Skip to main content

Electron Density in Quantum Theory

  • Chapter
  • First Online:
Electron Density and Chemical Bonding II

Part of the book series: Structure and Bonding ((STRUCTURE,volume 147))

Abstract

In this work, we review the theory of the electron density in quantum chemistry and discuss to which extent relativistic effects are recovered by approximate relativistic Hamiltonians. For this purpose, we give an overview on different approximations to the fully relativistic many-electron Hamiltonian. In addition, we present new results, considering correlation effects on the electron density of a transition metal complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bader R (1990) Atoms in molecules. Clarendon, Oxford

    Google Scholar 

  2. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules. Wiley-VCH, Weinheim

    Google Scholar 

  3. Tafipolsky M, Scherer W, Ofele K, Artus G, Pedersen B, Herrmann WA, McGrady GS (2002) J Am Chem Soc 124:5865–5880

    CAS  Google Scholar 

  4. Scherer W, Sirsch P, Shorokhov D, Tafipolsky M, McGrady GS, Gullo E (2004) Chem Eur J 9:6057–6070

    Google Scholar 

  5. Scherer W, McGrady GS (2004) Angew Chem Int Ed 43:1782–1806

    CAS  Google Scholar 

  6. Friedrich W, Knipping P, von Laue M (1912) Sitz ber Bayer Akademie d Wiss:303–322

    Google Scholar 

  7. Bragg WL (1913) Proc R Soc Lond A89:248–277

    Google Scholar 

  8. Dickinson RG, Raymond AL (1923) J Am Chem Soc 45:22–29

    CAS  Google Scholar 

  9. Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) Nature 181:662–666

    CAS  Google Scholar 

  10. Koritsanszky TS (2001) Chem Rev 101:1583–1627

    CAS  Google Scholar 

  11. Hauptman HA, Karle J (1954) Solution of the phase problem. 1. The centrosymmetric crystal. ACA monograph no. 3, Wilmington

    Google Scholar 

  12. Hauptman HA, Karle J (1956) Acta Cryst 9:635–651

    Google Scholar 

  13. Patterson AL (1934) Phys Rev 46:372–376

    CAS  Google Scholar 

  14. Patterson AL (1935) Z Krist 90:517–542

    CAS  Google Scholar 

  15. Gilmore CJ (1996) Acta Cryst A52:561–589

    CAS  Google Scholar 

  16. Hohenberg P, Kohn W (1964) Phys Rev 136:864–871

    Google Scholar 

  17. Kohn W, Sham LJ (1965) Phys Rev 140:1133–1138

    Google Scholar 

  18. Thomas LH (1927) Proc Camb Philos Soc 23:542

    CAS  Google Scholar 

  19. Fermi E (1928) Z Phys 48:73–79

    CAS  Google Scholar 

  20. Dirac PAM (1928) Proc R Soc Lond A 117:610–624

    Google Scholar 

  21. Dirac PAM (1928) Proc R Soc Lond A 118:351–361

    CAS  Google Scholar 

  22. Reiher M, Wolf A (2009) Relativistic quantum chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  23. Born M (1926) Z Phys 37:863–867

    Google Scholar 

  24. Born M, Oppenheimer R (1927) Ann Phys (Berlin) 389:457–484

    Google Scholar 

  25. Eckart C (1935) Phys Rev 47:552–558

    CAS  Google Scholar 

  26. Born M, Huang K (1956) Dynamical theory of crystal lattices. Oxford University Press, New York

    Google Scholar 

  27. Szabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover, New York

    Google Scholar 

  28. Gaunt JA (1929) Proc R Soc Lond A 122:513–532

    CAS  Google Scholar 

  29. Gaunt JA (1929) Philos Trans R Soc (Lond) A288:151–196

    Google Scholar 

  30. Brown GE, Ravenhall DG (1951) Proc R Soc Lond A 208:552–559

    CAS  Google Scholar 

  31. Hess BA (1986) Phys Rev A 33:3742–3748

    CAS  Google Scholar 

  32. Reiher M, Wolf A (2004) J Chem Phys 121:2037–2047

    CAS  Google Scholar 

  33. Reiher M, Wolf A (2004) J Chem Phys 121:10945–10956

    CAS  Google Scholar 

  34. van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597–4610

    Google Scholar 

  35. Barysz M, Sadlej AJ, Snijders JG (1997) Int J Quantum Chem 65:225–239

    CAS  Google Scholar 

  36. Kedziera D, Barysz M (2003) J Chem Phys 116:2696–2704

    Google Scholar 

  37. Kutzelnigg W, Liu WJ (2005) J Chem Phys 123:241102

    Google Scholar 

  38. Filatov M (2006) J Chem Phys 125:107101

    Google Scholar 

  39. Ilias M, Saue T (2007) J Chem Phys 126:064102

    Google Scholar 

  40. Sikkerna J, Visscher L, Saue T (2009) J Chem Phys 131:124116

    Google Scholar 

  41. Aquilante F, Vico LD, Ferre N, Ghigo G, Malmqvist P-A, Neogrady P, Pedersen TB, Pitonak M, Reiher M, Roos B-O, Serrano-Andres L, Urban M, Veryazov V, Lindh R (2010) J Comput Chem 31:224–247

    CAS  Google Scholar 

  42. Amsterdam Density Functional program. http://www.scm.com. Theoretical Chemistry, Vrije Universiteit, Amsterdam

  43. te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    CAS  Google Scholar 

  44. Douglas M, Kroll NM (1974) Ann Phys 1:82, 89–155

    Google Scholar 

  45. Wolf A, Reiher M, Hess BA (2002) J Chem Phys 117:9215–9226

    CAS  Google Scholar 

  46. Reiher M (2006) Theor Chem Acc 116:241–252

    CAS  Google Scholar 

  47. Wolf A, Reiher M (2006) J Chem Phys 124:064102

    Google Scholar 

  48. Wolf A, Reiher M (2006) J Chem Phys 124:064103

    Google Scholar 

  49. Reiher M, Wolf A (2007) Phys Lett A 360:603–607

    CAS  Google Scholar 

  50. Baerends EJ, Schwarz WHE, Schwerdtfeger P, Snijders JG (1990) J Phys B At Mol Opt Phys 23:3225–3240

    CAS  Google Scholar 

  51. Kello V, Sadlej AJ (1998) Int J Quantum Chem 68:159–174

    Google Scholar 

  52. Bučinský L, Biskupič S, Jayatilaka D (2010) J Chem Phys 133:174125

    Google Scholar 

  53. Heully JL, Lindgren I, Lindroth E, Lundqvist S, Mårtensson-Pendrill AM (1986) J Phys B At Mol Phys 19:2799–2815

    CAS  Google Scholar 

  54. Durand P (1986) C R Acad Sci II 303:119

    CAS  Google Scholar 

  55. Chang C, Pelissier M, Durand P (1986) Phys Scr 34:394–404

    CAS  Google Scholar 

  56. van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783–9792

    Google Scholar 

  57. van Leeuwen R, van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys 101:1272–1281

    Google Scholar 

  58. Sadlej AJ, Snijders JG, van Lenthe E, Baerends EJ (1995) J Chem Phys 102:1758–1766

    CAS  Google Scholar 

  59. van Leeuwen R, van Lenthe E, Baerends EJ, Snijders JG (1996) Int J Quantum Chem 57:1272–1281

    Google Scholar 

  60. Foldy LL, Wouthuysen SA (1950) Phys Rev 78:29–36

    Google Scholar 

  61. Dyall KG, van Lenthe E (1999) J Chem Phys 111:1366–1372

    CAS  Google Scholar 

  62. Slater JC (1929) Phys Rev 34:1293–1322

    CAS  Google Scholar 

  63. Condon EU (1930) Phys Rev 36:1121–1133

    CAS  Google Scholar 

  64. Eickerling G, Mastalerz R, Herz V, Scherer W, Himmel H-J, Reiher M (2007) J Chem Theory Comput 3(6):2182–2197

    CAS  Google Scholar 

  65. Reiher M (2007) Faraday Discuss 135:97–124

    CAS  Google Scholar 

  66. Mastalerz R, Lindh R, Reiher M (2008) Chem Phys Lett 465:157–164

    CAS  Google Scholar 

  67. Rajagopal AK, Callaway J (1973) Phys Rev B 7:1912–1919

    CAS  Google Scholar 

  68. Hartree DR (1929) Proc Camb Philos Soc 25:225–236

    CAS  Google Scholar 

  69. White HE (1931) Phys Rev 38:512–520

    Google Scholar 

  70. White HE (1934) Introduction to atomic spectra. McGraw-Hill, New York

    Google Scholar 

  71. Burke VM, Grant IP (1967) Proc Phys Soc 90:297–314

    CAS  Google Scholar 

  72. Trautwein A, Harris FE, Freeman AJ, Desclaux JP (1975) Phys Rev B 11:4101–4105

    CAS  Google Scholar 

  73. Mallow JV, Freeman AJ, Desclaux JP (1975) Bull Am Phys Soc 20:293

    Google Scholar 

  74. Mallow JV, Freeman AJ, Desclaux JP (1976) Phys Rev B 13:1884–1892

    CAS  Google Scholar 

  75. Pyykkö P, Desclaux J-P (1979) Acc Chem Res 12:276–281

    Google Scholar 

  76. Ros P, Snijders JG, Ziegler T (1980) Chem Phys Lett 69:297–300

    CAS  Google Scholar 

  77. Autschbach J, Schwarz WHE (2000) Theor Chem Acc 104:82–88

    CAS  Google Scholar 

  78. van Wüllen C, Michauk C (2005) J Chem Phys 123:204113

    Google Scholar 

  79. Bader RFW, Chandra AK (1968) Can J Chem 46:953–966

    CAS  Google Scholar 

  80. Baerends EJ, Gritsenko OV, van Leeuwen R (1996) Electron correlation and the structure of the exchange–correlation potential and the correlation energy density in density functional theory. In: Tsipis CA (ed) New methods in quantum theory. Kluwer Academic, Dordrecht

    Google Scholar 

  81. Smith VH (1977) Phys Scr 15:147–162

    CAS  Google Scholar 

  82. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1983) Mol Phys 49:65–89

    CAS  Google Scholar 

  83. Ritchie JP, King HF, Young WS (1986) J Chem Phys 85:5175–5182

    CAS  Google Scholar 

  84. Moszynski R, Szalewicz K (1987) J Phys B 20:4347–4364

    CAS  Google Scholar 

  85. Gatti C, MacDougall PJ, Bader RFW (1988) J Chem Phys 88:3792–3804

    CAS  Google Scholar 

  86. Gauss J (1991) J Mol Struct 234:95–126

    Google Scholar 

  87. He Y, Gräfenstein J, Kraka E, Cremer D (2000) Mol Struct 98:1639–1658

    CAS  Google Scholar 

  88. Cremer D (2001) Mol Phys 99:1899–1940

    CAS  Google Scholar 

  89. Jankowski K, Nowakowski K, Grabowski I, Wasilewski J (2009) J Chem Phys 130:164102

    CAS  Google Scholar 

  90. Jankowski K, Nowakowski K, Grabowski I, Wasilewski J (2010) Theor Chem Acc 125:433–444

    CAS  Google Scholar 

  91. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    CAS  Google Scholar 

  92. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    CAS  Google Scholar 

  93. Bartlett RJ, Grabowski I, Hirata S, Ivanov S (2005) J Chem Phys 122:034104

    Google Scholar 

  94. Boguslawski K, Jacob CR, Reiher M (2010, submitted)

    Google Scholar 

  95. Ehrenfest P (1922) Nature 109:745–746

    CAS  Google Scholar 

  96. Bohr N (1922) Nature 109:746

    Google Scholar 

  97. Rosenthal JE, Breit G (1932) Phys Rev 41:459–470

    CAS  Google Scholar 

  98. Breit G (1958) Rev Mod Phys 30:3408–3411

    Google Scholar 

  99. Serafin MM, Peebles SA, Dewberry CT, Etchison KC, Grubbs GS II, Powoski RA, Cooke SA (2004) Chem Phys 298:33–37

    Google Scholar 

  100. Serafin MM, Peebles SA, Dewberry CT, Etchison KC, Grubbs GS II, Powoski RA, Cooke SA (2007) Chem Phys Lett 449:33–37

    CAS  Google Scholar 

  101. Kurian R, Filatov M (2010) Phys Chem Chem Phys 12:2758–2762

    CAS  Google Scholar 

  102. Kistner OC, Sunyar AW (1960) Phys Rev Lett 4:412–415

    CAS  Google Scholar 

  103. Shirley DA (1964) Rev Mod Phys 36:339–351

    CAS  Google Scholar 

  104. Filatov M (2009) Coord Chem Rev 253:594–605

    CAS  Google Scholar 

  105. Andrae D, Reiher M, Hinze J (2000) Phys Chem Lett 320:457–468

    CAS  Google Scholar 

  106. Kato T (1957) Commun Pure Appl Math 10:151–177

    Google Scholar 

  107. Andrae D (2000) Phys Rep 336:414–525

    Google Scholar 

  108. Fricke B, Waber JT (1972) Phys Rev B 5:3445–3449

    Google Scholar 

  109. Mastalerz R, Widmark P-O, Roos BO, Lindh R, Reiher M (2010) J Chem Phys 133:144111

    Google Scholar 

  110. Visscher L, Dyall KG (1997) At Data Nucl Data 67:207–224

    CAS  Google Scholar 

  111. Hofstadter R (1956) Rev Mod Chem 28:214–254

    CAS  Google Scholar 

  112. Svane A, Antoncik E (1987) Phys Rev B 35:4611–4624

    CAS  Google Scholar 

  113. Knecht S, Fux S, van Meer R, Visscher L, Reiher M, Saue T (2011) Theor Chem Acc (submitted)

    Google Scholar 

  114. Filatov M (2007) J Chem Phys 127:084101

    Google Scholar 

  115. Hinze J, Jaffe HH (1962) J Am Chem Soc 84:540–546

    CAS  Google Scholar 

  116. Hinze J, Whitehead MA, Jaffe HH (1963) J Am Chem Soc 85:148–154

    CAS  Google Scholar 

  117. Hinze J, Jaffe HH (1963) Can J Chem 41:1315–1328

    CAS  Google Scholar 

  118. Hinze J, Jaffe HH (1963) J Phys Chem 67:1501–1506

    CAS  Google Scholar 

  119. Pearson RG (1963) J Am Chem Soc 85:3533–3539

    CAS  Google Scholar 

  120. Pearson RG (1966) Science 151:172–177

    CAS  Google Scholar 

  121. Pearson RG (1968) J Chem Educ 45:581–587

    CAS  Google Scholar 

  122. Pearson RG (1968) J Chem Educ 45:643–648

    CAS  Google Scholar 

  123. Pearson RG (1997) Chemical hardness. Wiley-VCH, New York

    Google Scholar 

  124. Fukui K, Yonezawa T, Shingu H (1952) J Chem Phys 20:722–725

    CAS  Google Scholar 

  125. Fukui K, Yonezawa T, Nagata C, Shingu H (1954) J Chem Phys 22:1433–1442

    CAS  Google Scholar 

  126. Fukui K, Yonezawa T, Nagata C (1957) J Chem Phys 27:1247–1259

    CAS  Google Scholar 

  127. Houk KN, Sims J, Duke RE, Strozier RW, George JK (1973) J Am Chem Soc 95:7287–7301

    CAS  Google Scholar 

  128. Houk KN (1975) Acc Chem Res 8:361–369

    CAS  Google Scholar 

  129. Fukui K (1982) Angew Chem Int Ed 21:801–809

    Google Scholar 

  130. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807

    CAS  Google Scholar 

  131. Geerlings P, Proft FD, Langenaeker W (2003) Chem Rev 103:1793–1873

    CAS  Google Scholar 

  132. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum Chem 101:520–534

    CAS  Google Scholar 

  133. Sablon N, Proft FD, Ayers PW, Geerlings P (2007) J Chem Phys 126:224108

    Google Scholar 

  134. Sablon N, Proft FD, Geerlings P (2009) J Chem Theory Comput 5:1245–1253

    CAS  Google Scholar 

  135. Yang W, Parr RG (1985) Proc Natl Acad Sci USA 82:6723–6726

    CAS  Google Scholar 

  136. De HS, Krishnamurty S, Pal S (2009) J Phys Chem C 113:7101–7106

    CAS  Google Scholar 

  137. Sablon N, Mastalerz R, de Proft F, Geerlings P, Reiher M (2010) Theor Chem Acc 127:195–202

    CAS  Google Scholar 

  138. Popelier P (2000) Atoms in molecules: an introduction. Pearson Education, Essex

    Google Scholar 

  139. Cioslowski J, Karwowski J (2001) Quantum-mechanical theory of atoms in molecules: a relativistic formulation. In: Carbó-Dorca R, Gironés X, Mezey PG (eds) Fundamentals of molecular similarity. Kluwer Academic, New York

    Google Scholar 

  140. Gatti C, Saunders VR, Roetti C (1994) J Chem Phys 101:10686–10696

    CAS  Google Scholar 

  141. Mladenovic M, Arnone M, Fink RF, Engels B (2009) J Phys Chem B 113:5072–5082

    CAS  Google Scholar 

  142. Engels B, Schmidt TC, Gatti C, Schirmeister T, Fink RF (2010) Challenging problems in charge density determination: polar bonds and influence of the environment. In: Stalke D (ed) Electron density and chemical bonding. Springer-Verlag GmbH, Heidelberg

    Google Scholar 

  143. Govind N, Wang YA, da Silva AJR, Carter EA (1998) Chem Phys Lett 295:129–134

    CAS  Google Scholar 

  144. Govind N, Wang YA, Carter EA (1999) J Chem Phys 110:7677–7688

    CAS  Google Scholar 

  145. Klüener T, Govind N, Wang YA, Carter EA (2001) Phys Rev Lett 86:5954–5957

    Google Scholar 

  146. Klüener T, Govind N, Wang YA, Carter EA (2002) J Chem Phys 116:42–54

    Google Scholar 

  147. Huang P, Carter EA (2006) J Chem Phys 125:084102

    Google Scholar 

  148. Iannuzzi M, Kirchner B, Hutter J (2006) Chem Phys Lett 421:16–20

    CAS  Google Scholar 

  149. Cortona P (1991) Phys Rev B 44:8454

    Google Scholar 

  150. Wesolowski TA, Warshel A (1993) J Phys Chem 97:8050

    CAS  Google Scholar 

  151. Wesolowski TA, Weber J (1996) Chem Phys Lett 248:71–76

    CAS  Google Scholar 

  152. Wesolowski TA, Chermette H, Weber J (1996) J Chem Phys 105:9182–9190

    CAS  Google Scholar 

  153. Wesolowski TA (1997) J Chem Phys 106:8516–8526

    CAS  Google Scholar 

  154. Wesolowski TA, Ellinger Y, Weber J (1998) J Chem Phys 108:6078

    CAS  Google Scholar 

  155. Kevorkyants R, Dulak M, Wesolowski TA (2006) J Chem Phys 124:024104

    CAS  Google Scholar 

  156. Neugebauer J (2008) J Phys Chem B 112:2207–2217

    CAS  Google Scholar 

  157. Dulak M, Kaminski JW, Wesolowski TA (2007) J Chem Theory Comput 3:735–745

    CAS  Google Scholar 

  158. Neugebauer J, Louwerse MJ, Baerends EJ, Wesolowski TA (2005) J Chem Phys 122:094115

    Google Scholar 

  159. Neugebauer J, Jacob CR, Wesolowski TA, Baerends EJ (2005) J Phys Chem A 109:7805–7814

    CAS  Google Scholar 

  160. Jacob CR, Neugebauer J, Jensen L, Visscher L (2006) Phys Chem Chem Phys 8:2349–2359

    CAS  Google Scholar 

  161. Neugebauer J (2009) J Chem Phys 131:084104

    Google Scholar 

  162. Jacob CR, Wesolowski TA, Visscher L (2005) J Chem Phys 123:174104

    Google Scholar 

  163. Dulak M, Wesolowski TA (2006) J Chem Phys 124:164101

    Google Scholar 

  164. Jacob CR, Beyhan M, Visscher L (2007) J Chem Phys 126:234116

    Google Scholar 

  165. Jacob CR, Visscher L (2008) J Chem Phys 128:155102

    Google Scholar 

  166. Wesolowski TA (1999) Chem Phys Lett 311:87–92

    CAS  Google Scholar 

  167. Neugebauer J, Louwerse MJ, Belanzoni P, Wesolowski TA, Baerends EJ (2005) J Chem Phys 123:114101

    Google Scholar 

  168. Wesolowski TA (2006) One-electron equations for embedded electron density: challenge for theory and practical payoffs in multi-level modeling of complex polyatomic systems. In: Leszczynski J (ed) Computational chemistry: reviews of current trends, vol 10. World Scientific, Singapore

    Google Scholar 

  169. Jacob CR, Visscher L (2010) Towards the description of covalent bonds in subsystem density-functional theory. In: Wesolowski TA, Wang YA (eds) Recent advances in orbital-free density functional theory. World Scientific, Singapore (to appear)

    Google Scholar 

  170. Neugebauer J (2009) ChemPhysChem 10:3148–3173

    CAS  Google Scholar 

  171. Neugebauer J (2010) Phys Rep 489:1–87

    CAS  Google Scholar 

  172. Neugebauer J (2010) Orbital-free embedding calculations of electronic spectra. In: Wesolowski TA, Wang YA (eds) Recent advances in orbital-free density functional theory. World Scientific, Singapore (to appear)

    Google Scholar 

  173. Stefanovich EV, Truong TN (1996) J Chem Phys 104:2946–2955

    CAS  Google Scholar 

  174. Kiewisch K, Eickerling G, Reiher M, Neugebauer J (2008) J Chem Phys 128:044114

    Google Scholar 

  175. Fux S, Kiewisch K, Jacob CR, Neugebauer J, Reiher M (2008) Chem Phys Lett 461:353–359

    CAS  Google Scholar 

  176. Wang YA, Carter EA (2000) Orbital-free kinetic-energy density functional theory. In: Schwartz SD (ed) Theoretical methods in condensed phase chemistry. Kluwer, Dordrecht

    Google Scholar 

  177. Werner H-J et al (2009) MOLPRO, version 2009.1, a package of ab initio programs. http://www.molpro.net

  178. Roos BO, Lindh R, Malmqvist P-A, Veryazov V, Widmark P-O (2005) J Phys Chem A 109:6575–6579

    CAS  Google Scholar 

  179. Roos BO, Lindh R, Malmqvist P-A, Veryazov V, Widmark P-O (2005) Chem Phys Lett 409:295–299

    CAS  Google Scholar 

  180. Roos BO, Lindh R, Malmqvist P-A, Veryazov V, Widmark P-O, Borin AC (2008) J Phys Chem A 112:11431–11435

    CAS  Google Scholar 

  181. Becke AD (1988) Phys Rev A 38:3098–3100

    CAS  Google Scholar 

  182. Perdew JP (1986) Phys Rev B 33:8822–8824

    Google Scholar 

  183. Wolfram Research, Inc (2008) Mathematica version 6.0. Wolfram Research, Inc, Champaign, IL

    Google Scholar 

  184. Ahlrichs R, Bär M, Häser M, Horn H, Kömel C (1989) Chem Phys Lett 162:165–169

    CAS  Google Scholar 

  185. Ahlrichs R et al. Turbomole. http://www.cosmologic.de/turbomole.html

  186. Conradie J, Ghosh A (2007) J Phys Chem B 111:12621–12624

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by ETH Zurich (Grant TH-26 07-3). We are grateful to N. Sablon for providing the dataset of the Fukui function for PbCl2, Bi2H4, and (CH3)2SAuCl, which were used to create Fig. 7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Reiher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fux, S., Reiher, M. (2011). Electron Density in Quantum Theory. In: Stalke, D. (eds) Electron Density and Chemical Bonding II. Structure and Bonding, vol 147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2010_37

Download citation

Publish with us

Policies and ethics