Skip to main content

Controllable Assembly, Structures, and Properties of Lanthanide–Transition Metal–Amino Acid Clusters

  • Chapter
  • First Online:
Controlled Assembly and Modification of Inorganic Systems

Part of the book series: Structure and Bonding ((STRUCTURE,volume 133))

Abstract

Amino acids are the basic building blocks in the chemistry of life. This chapter describes the controllable assembly, structures and properties of lathanide(III)–transition metal–amino acid clusters developed recently by our group. The effects on the assembly of several factors of influence, such as presence of a secondary ligand, lanthanides, crystallization conditions, the ratio of metal ions to amino acids, and transition metal ions have been expounded. The dynamic balance of metalloligands and the substitution of weak coordination bonds account for the occurrence of diverse structures in this series of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fenske D, Anson CE, Eichhöfer A, Fuhr O, Ingendoh A, Persau C, Richert C (2005) Angew Chem Int Ed 44:5242–5246

    Google Scholar 

  2. Tasiopoulos AJ, Vinslava A, Wernsdorfer W, Abboud KA, Christou G (2004) Angew Chem Int Ed 43:2117–2121

    Google Scholar 

  3. Müller A, Beckmann E, Bögge H, Schmidtmann M, Dress A (2002) Angew Chem Int Ed 41:1162–1167

    Google Scholar 

  4. Tran NT, Powell DR, Dahl LF (2000) Angew Chem Int Ed 39:4121–4125

    Google Scholar 

  5. Krautscheid H, Fenske D, Baum G, Semmelmann M (1993) Angew Chem Int Ed Engl 32:1303–1306

    Google Scholar 

  6. Wu XT (2005) Inorganic assembly chemistry. Science, Beijing, China

    Google Scholar 

  7. Zhu NY, Du SW, Wu XT, Lu JX (1992) Angew Chem Int Ed Engl 31:87–88

    Google Scholar 

  8. Du SM, Zhu NY, Chen PC, Wu, XT (1992) Angew Chem Int Ed Engl 31:1085–1087

    Google Scholar 

  9. Huang Q, Wu XT, Wang QM, Sheng TL, Lu JX (1996) Angew Chem Int Ed 35:868–870

    Google Scholar 

  10. Guo J, Wu XT, Zhang WJ, Sheng TL, Huang Q, Lin P, Wang QM, Lu JX (1997) Angew Chem Int Ed 36:2464–2466

    Google Scholar 

  11. Yu H, Zhang WJ, Wu XT, Sheng TL, Wang QM, Lin P (1998) Angew Chem Int Ed 37:2520–2522

    Google Scholar 

  12. Heo J, Jeon YM, Mirkin CA (2007) J Am Chem Soc 129:7712–7713

    Google Scholar 

  13. Zhao SB, Wang RY, Wang S (2007) J Am Chem Soc 129:3092–3093

    Google Scholar 

  14. Yoshizawa M, Tamura M, Fujita M (2006) Science 312:251–254

    Google Scholar 

  15. Fiedler D, Leung DH, Bergman RG, Raymond KN (2004) J Am Chem Soc 126:3674–3675

    Google Scholar 

  16. Perry JJ, Kravtsov VC, McManus GJ, Zaworotko MJ (2007) J Am Chem Soc 129:10076–10077

    Google Scholar 

  17. Sudik AC, Millward AR, Ockwig NW, Cote AP, Kim J, Yaghi OM (2005) J Am Chem Soc 127:7110–7118

    Google Scholar 

  18. Eddaoudi M, Kim J, Wachter JB, Chae HK, O'Keeffe M, Yaghi OM (2001) J Am Chem Soc 123:4368–4369

    Google Scholar 

  19. Xiang SC, Wu XT, Zhang JJ, Fu RB, Hu SM, Zhang XD (2005) J Am Chem Soc 127:16352–16353

    Google Scholar 

  20. Serre C, Mellot-Draznieks C, Surblù S, Audebrand N, Filinchuk Y, Fùrey G (2007) Science 315:1828–1831

    Google Scholar 

  21. Maji TK, Matsuda R, Kitagawa S (2007) Nat Mater 6:142–148

    Google Scholar 

  22. Fùrey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblù S, Margiolaki I (2005) Science 309:2040–2042

    Google Scholar 

  23. Matsuda R, Kitaura R, Kitagawa S, Kubota Y, Belosludov RV, Kobayashi TC, Sakamoto H, Chiba T, Takata M, Kawazoe Y, Mita Y (2005) Nature 436:238–241

    Google Scholar 

  24. Chae HK, Siberio-Pùrez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O'Keeffe M, Yaghi OM (2004) Nature 427:523–527

    Google Scholar 

  25. Aronica C, Pilet G, Chastanet G, Wernsdorfer W, Jacquot JF, Luneau D (2006) Angew Chem Int Ed 45:4659–4662

    Google Scholar 

  26. Zaleski CM, Depperman EC, Kampf JW, Kirk ML, Pecoraro VL (2004) Angew Chem Int Ed 43:3912–3914

    Google Scholar 

  27. Tasiopoulos AJ, O'Brien TA, Abboud KA, Christou G (2004) Angew Chem Int Ed 43:345–349

    Google Scholar 

  28. Blake AJ, Milne PEY, Winpenny REP, Thornton P (1991) Angew Chem Int Ed Engl 30:1139–1141

    Google Scholar 

  29. Mereacre VM, Ako AM, Clerac R, Wernsdorfer W, Filoti G, Bartolome J, Anson CE, Powell AK (2007) J Am Chem Soc 129:9248–9249

    Google Scholar 

  30. Ferbinteanu M, Kajiwara T, Choi KY, Nojiri H, Nakamoto A, Kojima N, Cimpoesu F, Fujimura Y, Takaishi S, Yamashita M (2006) J Am Chem Soc 128:9008–9009

    Google Scholar 

  31. Mishra A, Wernsdorfer W, Abboud KA, Christou G (2004) J Am Chem Soc 126:15648–15649

    Google Scholar 

  32. Costes JP, Dahan F, Wernsdorfer W (2006) Inorg Chem 45:5–7

    Google Scholar 

  33. Mori F, Nyui T, Ishida T, Nogami T, Choi KY, Nojiri H (2006) J Am Chem Soc 128:1440–1441

    Google Scholar 

  34. Murugesu M, Mishra A, Wernsdorfer W, Abboud KA, Christou G (2006) Polyhedron 25:613–625

    Google Scholar 

  35. Chen QY, Luo QH, Hu XL, Shen MC, Chen JT (2002) Chem Eur J 8:3984–3990

    Google Scholar 

  36. Gunnlaugsson T, Leonard JP, Senechal K, Harte AJ (2004) Chem Commun, pp 782–783

    Google Scholar 

  37. Zhao B, Chen XY, Chen P, Liao DZ, Yan SP, Jiang ZH (2004) J Am Chem Soc 126:15394–15395

    Google Scholar 

  38. Zhao B, Gao HL, Chen XY, Cheng P, Shi W, Liao DZ, Yan SP, Jiang, ZH (2006) Chem Eur J 12:149–158

    Google Scholar 

  39. Skaribas SP, Pomonis PJ, Sdoukos AT (1991) J Mater Chem 1:781–784

    Google Scholar 

  40. Hasegawa E, Aono H, Igoshi T, Sakamoto M, Traversa E, Sadaoka Y (1999) J Alloys Compd 287:150–158

    Google Scholar 

  41. Winpenny REP (1998) Chem Soc Rev 27:447–452

    Google Scholar 

  42. Sakamoto M, Manseki K, Okawa H (2001) Coord Chem Rev 219–221:379–414

    Google Scholar 

  43. Sakagami N, Okamoto K (1998) Chem Lett 27:201–202

    Google Scholar 

  44. Decurtins S, Gross M, Schmalle HW, Ferlay S (1998) Inorg Chem 37:2443–2449

    Google Scholar 

  45. Cutland AD, Malkani RG, Kampf JW, Pecoraro VL (2000) Angew Chem Int Ed 39:2689–2691

    Google Scholar 

  46. Kahn ML, Verelst M, Lecantes M, Mathoniere C, Kahn O (1999) Eur J Inorg Chem, pp 527–531

    Google Scholar 

  47. Sanada T, Suzuki T, Kaizaki S (1998) J Chem Soc Dalton Trans, pp 959–965

    Google Scholar 

  48. Plecnik CE, Liu SM, Shore SG (2003) Acc Chem Res 36:499–508

    Google Scholar 

  49. Chen XM, Yang YY (2000) Chin J Chem 18:664–672

    Google Scholar 

  50. Wang RY, Gao F, Jin TZ (1996) Huaxuetongbao 10:14–20

    Google Scholar 

  51. Ohata N, Masuda H, Yamauchi O (1996) Angew Chem Int Ed 35:531–532

    Google Scholar 

  52. Zheng ZP (2001) Chem Commun, pp 2521–2529

    Google Scholar 

  53. Hu SM, Du WX, Dai JC, Wu LM, Cui CP, Fu ZY, Wu XT (2001) J Chem Soc Dalton Trans, pp 2963–2964

    Google Scholar 

  54. Wang LY, Igarashi S, Yukawa Y, Hoshino Y, Roubeau O, Aromí G, Winpenny REP (2003) J Chem Soc Dalton Trans, pp 2318–2324

    Google Scholar 

  55. Du M, Bu XH, Guo YM, Ribas J (2004) Chem Eur J 10:1345–1354

    Google Scholar 

  56. Xiang SC, Hu SM, Zhang JJ, Wu XT, Li JQ (2005) Eur J Inorg Chem 2706–2714

    Google Scholar 

  57. Ama T, Rashid MM, Saker AK, Miyakawa H, Yonemura T, Kawaguchi H, Yasui T (2001) Bull Chem Soc Jpn 74:2327–2333

    Google Scholar 

  58. Okamoto KI, Aizawa SI, Konno T, Einaga H, Hidaka J (1986) Bull Chem Soc Jpn 59:3859–3864

    Google Scholar 

  59. Igashira-Kamiyama A, Fujioka J, Kodama T, Kawamoto T, Konno T (2006) Chem Lett 35:522–523

    Google Scholar 

  60. Strasdeit H, Busching I, Behrends S, Saak W, Barklage W (2001) Chem Eur J 7:1133–1142

    Google Scholar 

  61. Abu-Nawwas AH, Cano J, Christian P, Mallah T, Rajaraman G, Teat SJ, Winpenny REP, Yukawa Y (2004) Chem Commun, pp 314–315

    Google Scholar 

  62. Coxall RA, Harris SG, Henderson DK, Parsons S, Tasker PA, Winpenny REP (2000) J Chem Soc Dalton Trans, pp 2349–2356

    Google Scholar 

  63. Anokhina EV, Go YB, Lee Y, Vogt T, Jacobson AJ (2006) J Am Chem Soc 128:9957–9962

    Google Scholar 

  64. Vaidhyanathan R, Bradshaw D, Rebilly JN, Barrio JP, Gould JA, Berry NG, Rosseinsky MJ (2006) Angew Chem Inter Ed 45:6495–6499

    Google Scholar 

  65. Yukawa Y, Igarashi S, Yamano A, Sato S (1997) Chem Commun, pp 711–712

    Google Scholar 

  66. Igarashi S, Hoshino Y, Masuda Y, Yukawa Y (2000) Inorg Chem 39:2509–2515

    Google Scholar 

  67. Yukawa Y, Aromí G, Igarashi S, Ribas J, Zvyagin SA, Krzystek J (2005) Angew Chem Int Ed 44:1997–2001

    Google Scholar 

  68. Gao F, Wang RY, Jin TZ, Xu GX, Zhou ZY, Zhou XG (1997) Polyhedron 16:1357–1360

    Google Scholar 

  69. Li ZS, Sun HL, Kou HZ, Han ST, Gao S (2002) J Rare Earth 20:343–347

    Google Scholar 

  70. Yamaguchi T, Sunatsuki Y, Kojima M, Akashi H, Tsuchimoto M, Re N, Osa S, Matsumoto N (2004) Chem Commun, pp 1048–1049

    Google Scholar 

  71. Casellato U, Guerriero P, Tamburini S, Sitran S, Vigato PA (1991) J Chem Soc Dalton Trans, pp 2145–2152

    Google Scholar 

  72. Costes J-P, Dahan F, Dumestre F, Clemente-Juan JM, Garcia-Tojal J, Tuchagues J-P (2003) Dalton Trans, pp 464–468

    Google Scholar 

  73. Anokhina EV, Jacobson AJ (2004) J Am Chem Soc 126:3044–3045

    Google Scholar 

  74. Hu, SM, Xiang SC, Zhang JJ, Sheng TL, Fu RB, Wu XT (2008) Eur J Inorg Chem, pp 1141–1146

    Google Scholar 

  75. Fu ZY, Wu XT, Dai JC, Wu LM, Cui CP, Hu SM (2001) Chem Commun, pp 856–1857

    Google Scholar 

  76. Ako AM, Hewitt IJ, Mereacre V, Clérac R, Wernsdorfer W, Anson CE, Powell, AK Angew Chem Int Ed 45:4926–4929

    Google Scholar 

  77. Murugesu M, Clérac R, Anson CE, Powell AK (2004) Chem Commun, pp 598–1599

    Google Scholar 

  78. Murugesu M, Clérac R, Anson CE, Powell AK (2004) Inorg Chem 43:7269–7271

    Google Scholar 

  79. Du, WX, Zhang JJ, Hu SM, Xia SQ, Fu RB, Xiang SC, Li YM, Wang LS, Wu XT (2004) J Mol Struct 701:25–30

    Google Scholar 

  80. Zhang JJ, Sheng TL, Xia SQ, Leibeling G, Meyer F, Hu SM, Fu RB, Xiang SC, Wu XT (2004) Inorg Chem 43:5472–5478

    Google Scholar 

  81. Chen XM, Aubin SMJ, Wu YL, Yang YS, Mak TCW, Hendrickson DN (1995) J Am Chem Soc 117:9600–9601

    Google Scholar 

  82. Chen XM, Wu YL, Tong YX, Huang XY (1996) J Chem Soc Dalton Trans, pp 2443–2448

    Google Scholar 

  83. Yang YY, Chen XM, Ng SW (2001) J Solid State Chem 161:214–224

    Google Scholar 

  84. Yang YY, Huang ZQ, He F, Chen XM, Ng SW (2004) Z Anorg Allg Chem 630:286–290

    Google Scholar 

  85. Cui Y, Chen JT, Huang JS (1999) Inorg Chim Acta 293:129–139

    Google Scholar 

  86. Boyd PDW, Li Q, Vincent JB, Folting K, Chang HR, Streib WE, Huffmann JC, Christou G, Hendrickson DN (1988) J Am Chem Soc 110:8537–8539

    Google Scholar 

  87. Soler M, Wemsdorfer W, Folting K, Pink M, Christou G (2004) J Am Chem Soc 126:2156–2165

    Google Scholar 

  88. Crawford VH, Richardson HW, Wasson JR, Hodgson DJ, Hatfield WE (1976) Inorg Chem 15:2107–2110

    Google Scholar 

  89. Figgis BN, Hitchman MA (2000) Ligand field theory and its applications. Wiley, Toronto, chaps. 9 and 11

    Google Scholar 

  90. Coronado E, Day P (2004) Chem Rev 104:5419–5448

    Google Scholar 

  91. Zhang ZJ, Xiang SC, Zhang YF, Wu AQ, Cai LZ, Guo GC, Huang JS (2006) Inorg Chem 45:1972–1977

    Google Scholar 

  92. Zhang JJ, Hu SM, Xiang SC, Sheng TL, Wu XT, Li YM (2006) Inorg Chem 45:7173–7181

    Google Scholar 

  93. Hu SM, Dai JC, Wu XT, Wu LM, Cui CP, Fu ZY, Hong MC, Liang YC (2002) J Cluster Sci 13:33–41

    Google Scholar 

  94. Zhang JJ, Xia SQ, Sheng TL, Hu SM, Leibeling G, Meyer F, Wu XT, Xiang SC, Fu RB (2004) Chem Commun, pp 1186–1187

    Google Scholar 

  95. Zhang JJ, Sheng TL, Hu SM, Xia SQ, Leibeling G, Meyer F, Fu ZY, Chen L, Fu RB, Wu XT (2004) Chem Eur J 10:3963–3969

    Google Scholar 

  96. Blake AJ, Gould RO, Grant CM, Milne PEY, Parsons S, Winpenny REP (1997) J Chem Soc Dalton Trans, pp 485–496

    Google Scholar 

  97. Zheng NF, Bu XH, Feng PY (2002) J Am Chem Soc 124:9688–9689

    Google Scholar 

  98. Rodriguez-Fortea A, Alemany P, Alvarez S, Ruiz E (2001) Chem Eur J 7:627–637

    Google Scholar 

  99. Férey G (2003) Angew Chem Int Ed 42:2576–2579

    Google Scholar 

  100. Xiang SC, Hu SM, Sheng TL, Fu RB, Wu XT, Zhang XD (2007) J Am Chem Soc 129:15144–15146

    Google Scholar 

  101. Dalgarno SJ, Raston CL (2003) Dalton Trans, pp 287–290

    Google Scholar 

  102. Atwood JL, Barbour LJ, Dalgarno S, Raston CL, Webb HR (2002) J Chem Soc Dalton Trans, pp 4351–4356

    Google Scholar 

  103. Brügstein MR, Gamer MT, Roesky PW (2004) J Am Chem Soc 126:5213–5218

    Google Scholar 

  104. Wang R, Song D, Wang S (2002) Chem Commun, pp 368–369

    Google Scholar 

  105. Brügstein MR, Roesky PW (2000) Angew Chem Int Ed 39:549–551

    Google Scholar 

  106. Xu J, Raymond KN (2000) Angew Chem Int Ed 39:2745–2747

    Google Scholar 

  107. Mudring AV, Timofte T, Babai A (2006) Inorg Chem 45:5162–5166

    Google Scholar 

  108. Fang X, Anderson TM, Benelli C, Hill CL (2005) Chem Eur J 11:712–718

    Google Scholar 

  109. Zhang DS, Ma BQ, Jin TZ, Gao S, Yan CH, Mak TCW (2000) New J Chem 24:61–62

    Google Scholar 

  110. Wang R, Carducci MD, Zheng Z (2000) Inorg Chem 39:1836–1837

    Google Scholar 

  111. Žáa Z, Unfried P, Giester G (1994) J Alloys Compd 205:235–242

    Google Scholar 

  112. Panagiotopoulos A, Zafiropoulos TF, Perlepes SP, Bakalbassis E, Massonramade I, Kahn O, Terzis A, Raptopoulou CP (1995) Inorg Chem 34:4918–4920

    Google Scholar 

  113. Freedman DE, Bennett MV, Long JR (2006) Dalton Trans, pp 2829–2834

    Google Scholar 

  114. Zhong ZJ, Seino H, Mizobe Y, Hidai M, Fujishima A, Ohkoashi S, Hashimoto K (2000) J Am Chem Soc 122:2952–2953

    Google Scholar 

  115. Hatscher ST, Urland W (2003) Angew Chem Int Ed 42:2862–2864

    Google Scholar 

  116. Costes JP, Clemente-Juan JM, Dahan F, Nicodème F, Verelst M (2002) Angew Chem Int Ed 41:323–325

    Google Scholar 

  117. Costes JP, Dahan F, Dupuis A (2000) Inorg Chem 39:165–168

    Google Scholar 

  118. Freeman HC, Snow MR, Nitta I, Tomita K (1964) Acta Crystallogr 17:1463–1470

    Google Scholar 

  119. Friedrichs OD, O'Keeffe M, Yaghi OM (2003) Acta Crystallogr A 59:515–525

    Google Scholar 

  120. Delf BW, Gillard RD, O'Brien P (1979) J Chem Soc Dalton Trans, pp 1301–1305

    Google Scholar 

  121. Zhang JJ, Xiang SC, Hu SM, Xia SQ, Fu RB, Wu XT, Li YM, Zhang HS (2004) Polyhedron 23:2265–2272

    Google Scholar 

  122. Zhang JJ, Hu SM, Zheng LM, Wu XT, Fu ZY, Dai JC, Du WX, Zhang HH, Sun RQ (2002) Chem Eur J 8:5742–5749

    Google Scholar 

  123. Zhang JJ, Hu SM, Xiang SC, Wang LS, Li YM, Zhang HS, Wu XT (2005) J Mol Struct 748:129–136

    Google Scholar 

  124. Doble DMJ, Benison CH, Blake AJ, Fenska D, Jackson MS, Kay RD, Li WS, Schroder M (1999) Angew Chem Int Ed 38:1915–1918

    Google Scholar 

  125. Zhang JJ, Hu SM, Xiang SC, Wu XT, Wang LS, Li YM (2006) Polyhedron 25:1–8

    Google Scholar 

  126. Abe M, Sasaki Y, Yamada Y, Tsukahara K, Yano S, Ito T (1995) Inorg Chem 34:4490–4998

    Google Scholar 

  127. Baikie ARE, Howers AJ, Hursthouse MB, Quick AB, Thornton P (1986) J Chem Soc Chem Commun, pp 1587–1588

    Google Scholar 

  128. Low DW, Eichhorn DM, Draganescu A, Armstrong WH (1991) Inorg Chem 30:877–878

    Google Scholar 

Download references

Acknowledgement

This work was supported by the grants from NNSF of China (20673118 and 20733003), NSF of Fujian Province (2005HZ01-1 and 2006J0014), 973 program (2007CB815301 and 2006CB932900) and the Chinese Academy of Sciences (KJCX2-YW-M05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Chang Xiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Xiang, SC., Hu, SM., Sheng, TL., Chen, L., Wu, XT. (2009). Controllable Assembly, Structures, and Properties of Lanthanide–Transition Metal–Amino Acid Clusters. In: Wu, XT. (eds) Controlled Assembly and Modification of Inorganic Systems. Structure and Bonding, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2008_15

Download citation

Publish with us

Policies and ethics