribonucleic-acids - an electron-paramagnetic-res study. J Biol Chem 261(16):7253–7256

    CAS  Google Scholar 

  230. Luoma GA, Herring FG, Marshall AG (1982) Flexibility of end-labeled polymers from electron-spin resonance line-shape analysis - 3' terminus of transfer ribonucleic-acid and 5S ribonucleic-acid. Biochemistry-US 21(25):6591–6598

    CAS  Google Scholar 

  231. Kuznetsov NA, Milov AD, Koval VV, Samoilova RI, Grishin YA, Knorre DG, Tsvetkov YD, Fedorova OS, Dzuba SA (2009) PELDOR study of conformations of double-spin-labeled single- and double-stranded DNA with non-nucleotide inserts. Phys Chem Chem Phys 11(31):6826–6832. doi:10.1039/b904873a

    CAS  Google Scholar 

  232. Macosko JC, Pio MS, Tinoco I Jr, Shin YK (1999) A novel 5 displacement spin-labeling technique for electron paramagnetic resonance spectroscopy of RNA. RNA 5(9):1158–1166

    CAS  Google Scholar 

  233. Grant GP, Qin PZ (2007) A facile method for attaching nitroxide spin labels at the 5' terminus of nucleic acids. Nucleic Acids Res 35(10):e77. doi:gkm240 [pii] 10.1093/nar/gkm240

    Google Scholar 

  234. Wachter L, Jablonski JA, Ramachandran KL (1986) A simple and efficient procedure for the synthesis of 5'-aminoalkyl oligodeoxynucleotides. Nucleic Acids Res 14(20):7985–7994

    CAS  Google Scholar 

  235. Murakami A, Mukae M, Nagahara S, Konishi Y, Ide H, Makino K (1993) Oligonucleotides site-specifically spin-labeled at 5'-terminal or internucleotide linkage and their use in gene analyses. Free Radic Res Commun 19(Suppl 1):S117–S128

    CAS  Google Scholar 

  236. Winkler WC, Breaker RR (2003) Genetic control by metabolite-binding riboswitches. Chembiochem 4(10):1024–1032. doi:10.1002/cbic.200300685

    CAS  Google Scholar 

  237. Blount KF, Breaker RR (2006) Riboswitches as antibacterial drug targets. Nat Biotechnol 24(12):1558–1564. doi:10.1038/Nbt1268

    CAS  Google Scholar 

  238. Demeunynck M, Bailly C, Wilson WD (eds) (2004) Small molecule DNA and RNA binders: from synthesis to nucleic acid complexes, vol 1 and 2. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  239. Pelton JG, Wemmer DE (1989) Structural Characterization of a 2–1 Distamycin A.D (Cgcaaattggc) Complex by Two-Dimensional NMR. Proc Natl Acad Sci USA 86(15):5723–5727

    CAS  Google Scholar 

  240. Chen X, Ramakrishnan B, Rao ST, Sundaralingam M (1994) Binding of 2 distamycin-a molecules in the minor-groove of an alternating B-DNA duplex. Nat Struct Biol 1(3):169–175

    CAS  Google Scholar 

  241. Dervan PB (2001) Molecular recognition of DNA by small molecules. Bioorg Med Chem 9(9):2215–2235

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snorri Th. Sigurdsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shelke, S.A., Sigurdsson, S.T. (2011). Site-Directed Nitroxide Spin Labeling of Biopolymers. In: Timmel, C., Harmer, J. (eds) Structural Information from Spin-Labels and Intrinsic Paramagnetic Centres in the Biosciences. Structure and Bonding, vol 152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2011_62

Download citation

Publish with us

Policies and ethics