Homogeneous Catalysis Using Lanthanide Amidinates and Guanidinates

  • Frank T. EdelmannEmail author
Part of the Structure and Bonding book series (STRUCTURE, volume 137)


For decades, the organometallic chemistry of the rare earth elements was largely dominated by the cyclopentadienyl ligand and its ring-substituted derivatives. A hot topic in current organolanthanide chemistry is the search for alternative ligand sets which are able to satisfy the coordination requirements of the large lanthanide cations. Among the most successful approaches in this field is the use of amidinate ligands of the general type [RC(NR )2] (R = H, alkyl, aryl; R = alkyl, cycloalkyl, aryl, SiMe3) which can be regarded as steric cyclopentadienyl equivalents. Closely related are the guanidinate anions of the general type [R2NC(NR )2] (R = alkyl, SiMe3; R = alkyl, cycloalkyl, aryl, SiMe3). Two amidinate or guanidinate ligands can coordinate to a lanthanide ion to form a metallocene-like coordination environment which allows the isolation and characterization of stable though very reactive amide, alkyl, and hydride species. Mono- and trisubstituted lanthanide amidinate and guanidinate complexes are also readily available. Various rare earth amidinates and guanidinates have turned out to be very efficient homogeneous catalysts, for example, for ring-opening polymerization reactions. This article covers the success story of lanthanide amidinates and guanidinates and their transition from mere laboratory curiosities to efficient homogeneous catalysts.


Amidinates Guanidinates Lanthanides Organolanthanide chemistry Polymerization catalysis 















2,6-Di(isopropyl)phenyl, C6H3Pr2 i–2,6






[Cy2NC(NR)2] (R = C6H3Pr2 i–2,6)


Hard and soft acids and bases


Mesityl, C6H3Me3–2,4,6








Ring-opening polymerization




Isobutyl alumoxane


Trimethylene carbonate


N​,N​,N ​, N -tetramethylethylenediamine





Financial support of the author’s own work on lanthanide amidinates provided by the Deutsche Forschungsgemeinschaft (SPP1166 “Lanthanoid-spezifische Funktionalitäten in Molekül und Material”), the Fonds der Chemischen Industrie, and the Otto-von-Guericke-Universität Magdeburg is most gratefully acknowledged.


  1. 1.
    Wilkinson G, Birmingham JM (1954) J Am Chem Soc 76:6210CrossRefGoogle Scholar
  2. 2.
    Schumann H (1984) Angew Chem Int Ed 23:474CrossRefGoogle Scholar
  3. 3.
    Edelmann FT (2006) Complexes of scandium, yttrium and lanthanide elements. In: Crabtree RH, Mingos DMP (eds) Comprehensive organometallic chemistry III, vol 3, Elsevier, Oxford, p 1Google Scholar
  4. 4.
    Cotton S (2006) Lanthanide and actinide chemistry. Wiley, Chichester, UKCrossRefGoogle Scholar
  5. 5.
    Anwander R (1999) In: Kobayashi S (ed) Lanthanides: chemistry and use in organic synthesis, Springer, Berlin, p 1CrossRefGoogle Scholar
  6. 6.
    Edelmann FT (2008) Adv Organomet Chem 57:183, and references cited thereinGoogle Scholar
  7. 7.
    Edelmann FT (2009) Chem Soc Rev 38:2253CrossRefGoogle Scholar
  8. 8.
    Anwander R (2002) In: Cornils B, Herrmann WA (eds) Applied homogeneous catalysis with organometallic compounds, vol 2. Wiley-VCH, Germany, p 974Google Scholar
  9. 9.
    Hong S, Marks TJ (2004) Acc Chem Res 37:673CrossRefGoogle Scholar
  10. 10.
    Edelmann FT (1995) Angew Chem Int Ed 34:2466CrossRefGoogle Scholar
  11. 11.
    Edelmann FT, Freckmann DMM, Schumann H (2002) Chem Rev 102:1851CrossRefGoogle Scholar
  12. 12.
    Roesky PW (2003) Z Anorg Allg Chem 629:1881CrossRefGoogle Scholar
  13. 13.
    Arndt S, Okuda J (2005) Adv Synth Catal 347:339CrossRefGoogle Scholar
  14. 14.
    Sanger AR (1973) Inorg Nucl Chem Lett 9:351CrossRefGoogle Scholar
  15. 15.
    Boeré RT, Oakley RT, Reed RW (1987) J Organomet Chem 331:161CrossRefGoogle Scholar
  16. 16.
    Dehnicke K (1990) Chem-Ztg 114:295Google Scholar
  17. 17.
    Barker J, Kilner M (1994) Coord Chem Rev 13:219CrossRefGoogle Scholar
  18. 18.
    Edelmann FT (1994) Coord Chem Rev 137:403, and references cited thereinGoogle Scholar
  19. 19.
    Bailey PJ, Pace S (2001) Coord Chem Rev 214:91CrossRefGoogle Scholar
  20. 20.
    Chandra G, Jenkins AD, Lappert MF, Srivastava RC (1970) J Chem Soc:2550Google Scholar
  21. 21.
    Butovskii MV, Tok OL, Wagner FR, Kempe R (2008) Angew Chem Int Ed 47:7246CrossRefGoogle Scholar
  22. 22.
    Wedler M, Knösel F, Pieper U, Stalke D, Edelmann FT, Amberger HD (1992) Chem Ber 125:2171CrossRefGoogle Scholar
  23. 23.
    Lubben TV, Wolczanski PT, van Duyne GD (1984) Organometallics 3:977CrossRefGoogle Scholar
  24. 24.
    Heitmann D, Jones C, Junk PC, Lippert KA, Stasch A (2007) Dalton Trans:187Google Scholar
  25. 25.
    Zhou Y, Yap GPA, Richeson DS (1998) Organometallics 17:4387CrossRefGoogle Scholar
  26. 26.
    Päiväsaari J, Dezelah CL, Back D, El-Kaderi HM, Heeg MJ, Putkonen M, Niinistö L, Winter CH (2005) J Mater Chem 15:4224CrossRefGoogle Scholar
  27. 27.
    Zhou L, Yao Y, Zhang Y, Sheng H, Xue M, Shen Q (2005) Appl Organomet Chem 19:398CrossRefGoogle Scholar
  28. 28.
    Zhou L, Yao Y, Zhang Y, Xue M, Chen J, Shen Q (2004) Eur J Inorg Chem:2167Google Scholar
  29. 29.
    Milanov AP, Fischer RA, Devi A (2008) Inorg Chem 47:11405CrossRefGoogle Scholar
  30. 30.
    Chen J, Yao Y, Luo Y, Sheng H, Zhou L, Zhang Y, Shen Q (2004) Huaxue Yanjiu Yu Yingyong 16:253Google Scholar
  31. 31.
    Qian C, Zhang X, Li J, Xu F, Zhang Y, Shen Q (2009) Organometallics 28:3856CrossRefGoogle Scholar
  32. 32.
    Ajellal N, Lyubov DM, Sinenkov MA, Fukin, GK, Cherkasov AV, Thomas CM, Carpentier JF, Trifonov AA (2008) Chem Eur J 14:5440CrossRefGoogle Scholar
  33. 33.
    Trifonov AA, Fedorova EA, Fukin GK, Bochkarev MN (2004) Eur J Inorg Chem:4396Google Scholar
  34. 34.
    Trifonov AA, Skvortsov GG, Lyubov DM, Skorodumova NA, Fukin GK, Baranov EV, Glushakova VN (2006) Chem Eur J 12:5320CrossRefGoogle Scholar
  35. 35.
    Skvortsov GG, Yakovenko MV, Fukin GK, Baranov EV, Kurskii YA, Trifonov AA (2007) Russ Chem Bull Int Ed 56:456CrossRefGoogle Scholar
  36. 36.
    Skvortsov GG, Yakovenko MV, Fukin GK, Cherkasov AV, Trifonov AA (2007) Russ Chem Bull Int Ed 56:1742CrossRefGoogle Scholar
  37. 37.
    Skvortsov GG, Yakovenko MV, Castro PM, Fukin GK, Cherkasov AV, Carpentier JF, Trifonov AA (2007) Eur J Inorg Chem:3260Google Scholar
  38. 38.
    Yuan F, Zhu Y, Xiong L (2006) J Organomet Chem 691:33770Google Scholar
  39. 39.
    Zhang J, Cai R, Weng L, Zhou X (2003) J Organomet Chem 672:94CrossRefGoogle Scholar
  40. 40.
    Zhang J, Cai R, Weng L, Zhou X (2004) Organometallics 23:3303CrossRefGoogle Scholar
  41. 41.
    Pi C, Zhang Z, Pang Z, Zhang J, Luo J, Chen Z, Weng L, Zhou X (2007) Organometallics 26:1934CrossRefGoogle Scholar
  42. 42.
    Doyle D, Gun’ko YK, Hitchcock PB, Lappert MF (2000) Dalton Trans:4093Google Scholar
  43. 43.
    Wang J, Sun H, Yao Y, Zhang Y, Shen Q (2008) Polyhedron 27:1977CrossRefGoogle Scholar
  44. 44.
    Luo Y, Yao Y, Shen Q, Sun J, Weng L (2002) J Organomet Chem 662:144CrossRefGoogle Scholar
  45. 45.
    Edelmann FT (1996) Top Curr Chem 179:113, and references cited thereinGoogle Scholar
  46. 46.
    Schlund R, Lux M, Edelmann F, Reissmann, U, Rohde W (1998) US Patent No. US 5707913Google Scholar
  47. 47.
    Smolensky E, Eisen MS (2007) Dalton Trans:5623Google Scholar
  48. 48.
    Jeske G, Lauke H, Mauermann H, Swepston PN, Schumann H, Marks TJ (1985) J Am Chem Soc 107:8091CrossRefGoogle Scholar
  49. 49.
    Bambirra S, Bouwkamp MW, Meetsma A, Hessen B (2004) J Am Chem Soc 126:9182CrossRefGoogle Scholar
  50. 50.
    Hessen B, Bambirra S (2003) Int Patent No. WO 2004000894Google Scholar
  51. 51.
    Mecking S (2004) Angew Chem Int Ed 43:1078CrossRefGoogle Scholar
  52. 52.
    Drumright RE, Gruber PR, Henton DE (2000) Adv Mater 12:1841CrossRefGoogle Scholar
  53. 53.
    Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835CrossRefGoogle Scholar
  54. 54.
    Ha CS, Gardella JA (2005) Chem Rev 105:4205CrossRefGoogle Scholar
  55. 55.
    Yasuda H, Ihara E (1997) Bull Chem Soc Jpn 70:1745CrossRefGoogle Scholar
  56. 56.
    Shen Q, Yao Y (2002) J Organomet Chem 647:180CrossRefGoogle Scholar
  57. 57.
    Luo Y, Yao Y, Shen Q, Yu K, Weng L (2003) Eur J Inorg Chem:318Google Scholar
  58. 58.
    Yuan FG, Xiong LF, Zhu XH (2007) Suzhou Keji Xueyuan Xuebao, Ziran Kexueban 24:49Google Scholar
  59. 59.
    Villiers C, Thuéry P, Ephritikhine M (2004) Eur J Inorg Chem:4624Google Scholar
  60. 60.
    Chen JL, Yao YM, Luo YJ, Zhou LY, Zhang Y, Shen Q (2004) J Organomet Chem 689:1019CrossRefGoogle Scholar
  61. 61.
    Yamashita M, Takemoto Y, Ihara E, Yasuda H (1996) Macromolecules 29:798CrossRefGoogle Scholar
  62. 62.
    Gröb T, Seybert G, Massa W, Weller F, Palaniswami R, Greiner A, Dehnicke K (2000) Angew Chem Int Ed 39:4373CrossRefGoogle Scholar
  63. 63.
    Yao, Y, Luo Y, Chen J, Zhang Z, Zhang Y, Shen Q (2003) J Organomet Chem 679:229CrossRefGoogle Scholar
  64. 64.
    Li C, Wang Y, Zhou L, Sun H, Shen Q (2006) J Appl Polym Sci 102:22CrossRefGoogle Scholar
  65. 65.
    Zhou L, Sun H, Chen J, Yao Y, Shen Q (2005) J Appl Polym Sci A Polym Sci 43:1778CrossRefGoogle Scholar
  66. 66.
    Wang J, Li J, Xu F, Shen Q (2009) Adv Synth Catal 351: 1363CrossRefGoogle Scholar
  67. 67.
    Qian C, Zhang X, Zhang Y, Shen Q (2010) J Organomet Chem 695:747CrossRefGoogle Scholar
  68. 68.
    Zhang WX, Nishiura M, Hou Z (2005) J Am Chem Soc 127:16788CrossRefGoogle Scholar
  69. 69.
    Zhou S, Wang S, Yang G, Li Q, Zhang L, Yao Z, Zhou Z, Song H (2007) Organometallics 26:3755CrossRefGoogle Scholar
  70. 70.
    Du Z, Li W, Zhu X, Xu F, Shen Q (2008) J Org Chem 73:8966CrossRefGoogle Scholar
  71. 71.
    Li Q, Wang S, Zhou S, Yang G, Zhu X, Liu Y (2007) J Org Chem 72:6763CrossRefGoogle Scholar
  72. 72.
    Cui D, Nishiura M, Hou Z (2005) Angew Chem Int Ed 44:959CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Chemisches Institut der Otto-von-Guericke-Universität MagdeburgMagdeburgGermany

Personalised recommendations