Skip to main content

Thermodynamic Analysis for Synthesis of Advanced Materials

  • Chapter
  • First Online:
Structure and Bonding

Part of the book series: Structure and Bonding

Abstract

In this paper, thermodynamic modeling for materials-oriented chemical engineering systems were investigated in order to solve critical scientific problems, such as the material structure, chemical properties, thermodynamic properties, and transfer behaviors on the interfaces or under confined circumstances. On the basis of the theory and approaches of chemical engineering, and the principles of chemical engineering thermodynamics and transfer processes, molecular simulations were combined with modern physical characterization methods to study thermodynamic modeling in materials-oriented chemical engineering processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hummer G, Rasaiah JC, Noworyta JP (2001) Nature 414:188

    PubMed  ADS  CAS  Google Scholar 

  2. Koga K, Gao GT, Tanaka H, Zeng XC (2001) Nature 412:802

    PubMed  ADS  CAS  Google Scholar 

  3. Thallapally PK, Lloyd GO, Atwood JL, Barbour LJ (2005) Angew Chem Int Ed 44:3848

    CAS  Google Scholar 

  4. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Science 286:1127

    PubMed  CAS  Google Scholar 

  5. Sazonova V, Yaish Y, Ustunel H, Roundy D, Arias TA, Mceuen PL (2004) Nature 431:284

    PubMed  ADS  CAS  Google Scholar 

  6. Snow ES, Perkins FK, Houser EJ, Badescu SC, Reinecke TL (2005) Science 307:1942

    PubMed  ADS  CAS  Google Scholar 

  7. Portney NG, Ozkan M (2006) Anal Bioanal Chem 384:620

    PubMed  CAS  Google Scholar 

  8. Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Science 303:5654

    Google Scholar 

  9. Zhu FQ, Schulten K (2003) Biophys J 85:236

    PubMed  CAS  Google Scholar 

  10. Rivera JL, McCabe C, Cummings PT (2002) Nano Lett 2:1427

    CAS  ADS  Google Scholar 

  11. Marti J, Gordillo MC (2002) Chem Phys Lett 354:227

    ADS  CAS  Google Scholar 

  12. Marti J, Guardia E, Gordillo MC (2002) Chem Phys Lett 365:536

    ADS  CAS  Google Scholar 

  13. Gordillo MC, Marti J (2001) Chem Phys Lett 341:250

    ADS  CAS  Google Scholar 

  14. Koga K, Gao GT, Tanaka H, Zeng XC (2002) Physica A 314:462

    ADS  CAS  Google Scholar 

  15. Walther JH, Jaffe R, Halicioglu T, Koumoutsakos P (2001) J Phys Chem B 105:9980

    CAS  Google Scholar 

  16. Gordillo MC, Marti J (2003) Phys Rev B 67:205425

    ADS  Google Scholar 

  17. Charlier JC (2002) Acc Chem Res 35:1063

    PubMed  CAS  Google Scholar 

  18. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Acc Chem Res 35:1105

    PubMed  CAS  Google Scholar 

  19. Noon WH, Ausman KD, Smalley RE, Ma JP (2002) Chem Phys Lett 355:445

    ADS  CAS  Google Scholar 

  20. Joseph S, Mashl RJ, Jakobsson E, Aluru NR (2003) Nano Lett 3:1399

    CAS  ADS  Google Scholar 

  21. Gordillo MC, Marti J (2000) Chem Phys Lett 329:341

    ADS  CAS  Google Scholar 

  22. Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) J Phys Chem 97:3379

    CAS  Google Scholar 

  23. Scrivens WA, Tour JM (1993) J Chem Soc Chem Commun 18:1207

    Google Scholar 

  24. Yao Z, Braidy N, Botton GA, Adronov A (2003) J Am Chem Soc 125:16015

    PubMed  CAS  Google Scholar 

  25. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2000) Science 287:5453

    Google Scholar 

  26. Pantarotto D, Partidos CD, Graff R, Hoebeke J, Briand JP, Prato M, Bianco A (2003) J Am Chem Soc 125:6160

    PubMed  CAS  Google Scholar 

  27. Tasis D, Tagmatachis N, Bianco A, Prato M (2006) Chem Rev 106:1105

    PubMed  CAS  Google Scholar 

  28. Hirsh A (2002) Angew Chem Int Ed 41:1853

    Google Scholar 

  29. Sun YP, Fu K, Lin Y, Huang W (2002) Acc Chem Res 35:1096

    PubMed  CAS  Google Scholar 

  30. Zheng J, Lennon EM, Tsao HK, Sheng YJ, Jiang SY (2005) J Chem Phys 122:214702

    PubMed  ADS  Google Scholar 

  31. Halicioglu T, Jaffe RL (2002) Nano Lett 2:573

    CAS  ADS  Google Scholar 

  32. Huang LL, Shao Q, Lu LH, Lu XH, Zhang LZ, Wang J, Jiang SY (2006) Phys Chem Chem Phys 8:3836

    CAS  PubMed  Google Scholar 

  33. Wang J, Zhu Y, Zhou J, Lu XH (2004) Phys Chem Chem Phys 6:829

    CAS  Google Scholar 

  34. Luzar A, Chandler D (1996) Nature 379:55

    ADS  CAS  Google Scholar 

  35. Zimmerli U, Gonnet PG, Walther JH, Koumoutsakos P (2005) Nano Lett 5:1017

    PubMed  CAS  ADS  Google Scholar 

  36. Zhou QL, Zhou Q, Forman SA (2000) Biochemistry 39:14920

    PubMed  CAS  Google Scholar 

  37. Mihic SJ, Ye Q, Wick MJ, Koltchine VV, Krasowski MD, Finn SE, Mascia MP, Valenzuela CF, Hanson KK, Greenblatt EP, Harris RA, Harrison NL (1997) Nature 389:385

    PubMed  ADS  CAS  Google Scholar 

  38. Ren H, Honse Y, Peoples RW (2003) J Biol Chem 278:48815

    PubMed  CAS  Google Scholar 

  39. Vane LM (2005) J Chem Technol Biotechnol 80:603

    CAS  Google Scholar 

  40. Zhang QX, Zheng J, Shevade A, Zhang LZ, Gehrke SH, Heffelfinger GS, Jiang SY (2002) J Chem Phys 117:808

    ADS  CAS  Google Scholar 

  41. Denis M, Regis G, Yongde X, Christiane A-S (2004) J Chem Phys 121:1466

    Google Scholar 

  42. Guegan R, Morineau D, Alba-Simionesco C (2005) Chem Phys 317:236

    ADS  CAS  Google Scholar 

  43. Sliwinska-Bartkowiak M, Dudziak G, Sikorski R, Gras R, Gubbins KE, Radhakrishnan R (2001) Phys Chem Chem Phys 3:1179

    CAS  Google Scholar 

  44. Ohkubo T, Iiyama T, Kaneko K (1999) Chem Phys Lett 312:191

    ADS  CAS  Google Scholar 

  45. Kaneko K (2000) Carbon 38:287

    CAS  Google Scholar 

  46. Feller SE, Brown CA, Nizza DT, Gawrisch K (2002) Biophys J 82:1396

    Article  PubMed  CAS  Google Scholar 

  47. Patra M, Salonen E, Terama E, Vattulainen I, Faller R, Lee BW, Holopainen J, Karttunen M (2006) Biophys J 90:1121

    PubMed  CAS  Google Scholar 

  48. Hofmann D, Fritz L, Paul D (1998) J Membr Sci 144:145

    CAS  Google Scholar 

  49. Takaba H, Koyama A, Nakao S (2000) J Phys Chem B 104:6353

    CAS  Google Scholar 

  50. Striolo A (2006) Nano Lett 6:633

    PubMed  CAS  ADS  Google Scholar 

  51. Jorgensen WL (1986) J Phys Chem 90:1276

    CAS  Google Scholar 

  52. Compoint M, Boiteux C, Huetz P, Ramseyer C, Girardet C (2005) Phys Chem Chem Phys 7:4138

    PubMed  CAS  Google Scholar 

  53. Vaitheeswaran S, Rasaiah JC, Hummer G (2004) J Chem Phys 121:7955

    PubMed  ADS  CAS  Google Scholar 

  54. Mashl RJ, Joseph S, Aluru NR, Jakobsson E (2003) Nano Lett 3:589

    CAS  ADS  Google Scholar 

  55. Zhou J, Lu XH, Wang YR, Shi J (2002) Fluid Phase Equilibria 194–197:257

    Google Scholar 

  56. Zhu Y, Lu XH, Ding H, Wang YR (2003) Mol Simul 29:767

    CAS  Google Scholar 

  57. Ding H, Zhu Y, Wang J, Lu XH, Ma J (2004) Acta Chim Sin 62:1287

    CAS  Google Scholar 

  58. Burgess J (1978) Metal ions in solution. Ellis Horwood, Chichester

    Google Scholar 

  59. Marcus Y (1985) Ion solvation. Wiley, Chichester

    Google Scholar 

  60. Frisch MJ, Trucks GW, Schlegel HB (1998) Gaussian 98. Gaussian, Pittsburgh

    Google Scholar 

  61. Pitzer KS, Li YG (1984) Proc Natl Acad Sci USA 81:1268

    PubMed  ADS  CAS  Google Scholar 

  62. Oelkers EH, Helgeson HC (1991) Geochim Cosmochim Acta 55:1235

    ADS  CAS  Google Scholar 

  63. Lu XH, Wang YR, Shi J (1988) Fluid Phase Equilibria 43:137

    CAS  Google Scholar 

  64. Valyashko VM, Urusova MA, Ketsko VA (1987) Zhurnal Neorganicheskoi Khimii 32:2811

    CAS  Google Scholar 

  65. Armstrong AR, Armstrong G, Canales J, Bruce PG (2004) Ang Chem Int Ed 43:2286

    CAS  Google Scholar 

  66. Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology: a technology for crystal growth and materials processing. William Andrew, New York

    Google Scholar 

  67. Rabenau H, Rau H (1969) Philips Techn Rev 30:89

    CAS  Google Scholar 

  68. Chen YF, Lee CY, Yeng MY, Chiu HT (2003) Mater Chem Phys 81:39

    CAS  Google Scholar 

  69. Lu XH, Zhang LZ, Wang YR, Shi J (1996) Fluid Phase Equilibria 116:201

    CAS  Google Scholar 

  70. Harvie CE, Weare JH (1980) Geochim Cosmochim Acta 44:981

    ADS  CAS  Google Scholar 

  71. Rafal M, Berthold JW, Scrivner NC, Grise SL (1994) Models for electrolyte solutions. Marcel. Dekker, New York

    Google Scholar 

  72. Berry DA, Ng KM (1997) AIChE J 43:1737

    CAS  Google Scholar 

  73. Thomsen K, Rasmussen P, Gani R (1998) Chem Eng Sci 53:1551

    CAS  Google Scholar 

  74. Lencka MM, Riman RE (1993) Chem Mater 5:61

    CAS  Google Scholar 

  75. Lencka MM, Riman RE (1993) J Am Ceram Soc 76:2649

    CAS  Google Scholar 

  76. Lencka MM, Anderko A, Riman RE (1995) J Am Ceram Soc 78:2609

    CAS  Google Scholar 

  77. Ji XY, Feng X, Lu XH, Zhang LH, Wang YR, Shi J, Liu YD (2002) Ind Eng Chem Res 41:2040

    CAS  Google Scholar 

  78. Prausnitz JM, Anderson TF, Grens EA (1980) Computer calculations for multicomponent vapor–liquid and liquid–liquid equilibria. Prentice-Hall, New Jersey

    Google Scholar 

  79. Kusik CL, Meissner HP, Field EL (1979) AIChE J 25:759

    CAS  Google Scholar 

  80. Pitzer KS (ed) (1991) Activity coefficients in electrolyte solution. CRC, Boston

    Google Scholar 

  81. Lu XH, Maurer G (1993) AIChE J 39:1527

    CAS  Google Scholar 

  82. Pabalan RT, Pitzer KS (1991) Mineral solubilities in electrolyte solutions. In: Pitzer KS (ed) Activity coefficients in electrolyte solution. CRC, Boston, p 435

    Google Scholar 

  83. Linke WF, Seidell A (1965) Solubilities of inorganic and metal-organic compounds. American. Chemical Society, Washington DC

    Google Scholar 

  84. Cisternas LA, Rudd DF (1993) Ind Eng Chem Res 32:1993

    CAS  Google Scholar 

  85. Greenberg JP, Moller N (1989) Geochim Cosmochim Acta 53:2503

    ADS  CAS  Google Scholar 

  86. Yan LM (1998) J Chem Ind Eng Technol (Chinese) 19:28

    Google Scholar 

  87. Sun Q (1999) Sea Lake & Chem Ind (Chinese) 28:24

    CAS  Google Scholar 

  88. Salem MR, Mangood AH, Hamdona SK (1994) J Mater Sci 29:6463

    CAS  ADS  Google Scholar 

  89. Palwe BG, Tavare NS (1984) Chem Eng Sci 39:903

    CAS  Google Scholar 

  90. Kralj D, Brecevic L, Kontrec J (1997) J Cryst Growth 177:248

    ADS  CAS  Google Scholar 

  91. Bovinton CH, Jones AL (1970) Trans Faraday Soc 66:2088

    Google Scholar 

  92. Kallay N, Tomasic V, Zalac S, Brecevic L (1997) J Colloid Interf Sci 188:68

    CAS  Google Scholar 

  93. Garside J, Mullin JW (1968) Trans Inst Chem Eng 46:T11

    CAS  Google Scholar 

  94. Mydlarz J, Jones AG (1989) Chem Eng Sci 44:1391

    CAS  Google Scholar 

  95. Liu C, Feng X, Ji XY, Chen DL, Wei T, Lu XH (2004) Chinese J Chem Eng 12:128

    CAS  Google Scholar 

  96. Bergfors TM (1999) Protein crystallization. International University Line, La Jooa

    Google Scholar 

  97. Mullin JW (1997) Crystallization. Butterworth-Heinnemann, Woburn

    Google Scholar 

  98. Taguchi Y, Yoshida M, Kobayashi H (2002) J Chem Eng Jpn 35:1038

    CAS  Google Scholar 

  99. Feng X, Liu C, Ji X-Y, Chen, D-lLu X-h(2000) Gaoxiao Huaxue Gongcheng Xuebao 14:583

    CAS  Google Scholar 

  100. Kim S, Myerson AS (1996) Ind Eng Chem Res 35:1078

    CAS  Google Scholar 

  101. Mohan R, Myerson AS (2002) Chem Eng Sci 57:4277

    CAS  Google Scholar 

  102. Burton WK, Cabrera N, Frank FC (1951) Philos Trans R Soc London, Ser A 243:299

    MATH  ADS  MathSciNet  Google Scholar 

  103. Soehnel O, Novotny P (1985) Densities of aqueous solutions of inorganic substances. Elsevier, New York

    Google Scholar 

  104. Lu X, Zhang L, Wang Y, Shi J, Maurer G (1996) Ind Eng Chem Res 35:1777

    CAS  Google Scholar 

  105. Ji XY, Zhang LZ, Lu XH, Wang YR, Shi J (1997) J Chem Ind Eng (Chinese) 48:532

    CAS  Google Scholar 

  106. Garside J, Mullin JW, Das SN (1974) Ind Eng Chem Fundam 13:299

    CAS  Google Scholar 

  107. Cheng FQ, Bai Y, Liu C, Lu XH, Dong CA (2006) Ind Eng Chem Res 45:6266

    CAS  Google Scholar 

  108. Feng X, Diao XS, Shi YJ, Wang HY, Sun SH, Lu XH (2006) WEAR 261:1208

    CAS  Google Scholar 

  109. Bao N, Feng X, Yang Z, Shen L, Lu X (2004) Environ Sci Technol 38:2729

    PubMed  CAS  Google Scholar 

  110. He M, Lu XH, Feng X, Yu L, Yang ZH (2004) Chem Comm, p 2202

    Google Scholar 

  111. He M, Yu L, Lu XH, Feng X (2007) J Am Ceram Soc 90:319

    CAS  Google Scholar 

  112. Feng X, Lu J, Lu X, Bao N, Chen D (1999) Fuhe Cailiao Xuebao 16:1

    MATH  CAS  Google Scholar 

  113. Lu JZ, Lu XH (2001) Appl Polym Sci 82:368

    CAS  Google Scholar 

  114. Bao N, Feng X, Lu X, Shen L, Yanagisawa K (2004) AIChE J 50:1568

    CAS  Google Scholar 

  115. Smith JM, Van Ness HC (1975) Introduction to chemical engineering thermodynamics, 3rdMcGraw-Hill, Kogakusha, Japanedn

    Google Scholar 

  116. Khakonov AI (1974) J Phys Chem (USSR) 48:1552

    CAS  Google Scholar 

  117. Criss CM, Cobble JW (1964) J Am Ceram Soc 86:5385

    CAS  Google Scholar 

  118. Andersson S, Woadsley AD (1960) Nature 187:499

    ADS  CAS  Google Scholar 

  119. Andersson S, Woadsley AD (1961) Acta Chem Scand 15:663

    Google Scholar 

  120. Fujiki Y, Ohsaka T (1982) Yogyo Kyokaishi 90:19

    CAS  Google Scholar 

  121. Yu L, He M, Liu C, Lu XH, Feng X (2005) Mater Chem Phys 93:342

    CAS  Google Scholar 

  122. Liu C, He M, Lu XH, Zhang QT, Xu ZZ (2005) Crystal Growth Design 5:1399

    CAS  Google Scholar 

  123. Sasaki T, Watanabe M, Komatsu Y, Fujiki Y (1985) Inorg Chem 24:2265

    CAS  Google Scholar 

  124. He M, Feng X, Lu XH, Ji XY, Liu C, Bao NZ, Xie JW (2004) J Mater Sci 39:3745

    CAS  ADS  Google Scholar 

  125. He M, Feng X, Lu XH, Ji XY, Liu C, Bao NZ, Xie JW (2003) J Chem Eng Jpn 36:1259

    CAS  Google Scholar 

  126. Bao NZ, Lu XH, Ji XY, Feng X, Xie JW (2002) Fluid Phase Equilibria 193:229

    CAS  Google Scholar 

  127. Xie K, Pan Y, Wang XH, Li Y (1997) Inorg Chem Ind (Chinese) 1:16

    Google Scholar 

  128. Tajima M, Noda K, Morita Y, Matsutani Y (1988) Japan patent 63064998

    Google Scholar 

  129. Kobayashi I, Fukami J, Ootsubo K (1993) Japan patent 05009462

    Google Scholar 

  130. Shimizu T, Yanagida H, Hori M, Hashimoto K, Nishikawa Y (1979) Yogyo Kyokaishi 87:565

    CAS  Google Scholar 

  131. Harada H, Kudoh Y, Inoue Y, Shima H (1995) J Ceram Soc Jpn 103:155

    CAS  Google Scholar 

  132. Harada H, Inoue Y (1992) US patent 5084422

    Google Scholar 

  133. Ohta N, Fujiki Y (1980) Yogyo Kyokaishi 88:1

    CAS  Google Scholar 

  134. Fitch B (1970) Ind Eng Chem Res 62:6

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Program for Changjiang Scholars and Innovative Research Team in University (no. IRT0732), the National Natural Science Foundation of China (NSFC) and the Research Grants Council (RGC) of Hong Kong Joint Research Scheme (JRS) (no. 20731160614), the Joint Research Fund of NSFC for Young Scholars Abroad (no. 20428606), the NSFC (nos. 20236010, 20676062, 20736002, 20706029, and 20706028), National High Technology Research and Development Program of China (no. 2006AA03Z455), and the Key Science Foundation of Jiangsu Province, China (BK2007051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London

About this chapter

Cite this chapter

Liu, C., Ji, Y., Shao, Q., Feng, X., Lu, X. (2008). Thermodynamic Analysis for Synthesis of Advanced Materials. In: Structure and Bonding. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2008_4

Download citation

  • DOI: https://doi.org/10.1007/430_2008_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics