Skip to main content
Book cover

Zintl Phases pp 143–161Cite as

Hydrogenous Zintl Phases: Interstitial Versus Polyanionic Hydrides

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 139))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kauzlarich SM (1996) Chemistry, structure and bonding of Zintl phases and ions. VCH, Weinheim

    Google Scholar 

  2. Schäfer H, Eisenmann B, Müller W (1973) Zintl phases – transitions between metallic and ionic bonding. Angew Chem Int Ed 12:694–712

    Article  Google Scholar 

  3. Nesper R (1990) Structure and chemical bonding in Zintl-phases containing lithium. Prog Solid State Chem 20:1–45

    Article  CAS  Google Scholar 

  4. Sevov SC (2002) Zintl Phases. In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds – principles and practice, vol 3. Wiley, Chichester

    Google Scholar 

  5. Nolas GS, Cohn JL, Slack GA, Schujman SB (1998) Semiconducting Ge clathrates: promising candidates for thermoelectric applications. Appl Phys Lett 73:178–180

    Article  CAS  Google Scholar 

  6. Imai M, Nishida K, Kimura T, Abe H (2002) Superconductivity of Ca(Al0.5Si0.5)2, a ternary silicide with the AlB2 structure. Appl Phys Lett 80:1019–1021

    Article  CAS  Google Scholar 

  7. Pecharsky VK, Gschneidner KA (1997) Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett 78:4494–4497

    Article  CAS  Google Scholar 

  8. Corbett JD (2000) Polyanionic clusters and networks of the early p-element metals in the solid state: beyond the Zintl boundary. Angew Chem Int Ed 39:670–690

    Article  CAS  Google Scholar 

  9. Häussermann U (2008) Coexistence of hydrogen and polyanions in multinary main group element hydrides. Z Kristallogr 223:628–635

    Article  Google Scholar 

  10. Wang LM, Tang ZJ, Lorenz B, Guloy AM (2008) Remarkable rare-earth metal silicides oxides with planar Si6 rings. J Am Chem Soc 130:11258–11259

    Article  CAS  Google Scholar 

  11. Guloy AM, Corbett JD (1994) Exploration of the intersitital derivatives of La5Pb3 (Mn5Si3-type). J Solid State Chem 109:352–358

    Article  CAS  Google Scholar 

  12. Xia SQ, Bobev S (2007) On the existence of Ca2Bi-crystal and electronic structure of Ca4Bi2O. J Alloys Compd 427:67–72

    Article  CAS  Google Scholar 

  13. Lulei M (1997) Ba11KX7O2 (X = P, As): two novel Zintl phases with infinite chains of oxygen centered Ba6 octahedra, isolated X3- and X 4-2 anions. Z Allg Anorg Chem 623:1796–1802

    Article  CAS  Google Scholar 

  14. Wendorff M, Röhr C (2006) Ba11In6O3: an indide oxide with novel [In6] building units. Z Anorg Allg Chem 632:1792–1798

    Article  CAS  Google Scholar 

  15. Boss M, Petri D, Pickhard F, Zönnchen P, Röhr C (2005) New barium antimonide oxides containing Zintl ions [Sb]3-, [Sb2]4-, and [∞1] [Sbn]n- Z. Anorg Allg Chem 631:1181–1190

    Article  CAS  Google Scholar 

  16. Leon-Escamilla EA, Corbett JD (1994) Compounds of alkaline-earth and divalent rare-earth metals stabilized by hydrogen impurities – the Yb5Sb3 and Mn5Si3 structure types for pnictides. J Alloys Compd 206:L15–L17

    Article  Google Scholar 

  17. Leon-Escamilla EA, Corbett JD (1998) Hydrogen stabilization. Nine isotypic orthorhombic A5Pn3H phases (among A = Ca, Sr, Ba, Sm, Eu, Yb; Pn = Sb, Bi) formerly described as binary beta-Yb5Sb3-type compounds. J Alloys Compd 265:104–114

    Article  CAS  Google Scholar 

  18. Leon-Escamilla EA, Corbett JD (2006) Hydrogen in polar intermetallics. Binary pnictides of divalent metals with Mn5Si3-type structures and their isotypic ternary hydride solutions. Chem Mater 18:4782–4792

    Article  CAS  Google Scholar 

  19. Corbett JD, Leon-Escamilla EA (2003) Role of hydrogen in stabilizing new hydride phases or altering old ones. J Alloys Compd 356:59–64

    Article  Google Scholar 

  20. Leon-Escamilla EA, Corbett JD (2001) Hydrogen impurity effects. A5Tt3 intermetallic compounds between A = Ca, Sr, Ba, Eu and Tt = Si, Ge, Sn with Cr5B3-like structures that are stable both as binary and as ternary hydride and fluoride phases. J Solid State Chem 159:149–162

    Article  CAS  Google Scholar 

  21. Leon-Escamilla EA, Corbett JD (2001) Hydrogen impurity effects. A5Tt3Z intermetallic compounds between A = Ca, Sr, Ba, Eu, Yb and Tt = Sn, Pb with Cr5B3-like structures that are stabilized by hydride or fluoride Z. Inorg Chem 40:1226–1233

    Article  CAS  Google Scholar 

  22. Wu H, Zhou W, Udovic TJ, Rush JJ, Yilderim T (2008) Structural variations and hydrogen storage properties of Ca5Si3 with Cr5B3-type structure. Chem Phys Lett 460:432–437

    Article  CAS  Google Scholar 

  23. Huang BQ, Corbett JD (1997) Intermetallic hydrides as Zintl phases: A3TtH2 compounds (A = Ca, Yb; Tt = Sn, Ph) and their structural relationship to the corresponding oxides. Inorg Chem 36:3730–3734

    Article  CAS  Google Scholar 

  24. Henning RW, Leon-Escamilla EA, Zhao JT, Corbett JD (1997) Stabilization by hydrogen. Synthetic and structural studies of the Zintl phase Ba5Ga6H2. Inorg Chem 36:1282–1285

    Article  CAS  Google Scholar 

  25. Wendorff M, Scherer H, Röhr C (2010) The indide-hydride Ba9In4H: synthesis, crystal structure, NMR spectroscopy, chemical bonding. Z Anorg Allg Chem 636:1038–1044

    Article  CAS  Google Scholar 

  26. Wu H, Hartman MR, Udovic TJ, Rush JJ, Zhou W, Bowman RC, Vajo JJ (2007) Structure of the novel ternary hydrides Li4Tt2D (Tt = Si and Ge). Acta Crystallogr B 63:63–68

    Article  CAS  Google Scholar 

  27. Wu H, Zhou W, Udovic TJ, Rush JJ, Yildirim T, Hartman MR, Bowman RC, Vajo JJ (2007) Neutron vibrational spectroscopy and first-principles calculations of the ternary hydrides Li4Si2H(D) and Li4Ge2H(D): electronic structure and lattice dynamics. Phys Rev B 76:224301

    Article  Google Scholar 

  28. Aoki M, Ohba N, Noritake T, Towata S (2004) Reversible hydriding and dehydriding properties of CaSi: potential of metal silicides for hydrogen storage. Appl Phys Lett 85:387–388

    Article  CAS  Google Scholar 

  29. Ohba N, Aoki M, Noritake T, Miwa K, Towata S (2005) First-principles study of a hydrogen storage material CaSi. Phys Rev B 72:075104

    Article  Google Scholar 

  30. Wu H, Zhou W, Udovic TJ, Rush JJ, Yildirim T (2006) Structure and hydrogen bonding in CaSiD1+x: issues about covalent bonding. Phys Rev B 74:224101

    Article  Google Scholar 

  31. Armbruster M, Wörle M, Krumeich F, Nesper R (2009) Structure and properties of hydrogenated Ca, Sr, Ba, and Eu silicides. Z Allg Anorg Chem 635:1758–1766

    Article  CAS  Google Scholar 

  32. Wu H, Zhou W, Udovic TJ, Rush JJ (2007) Hydrogen storage in a novel destabilized hydride system, Ca2SiHx: Effects of amorphization. Chem Mater 19:329–334

    Article  CAS  Google Scholar 

  33. Gingl F, Vogt T, Akiba E (2000) Trigonal SrAl2H2: the first Zintl phase hydride. J Alloys Compd 306:127–132

    Article  CAS  Google Scholar 

  34. Björling T, Noreus D, Häussermann U (2006) Polyanionic hydrides from polar intermetallics AeE2 (Ae = Ca, Sr, Ba; E = Al, Ga, In). J Am Chem Soc 128:817–824

    Article  Google Scholar 

  35. Zhang QA, Nakamura Y, Oikawa K, Kamiyama T, Akiba E (2002) Synthesis and crystal structure of Sr2AlH7: a new structural type of alkaline earth aluminum hydride. Inorg Chem 41:6547–6549

    Article  CAS  Google Scholar 

  36. Zhang QA, Nakamura Y, Oikawa K, Kamiyama T, Akiba E (2003) Addition and correction. Inorg Chem 42:3152

    Article  CAS  Google Scholar 

  37. Lee MH, Sankey OF, Björling T, Moser D, Noréus D, Parker SF, Häussermann U (2007) Vibrational properties of the polyanionic hydrides SrAl2H2 and SrAlSiH: new insights into Al-H interactions. Inorg Chem 46:6987–6991

    Article  CAS  Google Scholar 

  38. Lee MH, Evans MJ, Daemen LL, Sankey OF, Häussermann U (2008) Vibrational property study of SrGa2H2 and BaGa2H2 by inelastic neutron scattering and first principles calculations. Inorg Chem 47:1496–1501

    Article  CAS  Google Scholar 

  39. Lee MH, Björling T, Utsumi T, Moser D, Noréus D, Bull D, Hauback B, Sankey OF, Häussermann U (2008) Crystal structure, electronic structure and vibrational properties of MAlSiH (M = Ca, Sr, Ba): hydrogenation induced semiconductors from AlB2 type alloys MAlSi. Phys Rev B 78:195209

    Article  Google Scholar 

  40. Czybulka A, Pinger B, Schuster HU (1989) New alkaline earth-gallium-silicides, germanides, and stannides with AlB2-type related structures. Z Anorg Allg Chem 579:151–157

    Article  CAS  Google Scholar 

  41. Evans MJ, Wu Y, Kranak VF, Newman N, Reller A, Garcia-Garcia FJ, Häussermann U (2009) Structural properties and superconductivity in the ternary intermetallic compounds MAB (M = Ca, Sr, Ba; A = Al, Ga, In; B = Si, Ge, Sn). Phys Rev B 80:064514

    Article  Google Scholar 

  42. Giantomassi M, Boeri L, Bachelet GB (2005) Electrons and phonons in the ternary alloy CaAl2-xSix as a function of composition. Phys Rev B 72:224512

    Article  Google Scholar 

  43. Kuroiwa S, Baron AQR, Muranaka T, Heid R, Bohnen KP, Akimitsu J (2008) Soft-phonon-driven superconductivity in CaAlSi as seen by inelastic scattering. Phys Rev B 77:40503(R)

    Article  Google Scholar 

  44. Heid R, Bohnen KP, Renker B, Adelmann P, Wolf T, Ernst D, Schober H (2007) Soft-mode behavior in ternary silicides MAlSi (M = Ca, Sr, Ba). J Low Temp Phys 147:375

    Article  CAS  Google Scholar 

  45. Imai M, Abe E, Ye JH, Nishida K, Kimura T, Honma K, Abe H, Kitazawa H (2001) Superconductivity of ternary silicide with the AlB2-type structure Sr(Ga0.37, Si0.63)2. Phys Rev Lett 87:077003

    Article  CAS  Google Scholar 

  46. Lorenz B, Lenzi J, Cmaidalka J, Meng RL, Sun YY, Xue YY, Chu CW (2002) Superconductivity in the C32 intermetallic compounds AAl2-xSix, with A = Ca and Sr, and 0.6 < × < 1.2. Physica C 383:191–196

    Article  CAS  Google Scholar 

  47. Björling T, Noréus D, Jansson K, Andersson M, Leonova E, Edén M, Hålenius U, Häussermann U (2005) SrAlSiH: a polyanionic semiconductor hydride. Angew Chem Int Ed 44:7269–7273

    Article  Google Scholar 

  48. Evans MJ, Holland GP, Häussermann U (2008) Polyanionic gallium hydrides MGaEH from AlB2 type precursors MGaE (M = Ca, Sr, Ba; E = Si, Ge, Sn). J Am Chem Soc 130:12139–12147

    Article  CAS  Google Scholar 

  49. Kranak VF, Evans MJ, Daemen LL, Proffen T, Lee MH, Sankey OF, Häussermann U (2009) Structural and dynamic properties of the polyanionic hydrides SrAlGeH and BaAlGeH. Solid State Sci 11:1847–1853

    Article  CAS  Google Scholar 

  50. Evans MJ, Kranak VF, Holland GP, Daemen LL, Proffen T, Lee MH, Sankey OF, Häussermann U (2009) Structural and dynamic properties of BaInGeH – a rare solid state indium hydride. Inorg Chem 48:5602–5605

    Article  CAS  Google Scholar 

  51. Evans MJ, Lee MH, Holland GP, Daemen LL, Sankey OF, Häussermann U (2009) Vibrational properties of the gallium monohydrides SrGaGeH, BaGaSiH, BaGaGeH, and BaGaSnH. J Solid State Chem 182:2068–2073

    Article  CAS  Google Scholar 

  52. Aldridge S, Downs AJ (2001) Hydrides of the main-group metals: new variations on an old theme. Chem Rev 101:3305–3365

    Article  CAS  Google Scholar 

  53. Ito F, Nakanaga T, Takeo H, Jones H (1994) The infrared spectra of the diatomic hydrides AlH and GaH and intensity analysis from FTIR measurements. J Mol Spectrosc 164:379–389

    Article  CAS  Google Scholar 

  54. Pullumbi P, Mijoule C, Manceron L, Bouteiller YJ (1994) Aluminum, gallium and indium dihydrides – an IR matrix-isolation and ab-initio study. Chem Phys 185:13–24

    Article  CAS  Google Scholar 

  55. Pullumbi P, Bouteiller Y, Manceron L, Mijoule C (1994) Aluminum, gallium and indium trihydrides – an IR matrix-isolation and ab-initio study. Chem Phys 185:25–37

    Article  CAS  Google Scholar 

  56. Irodova AV, Somenkov VA, Bakum SI, Kuznetsova SF (1989) Structure of NaGaH4(D4). Z Phys Chem Neue Fol 163:239–242

    Article  Google Scholar 

  57. Iniguez J, Yildirim T, Udovic TJ, Sulic M, Jensen CM (2004) Structure and hydrogen dynamics of pure and Ti-doped sodium alanate. Phys Rev B 70:060101(R)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Science Foundation grants DMR-0638826 and CHE-0742006, and the Swedish Research Council (VR). It has also made use of the Manuel Lujan, Jr. Neutron Scattering Center at Los Alamos National Laboratory, which is funded by the Department of Energy’s Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, under DOE Contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Häussermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Häussermann, U., Kranak, V.F., Puhakainen, K. (2010). Hydrogenous Zintl Phases: Interstitial Versus Polyanionic Hydrides. In: Fässler, T. (eds) Zintl Phases. Structure and Bonding, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2010_20

Download citation

Publish with us

Policies and ethics