Skip to main content

Sturmians and Generalized Sturmians in Quantum Theory

  • Chapter
  • First Online:
Molecular Electronic Structures of Transition Metal Complexes II

Part of the book series: Structure and Bonding ((STRUCTURE,volume 143))

Abstract

The theory of Sturmians and generalized Sturmians is reviewed. It is shown that when generalized Sturmians are used as basis functions, calculations on the spectra and physical properties of few-electron atoms can be performed with great ease and good accuracy. The use of many-center Coulomb Sturmians as basis functions in calculations on N-electron molecules is also discussed. Basis sets of this type are shown to have many advantages over other types of ETO’s, especially the property of automatic scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ballhausen CJ (1962) Introduction to Ligand Field Theory. McGraw-Hill, New York

    Google Scholar 

  2. Ballhausen CJ (1979) Molecular Electronic Structure of Transition Metal Complexes. McGraw-Hill, New York

    Google Scholar 

  3. Ballhausen CJ, Gray HB (1965) Molecular Orbital Theory. Frontiers in chemistry. W.A. Benjamin, New York

    Google Scholar 

  4. Ballhausen CJ, Gray HB (1980) Molecular Electronic Structures; An Introduction. W.A. Benjamin, New York

    Google Scholar 

  5. Avery JS, Dahl JP, Hansen AE (1987) Understanding Molecular Properties. Reidel, Dordrecht

    Book  Google Scholar 

  6. Dahl JP (2001) Introduction to the Quantum World of Atoms and Molecules. World Scientific, Singapore

    Google Scholar 

  7. Dahl JP, Ballhausen CJ (1961) The electronic structure of ferrocene. Matematisk-Fysiske Meddelelser, Kongelige Danske Videnskabernes Selskab 33:1–23

    Google Scholar 

  8. Harris FE (1973) Computation methods in quantum chemistry. Preprint, Quantum Chemistry Group, Uppsala University

    Google Scholar 

  9. Harris FE, Michels HH (1967) Evaluation of molecular integrals for Slater-type orbitals. Adv Chem Phys 13:205

    Article  CAS  Google Scholar 

  10. Pinchon D, Hoggan PE (2009) Gaussian approximation of exponential type orobitals based on b functions. Int J Quantum Chem 109:135–148

    Article  CAS  Google Scholar 

  11. Steinborn EO (1983) On the evaluation of exponential (Slater) type integrals. In: Dierksen GHF, Wilson S (eds) Methods in Computational Molecular Physics. Reidel, Dordrecht

    Google Scholar 

  12. Weatherford CA Scaled hydrogenic sturmians as ETOs. In: Weatherford and Jones [40], pp. 29–34

    Google Scholar 

  13. Weatherford CA, Jones HW (eds) (1982) International Conference on ETO Multicenter Integrals. Reidel, Dordrecht, Netherlands

    Google Scholar 

  14. Weniger EJ, Steinborn EO (1983) The fourier transforms of some exponential-type basis functions and their relevance for multicenter problems. J Chem Phys 78:6121

    Article  CAS  Google Scholar 

  15. Weniger EJ, Steinborn EO (1983) Numerical properties of the convolution theorems of B-functions. Phys Rev A28:2026

    Google Scholar 

  16. Shull H, Löwdin PO (1959) Superposition of configurations and natural spin-orbitals. applications to the He problem. J Chem Phys 30:617

    Article  CAS  Google Scholar 

  17. Rotenberg M (1962) Ann Phys (New York) 19:262

    Article  CAS  Google Scholar 

  18. Rotenberg M (1970) Theory and application of sturmian functions. Adv At Mol Phys 6:233–268

    Article  CAS  Google Scholar 

  19. Avery JS (2003) Sturmians. In: Wilson S (ed) Handbook of Molecular Physics and Quantum Chemistry. Wiley, Chichester

    Google Scholar 

  20. Goscinski O (1968) Conjugate eigenvalue problems and the theory of upper and lower bounds. Research Report 217, Quantum Chemistry Group, Uppsala University

    Google Scholar 

  21. Goscinski O (2003) Conjugate eigenvalue problems and the theory of upper and lower bounds. Adv Quantum Chem 41:51–85

    Article  Google Scholar 

  22. Avery JE, Avery JS (2006) Generalized Sturmians and Atomic Spectra. World Scientific. 256 pages, ISBN: 981-256-806-9

    Google Scholar 

  23. Avery JS (2000) Hyperspherical Harmonics and generalized Sturmians. Kluwer Academic Publishers, Dordrecht, p 196

    Google Scholar 

  24. Avery JS (1989) Hyperspherical Harmonics; Applications in Quantum Theory. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  25. Weniger EJ (1985) Weakly convergent expansions of a plane wave and their use in fourier integrals. J Math Phys 26:276

    Article  Google Scholar 

  26. Avery JE (2006) libsturm: The generalized sturmian library. http://sturmian.kvante.org

  27. Dahl JP, Avery JS (eds) (1984) Local Density Approximations in Quantum Chemistry and Solid State Physics. Plenum, New York

    Google Scholar 

  28. Gasaneo G, Colavecchia FD (2003) Two-body Coulomb wavefunctions as kernel for alternative integral transformations. J Phys A Math Gen 36(31):8443

    Article  Google Scholar 

  29. Gasaneo G, Mitnik DM, Frapiccini AL, Colavecchia FD, Randazzo JM (2009) Theory of hyperspherical Sturmians for three-body reactions. The Journal of Physical Chemistry A 113(52):14573–14582. DOI 10.1021/jp9040869. URL http://pubs.acs.org/doi/abs/10.1021/jp9040869. PMID: 19788257

  30. Aquilanti V, Cavalli S, Coletti C, Grossi G (1996) Alternative sturmian bases and momentum space orbitals; an application to the hydrogen molecular ion. Chem Phys 209:405

    Article  CAS  Google Scholar 

  31. Aquilanti V, Cavalli S, de Fazio D, Grossi G (1996) Hyperangular momentum: Applications to atomic and molecular science. In: Tsipis CA, Popov VS, Herschbach DR, Avery JS (eds) New Methods in Quantum Theory. Kluwer Academic Publishers, dordrecht, netherlands edn

    Google Scholar 

  32. Judd BR (ed) (1975) Angular Momentum Theory for Diatomic Molecules. AcademicPress, New York

    Google Scholar 

  33. Koga T, Matsuhashi T (1987) Sum rules for nuclear attraction integrals over hydrogenic orbitals. J Chem Phys 87(8):4696–4699

    Article  CAS  Google Scholar 

  34. Koga T, Matsuhashi T (1988) One-electron diatomics in momentum space. v. nonvariational LCAO approach. J Chem Phys 89:983

    Article  CAS  Google Scholar 

  35. Shibuya T, Wulfman C (1965) Molecular orbitals in momentum space. Proc Roy Soc A 286:376

    Article  Google Scholar 

  36. Wulfman CE (1971) Dynamical groups in atomic and molecular physics. In: Loebel EM (ed) Group Theory and its Applications. Academic, New York

    Google Scholar 

  37. Wulfman CE (2011) Dynamical Symmetry. World Scientific, Singapore

    Google Scholar 

  38. Fock VA (1935) Z Phys 98:145

    Article  Google Scholar 

  39. Fock VA (1958) Hydrogen atoms and non-euclidian geometry. Kgl. Norske Videnskab.Forh. 31:138

    Google Scholar 

  40. Alliluev SP (1958) Sov Phys JETP 6:156

    Google Scholar 

  41. Bander M, Itzykson C (1966) Group theory and the H atom (i and ii). Rev Mod Phys 38(2):330–358

    Article  CAS  Google Scholar 

  42. Avery JS, Herschbach DR (1992) Hyperspherical sturmian basis functions. J Quantum Chem 41:673

    Article  CAS  Google Scholar 

  43. Caligiana A (2003) Sturmian orbitals in quantum chemistry. Ph.D. thesis, University of Perugia, Italy

    Google Scholar 

  44. Monkhorst HJ, Jeziorski B (1979) No linear dependence or many-center integral problems in momentum space quantum chemistry. J Chem Phys 71(12):5268–5269

    Article  CAS  Google Scholar 

  45. Avery JS, Rettrup S, Avery JE (2011) Symmetry-adapted basis functions; automatic generation for problems in physics and chemistry. World Scientific (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Scales Avery .

Editor information

Editors and Affiliations

Appendix: Angular and Hyperangular Integrations

Appendix: Angular and Hyperangular Integrations

In a 3-dimensional space, the volume element is given by dx 1dx 2dx 3 in Cartesian coordinates or by r 2dr dΩ in spherical polar coordinates. Thus, we can write

$$ {\text{d}}{x_1}{\text{d}}{x_2}{\text{d}}{x_3} = {r^2}{\text{d}}r\,{\text{d}}\Omega, $$
(188)

where dΩ is the element of solid angle. Similarly, in a d-dimensional space we can write

$$ {\text{d}}{x_1}{\text{d}}{x_2} \cdots {\text{d}}{x_d} = {r^{{d - 1}}} {\text{d}}r\,{\text{d}}\Omega, $$
(189)

where r is the hyperradius and where dΩ is the element of generalized solid angle. We will now prove a general theorem for angular and hyperangular integration [24]:

Theorem 1 (Angular integration theorem).

Let

$$ I(n) \equiv \int {{\text{d}}\Omega {{\left( {\frac{{{x_1}}}{r}} \right)}^{{{n_1}}}}{{\left( {\frac{{{x_2}}}{r}} \right)}^{{{n_2}}}} \cdots {{\left( {\frac{{{x_d}}}{r}} \right)}^{{{n_d}}}}}, $$
(190)

where x 1 , x 2 ,…, x d are the Cartesian coordinates of a d-dimensional space, dΩ is the generalized solid angle, r is the hyperradius, defined by

$$ {r^2} \equiv \sum\limits_{{j = 1}}^d {x_j^2}, $$
(191)

and where the n j s are positive integers or zero. Then

$$ {I(n) = \left\{ \!\!\!\!\!\!{\frac{{{\pi^{{d/2}}}}}{{{2^{{(n/2 - 1)}}}\Gamma \left( {\frac{{d + n}}{2}} \right)}}\prod\limits_{{j = 1}}^d {({n_j} - 1)!!} }\quad {{\text{if}}\,\,{\text{all}}\,\,{\text{the}}\,\,{n_j}{\text{s}}\,\,{\text{are}}\,\,{\text{even}}} \\cr (0\qquad {\text{otherwise}}\right)}, $$
(192)

where

$$ {n \equiv \sum\limits_{{j = 1}}^d {{n_j}}}. $$
(193)

Proof. Consider the integral

$$ {\int\limits_0^{\infty } {{\text{d}}r\,\,{r^{{d - 1}}}{{\text{e}}^{{ - {r^2}}}}\int {{\text{d}}\Omega \,x_1^{{n1}}\,x_2^{{n2}} \cdots \,\,x_d^{{nd}} = \prod\limits_{{j = 1}}^d {\int\limits_{{ - \infty }}^{\infty } {{\text{d}}{x_j}\,\,x_j^{{{n_j}}}{{\text{e}}^{{ - x_j^2}}}}}}}}. $$
(194)

If n j is zero or a positive integer, then

$$ \int\limits_{{ - \infty }}^{\infty } {{\text{d}}{x_j}\,\,x_j^{{nj}}\,{{\text{e}}^{{ - x_j^2}}} = } \left\{ {\frac{{({n_j} - 1)!!\sqrt {\pi } }}{{{2^{{{n_j}/2}}}}}} \quad \qquad{{\text{if}}\ {n_{{j\,}}}\ {\text{is}}\ {\text{even}}} \\cr (0 \qquad \qquad \qquad{{\text{if}}\ {n_j}\ {\text{is}}\ {\text{odd}}}\right), $$
(195)

so that the right-hand side of (194) becomes

$$ {\prod\limits_{{j = 1}}^d {\int\limits_{{ - \infty }}^{\infty } {{\text{d}}{x_j}} \,\,\,} x_j^{{{n_j}}}{{\text{e}}^{{ - x_j^2}}}} = \left\{ {\frac{{{\pi^{{d/2}}}}}{{{2^{{n/2}}}}}\prod\limits_{{j = 1}}^d {({n_j} - 1)!!} }\quad{{\text{if}}\,\,{\text{all}}\,\,{\text{the}}\,\,{n_j}{\text{s}}\,\,{\text{are}}\,\,{\text{even}}} 0\quad{\text{otherwise}} \right. $$
(196)

The left-hand side of (5) can be written in the form

$$ {\int\limits_0^{\infty } {{\text{d}}r\,\,{r^{{d + n - 1}}}\,\,{{\text{e}}^{{ - {r^2}}}}} \int {{\text{d}}\Omega } {\left( {\frac{{{x_1}}}{r}} \right)^{{{n_1}}}}\,{\left( {\frac{{{x_2}}}{r}} \right)^{{{n_2}}}} \cdots {\left( {\frac{{{x_d}}}{r}} \right)^{{{n_d}}}} = \frac{{I(n)}}{2}\Gamma \left( {\frac{{d + n}}{2}} \right)}. $$
(197)

Substituting (196) and (197) into (194), we obtain (192). Q.E.D.

Comments

In the special case where d = 3, (192) becomes

$$ {\int {{\text{d}}\Omega {{\left( {\frac{{{x_1}}}{r}} \right)}^{{{n_1}}}}{{\left( {\frac{{{x_2}}}{r}} \right)}^{{{n_2}}}}\,\,{{\left( {\frac{{{x_d}}}{r}} \right)}^{{{n_3}}}}} = \left\{ {\frac{{4\pi }}{{(n + 1)!!}}\prod\limits_{{j = 1}}^3 {({n_j} - 1)!!} } \quad{{\text{all}}\,\,\,{n_j}{\text{s}}\,\,\,{\text{even}}} \\\hskip-6.8pc 0\quad{\text{otherwise}} \right.} $$
(198)

Let us now consider a general polynomial (not necessarily homogeneous) of the form:

$$ {P({x}) = \sum\limits_n {{c_{{n\,\,\,\,\,}}}x_1^{{{n_1}}}\,\,x_2^{{{n_2}}} \ldots x_d^{{{n_d}}}}}. $$
(199)

Then we have

$$ {\int {{\text{d}}\Omega \,} \,\,P(x) = \sum\limits_n {{c_{{n\,\,\,\,}}}\int {{\text{d}}\Omega \,} \,\,x_1^{{{n_1}}}\,\,x_2^{{{n_2}}} \ldots x_d^{{{n_d}}}} = \sum\limits_n {{c_n}\,\,{r^n}\,\,I({n})}}. $$
(200)

It can be seen that (192) can be used to evaluate the generalized angular integral of any polynomial whatever, regardless of whether or not it is homogeneous.

It is interesting to ask what happens if the n j ’s are not required to be zero or positive integers. If all the n j ’s are real numbers greater than −1, then the right-hand side of (194) can still be evaluated and it has the form

$$ {\prod\limits_{{j = 1}}^d {\int\limits_{{ - \infty }}^{\infty } {\!\!\!{\text{d}}{x_j}\,\,x_j^{{{n_j}}}{{\text{e}}^{{ - x_j^2}}} = } \prod\limits_{{j = 1}}^d {\frac{1}{2}(1 + {{\text{e}}^{{i\pi {n_j}}}})} \,\Gamma \left( {\frac{{{n_j} + 1}}{2}} \right)}}. $$
(201)

Thus, (192) becomes

$$ I(n) = \frac{2}{{\Gamma \left( {\frac{{d + n}}{2}} \right)}}\prod\limits_{{j = 1}}^d {\frac{1}{2}} (1 + {e^{{i\pi {n_j}}}})\;\Gamma \left( {\frac{{{n_j} + 1}}{2}} \right)\quad {n_j} > - 1,\quad j = 1, \ldots, d. $$
(202)

This more general equation reduces to (192) in the special case where the n j ’s are required to be either zero or positive integers.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Avery, J.S., Avery, J.E. (2011). Sturmians and Generalized Sturmians in Quantum Theory. In: Mingos, D., Day, P., Dahl, J. (eds) Molecular Electronic Structures of Transition Metal Complexes II. Structure and Bonding, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2011_53

Download citation

Publish with us

Policies and ethics