New Nitrogen-Rich High Explosives

Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 125)

Abstract

The possibility of new high explosives based on nitrogen-rich tetrazole building blocks is discussed. The expected advantages include gaseous products, high heats of formation, high propulsive/expolosive power, high specific impulse, and high flame temperatures. In addition, these new explosives do not have the toxicity and environmental activity of currently used organo-nitro explosives. The synthesis and characteristics of a series of neutral tetrazole compounds are looked at as well as the neutral nitramine, dinitrobiuret.

Dinitrobiuret High energy density materials Nitrogen-rich Polynitrogen Tetrazole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klapötke TM, Holl G (2001) Green Chem 3:G75 Google Scholar
  2. 2.
    Klapötke TM, Holl G (2002) Chem Aust, p 11 Google Scholar
  3. 3.
    Kanekar P, Dautpure P, Sarnaik S (2003) Ind J Exp Biol 41:991 Google Scholar
  4. 4.
    Robidoux PY, Gong P, Sarrazin M, Bardai G, Paquet L, Hawari J, Dubois C, Sunahara GI (2004) Can Ecotoxicol Environ Safe 58:300 CrossRefGoogle Scholar
  5. 5.
    Robidoux PY, Sunahara GI, Savard K, Berthelot Y, Dodard S, Martel M, Gong P, Hawari J (2004) Can Environ Toxicol Chem 23:1026 CrossRefGoogle Scholar
  6. 6.
    Simini M, Checkai RT, Kuperman RG, Phillips CT, Kolakowski JE, Kurnas CW, Sunahara GI (2003) Pedobiologia 47:657 Google Scholar
  7. 7.
    Robidoux PY, Hawari J, Bardai G, Paquet L, Ampleman G, Thiboutot S, Sunahara GI (2002) Can Arch Environ Contam Toxicol 43:379 CrossRefGoogle Scholar
  8. 8.
    Steevens JA, Duke BM, Lotufo GR, Bridges TS (2002) Environ Toxicol Chem 21:1475 CrossRefGoogle Scholar
  9. 9.
    Pennington JC, Brannon JM (2002) Thermochim Act 384:163 CrossRefGoogle Scholar
  10. 10.
    Fournier D, Halasz A, Spain J, Spanggord RJ, Bottaro JC, Hawari J (2004) Appl Environment Microbiol 70:1123 CrossRefGoogle Scholar
  11. 11.
    Doherty RM (2003) In: De Luca LT, Galfetti L, Pesce-Rodriguez RA (eds) Novel energetic materials and applications. Proceedings of the 9th IWCP, Lerici, La Specia, Italy Google Scholar
  12. 12.
    Karaghiosoff K, Klapötke TM, Michailovski A, Nöth H, Suter M (2003) Prop Explos Pyrotech 28:1 CrossRefGoogle Scholar
  13. 13.
    Klapötke TM, Krumm B, Holl G, Kaiser M (1999) Proc of 30th int annual conference of ICT, June 29–July 2, Karlsruhe, Germany, p 120 Google Scholar
  14. 14.
    Hammerl A, Klapötke TM, Nöth H, Warchhold M, Holl M, Kaiser M (2001) Inorg Chem 40:3570 CrossRefGoogle Scholar
  15. 15.
    Klapötke TM (2007) Nichtmetallchemie. In: Riedel E (ed) Moderne Anorganische Chemie, 3rd edn. Walter de Gruyter, Berlin Google Scholar
  16. 16.
    Eremets MI, Gavriliuk AG, Serebryanaya NR, Trojan IA, Dzivenko DA, Boehler R, Mao HK, Hemley RJ (2004) J Chem Phys 121:11296 CrossRefGoogle Scholar
  17. 17.
    Eremets MI, Gavriliuk AG, Trojan IA, Dzivenko DA, Boehler R (2004) Nat Mater 3:558 CrossRefGoogle Scholar
  18. 18.
    Eremets MI, Popov MY, Trojan IA, Denisov VN, Boehler R, Hemley RJ (2004) J Chem Phys 120:10618 CrossRefGoogle Scholar
  19. 19.
    Christe KO, Wilson WW, Sheehy JA, Boatz JA (1999) Angew Chem Int Ed 38:2004 CrossRefGoogle Scholar
  20. 20.
    Vij A, Wilson WW, Vij V, Tham FS, Sheehy JA, Christe KO (2001) J Am Chem Soc 123:6308 CrossRefGoogle Scholar
  21. 21.
    Klapötke TM (1999) Angew Chem 111:2694 CrossRefGoogle Scholar
  22. 22.
    Schroer T, Haiges R, Schneider S, Christe KO (2005) Chem Comm, p 1607 Google Scholar
  23. 23.
    Vij A, Pavlovich JG, Wilson WW, Vij V, Christe KO (2002) Angew Chem Int Ed 41:3051 CrossRefGoogle Scholar
  24. 24.
    Lauderdale WJ, Stanton JF, Bartlett RJ (1992) J Phys Chem 96:1173 CrossRefGoogle Scholar
  25. 25.
    Perera SA, Bartlett RJ (1999) Chem Phys Lett 314:381 CrossRefGoogle Scholar
  26. 26.
    Tobita M, Bartlett RJ (2001) J Phys Chem A 105:4107 CrossRefGoogle Scholar
  27. 27.
    Glukhovtsev MN, Jiao H, Schleyer PVR (1996) Inorg Chem 35:7124 CrossRefGoogle Scholar
  28. 28.
    Glukhovtsev MN, Schleyer PVR (1992) Chem Phys Lett 198:547 CrossRefGoogle Scholar
  29. 29.
    Klapötke TM (2000) J Mol Struct (THEOCHEM) 499:99 CrossRefGoogle Scholar
  30. 30.
    Klapötke TM, Harcourt RD (2001) J Mol Struct (THEOCHEM) 541:237 CrossRefGoogle Scholar
  31. 31.
    Schmidt MW, Gordon MS, Boatz JA (2005) J Phys Chem A 109:7285 CrossRefGoogle Scholar
  32. 32.
    Wang R, Gao H, Ye C, Twamley B, Shreeve JM (2007) Inorg Chem 46:932 CrossRefGoogle Scholar
  33. 33.
    Geith J, Klapötke TM, Weigand JJ, Holl H (2004) Prop Explos Pyrotech 29:3 CrossRefGoogle Scholar
  34. 34.
    Klapötke TM, Mayer P, Schulz A, Weigand JJ (2005) J Am Chem Soc 127:2032 CrossRefGoogle Scholar
  35. 35.
    Fischer G, Holl G, Klapötke TM, Weigand JJ (2005) Thermochim Acta 437:168 CrossRefGoogle Scholar
  36. 36.
    Raap R (1969) Can J Chem 47:3677 CrossRefGoogle Scholar
  37. 37.
    Gaponik PN, Karavai VP (1984) Khim Geterotsikl Soedin 12:1683 Google Scholar
  38. 38.
    Stolle R, Netz H, Kramer O, Rothschild S, Erbe E, Schick O (1933) J Prak Chem 138:1 CrossRefGoogle Scholar
  39. 39.
    Gálvez-Ruiz JC, Holl G, Karaghiosoff K, Klapötke TM, Löhnwitz K, Mayer P, Nöth H, Polborn K, Rohbogner CJ, Suter M, Weigand JJ (2005) Inorg Chem 44:4237 CrossRefGoogle Scholar
  40. 40.
    Darwich C, Klapötke TM (2006) New trends in research of energetic materials. Proceedings of the 9th seminar, Pardubice, Czech Republic, p 551 Google Scholar
  41. 41.
    Gálvez-Ruiz JC, Holl G, Karaghiosoff K, Klapötke TM, Löhnwitz K, Mayer P, Nöth N, Polborn K, Rohbogner CJ, Suter M, Weigand JJ (2005) Inorg Chem 44:5192 CrossRefGoogle Scholar
  42. 42.
    Boese R, Klapötke TM, Mayer P, Verma V (2006) Prop Explos Pyrotech 31:263 CrossRefGoogle Scholar
  43. 43.
    Murray WM, Sauer WC (Arthur D, Little Inc) (1961) US Patent 3006957 Google Scholar
  44. 44.
    Marans NS, Zelinski RP (1950) J Am Chem Soc 72:5329 CrossRefGoogle Scholar
  45. 45.
    Göbel M, Klapötke TM (2007) New trends in research of energetic materials. Proceedings of the 10th seminar, Pardubice, Czech Republic, p L13 Google Scholar
  46. 46.
    Adam D, Karaghiosoff K, Holl G, Kaiser M, Klapötke TM (2002) Prop Explos Pyrotech 27:7 CrossRefGoogle Scholar
  47. 47.
    Karaghiosoff K, Klapötke TM, Michailovski A, Nöth H, Suter M (2003) Prop Explos Pyrotech 28:1 CrossRefGoogle Scholar
  48. 48.
    Klapötke TM, Mayer P, Verma V (2006) Prop Explos Pyrotech 31:263 CrossRefGoogle Scholar
  49. 49.
    Deal WE (1957) J Chem Phys 27:796 CrossRefGoogle Scholar
  50. 50.
    Mader CL (1963) Report LA-2900: Fortran BKW code for computing the detonation properties of explosives. Los Alomos Scientific Laboratory, NM Google Scholar
  51. 51.
    Urbanski T (1985) Chemistry and technology of explsoives. Pergamon, England Google Scholar
  52. 52.
    Astakhov AM, Vasilev AD, Molokeev MS, Revenko VA, Stepanov RS (2005) Russ J Org Chem 41:910 CrossRefGoogle Scholar
  53. 53.
    Klapötke TM, Stierstorfer J (2007) New trends in research of energetic materials. Proceedings of the 10th seminar, Pardubice, Czech Republic, p 35 Google Scholar
  54. 54.
    Bryden JH (1953) Acta Cryst 6:669 CrossRefGoogle Scholar
  55. 55.
    Karahiosoff K, Klapötke TM, Mayer P, Piotrowski H, Polborn K, Willer RL, Weigand JJ (2005) J Org Chem 71:1295 CrossRefGoogle Scholar
  56. 56.
    Tappan BC, Beal RW, Brill TB (2002) Thermochim Act 288:227 CrossRefGoogle Scholar
  57. 57.
    Tappan BC, Incarnito CD, Rheingold AL, Brill TB (2002) Thermochim Act 384:113 CrossRefGoogle Scholar
  58. 58.
    Brill TB, Tappan BC, Beal RW (2001) New trends in research of energetic materials. Proceedings of the 4th seminar, Pardubice, Czech Rep, p 17 Google Scholar
  59. 59.
    Thiele J (1892) Ann 270:1 Google Scholar
  60. 60.
    Herbst RM, Garrison JA (1953) J Org Chem 18:941 CrossRefGoogle Scholar
  61. 61.
    Lieber E, Sherman E, Henry RA, Cohen J (1951) J Am Chem Soc 73:2327 CrossRefGoogle Scholar
  62. 62.
    Astachov AM, Nefedo AA, Vasiliev AD, Kruglyakova LA, Dyugaev KP, Stepanov RS (2005) Proc of 36th int annual conference of ICT, Jun 28–July 1, Karlsruhe, Germany, p 113 Google Scholar
  63. 63.
    Lieber E, Sherman E, Henry RA, Cohen J (1951) J Am Chem Soc 73:2327 CrossRefGoogle Scholar
  64. 64.
    O'Connor TE, Fleming G, Reilly J (1949) J Soc Chem Ind (London) 68:309 CrossRefGoogle Scholar
  65. 65.
    Mayants AG, Klimenko VS, Erina VV, Pyreseva KG, Gordeichuk SS, Leibzon VN, Kuz'min VS, Burtsev UN (1991) Khim Geterot Soed 8:1067 Google Scholar
  66. 66.
    Göbel M, Klapötke TM, Mayer E (2006) Z Anorg Allg Chem 2632:1043 CrossRefGoogle Scholar
  67. 67.
    Thiele J (1892) Ann 270:1 Google Scholar
  68. 68.
    Henry RA, Finnegan WG (1954) J Am Chem Soc 76:923 CrossRefGoogle Scholar
  69. 69.
    Henry RA, Finnegan WG (1956) J Am Chem Soc 78:411 CrossRefGoogle Scholar
  70. 70.
    Oxford Diffraction (2005) CrysAlis CCD, Version 1.171.27p5 beta (release 01-04-2005 CrysAlis171.NET) Google Scholar
  71. 71.
    Oxford Diffraction (2005) CrysAlis RED, Version 1.171.27p5 beta (release 01-04-2005 CrysAlis171.NET) Google Scholar
  72. 72.
    Altomare A, Cascarano G, Giacovazzo C, Guagliardi A (1993) SIR-92, A program for crystal structure solution. J App Cryst 26:343 CrossRefGoogle Scholar
  73. 73.
    Sheldrick GM (1994) SHELXL97 program for the refinement of crystal structures. University of Göttingen, Germany Google Scholar
  74. 74.
    Spek AL (1999) PLATON, a multipurpose crystallographic tool. Utrecht University, Utrecht, The Netherlands Google Scholar
  75. 75.
    Oxford Diffraction (2005) SCALE3 ABSPACK (1.0.4,gui:1.0.3) (C) Google Scholar
  76. 76.
    Cambridge Crystallographic Data Centre (2007) http://www.ccdc.cam.ac.uk/ , last visited: 30 Mar 2007
  77. 77.
    Lieber E, Patinkin T (1951) J Am Chem Soc 73:1792 CrossRefGoogle Scholar
  78. 78.
    Bray DD, White JG (1979) Acta Cryst B 35:3089 CrossRefGoogle Scholar
  79. 79.
    Riedel E (1999) Anorganische Chemie, 4th edn. Walter de Gruyter, Berlin, p 134 Google Scholar
  80. 80.
    Lieber E, Levering DR, Patterson LJ (1951) Anal Chem 23:1594 CrossRefGoogle Scholar
  81. 81.
    Weigand JJ (2005) Dissertation, Ludwig Maximilian University Munich Google Scholar
  82. 82.
    Daszkiewicz Z, Nowakowska EM, Preźdo WW, Kyzioł JB (1995) Pol J Chem 69:1437 Google Scholar
  83. 83.
    PerkinElmer (2007) http://www.perkinelmer.com , last visited: 30 Mar 2007
  84. 84.
    Linseis (2007) http://www.linseis.com , last visited: 30 Mar 2007
  85. 85.
    United Nations Economic Commission for Europe (2005) UN recommendations on the transport of dangerous goods, 14th edn. http://www.unece.org/trans/danger/publi/unrec/rev14/14files_.html , last visited: 30 Mar 2007
  86. 86.
    Bundesanstalt für Materialforschung und -prüfung (2007) http://www.bam.de , last visited: 30 Mar 2007
  87. 87.
    Parr Instrument Company (2007) http://www.parrinst.com , last visited: 30 Mar 2007
  88. 88.
    West RC, Selby SM (eds) (1967–1968) Handbook of chemistry and physics, 48th edn. CRC, Cleveland, OH Google Scholar
  89. 89.
    McEwan WS, Rigg MW (1951) J Am Chem Soc 73:4725 CrossRefGoogle Scholar
  90. 90.
    Ostrovskii VA, Pevzner MS, Kofman TP, Tselinskii IV (1999) Targets Heterocycl Syst 3:467 Google Scholar
  91. 91.
    Suceska M (1999) Proc of 30th int annual conference of ICT, June 29–July 2, Karlsruhe, Germany, p 50 Google Scholar
  92. 92.
    Suceska M (2001) EXPLO5.V2: computer program for calculation of detonation parameters. Proc of 32nd int annual conference of ICT, July 3–6, Karlsruhe, German, p 110 Google Scholar
  93. 93.
    Suceska M (1991) Prop Explos Pyrotech 16:197 CrossRefGoogle Scholar
  94. 94.
    Mecke R, Langenbucher F (1965) Infrared spectra. Heyden, London, Serial no. 6 Google Scholar
  95. 95.
    Shimanouchi T (1972) Tables of molecular vibrational frequencies consolidated, vol II. J Phys Chem Ref Data 6:993 CrossRefGoogle Scholar
  96. 96.
    National Institue of Standards and Technology (2007) Vibrational energy search http://webbook.nist.gov/chemistry/vib-ser.html , last visited: 30 Mar 2007
  97. 97.
    Nakamoto K (1986) Infrared and Raman Spectra of inorganic and coordination compounds, 4th edn. Wiley, New York Google Scholar
  98. 98.
    Hypercube (2002) HyperChem 7.52: Molecular visualization and simulation program package. Hypercube, Gainsville, FL Google Scholar
  99. 99.
    Murray JS, Lane P, Politzer P (1995) Mol Phys 85:1 CrossRefGoogle Scholar
  100. 100.
    Murray JS, Lane P, Politzer P (1998) Mol Phys 93:187 CrossRefGoogle Scholar
  101. 101.
    Politzer P, Murray JS (1999) Computational characterization of energetic materials. In: Maksic ZB, Orville-Thomas WJ (eds) Pauling's legacy: modern modelling of the chemical bond. Theor Comput Chem 6:347 CrossRefGoogle Scholar
  102. 102.
    Politzer P, Murray JS, Seminario JM, Lane P, Grice ME, Concha MC (2001) J Mol Struct (THEOCHEM) 573:1 CrossRefGoogle Scholar
  103. 103.
    Rice BM, Chabalowski CF, Adams GF, Mowrey RC, Page M (1991) Chem Phys Lett 184:335 CrossRefGoogle Scholar
  104. 104.
    Rice BM, Hare JJ (2002) J Phys Chem A 106:1770 CrossRefGoogle Scholar
  105. 105.
    Rice BM, Sahu S, Owens FJ (2002) J Mol Struct (THEOCHEM) 583:69 CrossRefGoogle Scholar
  106. 106.
    Rice BM (2005) Adv Ser Phys Chem 16:33 CrossRefGoogle Scholar
  107. 107.
    Systag (2007) Process development and safety http://www.systag.ch , last visited: 30 Mar 2007
  108. 108.
    Karaghiosoff K, Klapötke TM, Mayer P, Piotrowski H, Polborn K, Willer RL, Weigand JJ (2005) J Org Chem 71:1295 CrossRefGoogle Scholar
  109. 109.
    Geith J, Klapötke TM, Weigand JJ, Holl G (2004) Prop Explos Pyrotech 29:3 CrossRefGoogle Scholar
  110. 110.
    Geith J, Holl G, Klapötke TM, Weigand JJ (2004) Combust Flame 139:358 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Ludwig-Maximilian University Munich, Chair of Inorganic Chemistry, Energetic Materials ResearchMunichGermany

Personalised recommendations