Advertisement

Nitrogen-Rich Heterocycles

  • Rajendra P. Singh
  • Haixiang Gao
  • Dayal T. Meshri
  • Jean'ne M. ShreeveEmail author
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 125)

Abstract

Many advantages accrue from nitrogen-rich heterocyclic compounds compared to traditional molecular energetic compounds. Utilization of heterocyclic nitrogen-containing cations and anions in energetic salts gives rise to lower vapor pressures, higher heats of formation and higher densities. Additionally, smaller amounts of hydrogen and carbon contribute to a better oxygen balance than normally is found with their carbocyclic analogues. Nitrogen-rich compounds are promising high energetic materials that may be more acceptable than their alternatives for both industrial and military uses since a higher percentage of their decomposition products will be dinitrogen.

Nitrogen rich Energetic Heterocycles Heat of formation Density Thermochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gregory CE (1984) Explosives for North American Engineers, vol 5. Trans Tech Publications, Clausthal-Zellerfeld, Germany Google Scholar
  2. 2.
    Davis TL (1943) The Chemistry of Powder and Explosives, vol 2. Wiley, New York Google Scholar
  3. 3.
    Cook MA (1958) The Science of High Explosives. Reinhold, New York Google Scholar
  4. 4.
    Akhaven J (2005) Explosives and Propellants. In: Seidel A (ed) Encyclopedia of Chemical Technology. Wiley, Hoboken, N.J. Google Scholar
  5. 5.
    Urbanski T (1964) Chemistry and Technology of Explosives, vol 3. Pergamon, Oxford Google Scholar
  6. 6.
    Bailey A, Murray SG (1989) Explosives, Propellent and Pyrotechnics. Brassey's, Oxford Google Scholar
  7. 7.
    Urbanski T (1984) Chemistry and Technology of Explosives, vol 4. Pergamon, Oxford, p 202 Google Scholar
  8. 8.
    Agrawal JP (1998) Prog Energy Combust Sci 24:1–30 Google Scholar
  9. 9.
    Singh G, Kapoor IPS, Mannan SM, Kaur J (2000) J Hazard Mater A79:1–18 Google Scholar
  10. 10.
    Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Ann Rev Mater Res 31:291–321 Google Scholar
  11. 11.
    Singh RP, Verma RD, Meshri DT, Shreeve JM (2006) Angew Chem 45:3584–3601 Google Scholar
  12. 12.
    Shlyapochnikov VA, Tafipolsky MA, Tokmakov IV, Baskir ES, Anikin OV, Strelenko YA, Luk'yanov OA, Tartakovsky VA (2001) J Molec Struct 559:147–166 Google Scholar
  13. 13.
    Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) Thermochim Acta 384:187–204 Google Scholar
  14. 14.
    Lesnikovich AI, Ivashkevich OA, Levchik SV, Balabanovich AI, Gaponik PN, Kulak AA (2002) Thermochim Acta 388:233–251 Google Scholar
  15. 15.
    Sikder AK, Sikder NJ (2004) J Hazard Mater A112:1–15 Google Scholar
  16. 16.
    Bottaro J (2005) Ideas to Expand Thinking About New Energetic Materials. In: Shaw RW, Brill TB, Thompson DL (eds) Adv Ser Phys Chem, vol 16. World Scientific, Singapore, pp 473–501 Google Scholar
  17. 17.
    Feuer H, Nielsen AT (1990) Nitro Compounds. VCH, New York Google Scholar
  18. 18.
    Nielsen AT (1995) Nitrocarbons. VCH, New York Google Scholar
  19. 19.
    Köhler J, Meyer R (1991) Explosivstoffe, 7th Ed. Wiley, Weinheim, Germany Google Scholar
  20. 20.
    Köhler J, Meyer R (1998) Explosivstoffe, 9th Ed. Wiley, Weinheim, Germany Google Scholar
  21. 21.
    Klapötke TM, Krumm B, Holl G, Kaiser M (2000) Energetic Materials: Modeling of Phenomena, Experimental Characterization, Environmental Engineering. Fraunhofer Institut, Karlsruhe, Germany Google Scholar
  22. 22.
    Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KS, Hofman DM (1997) Propell Explos Pyrotech 22:249–255 and references cited therein Google Scholar
  23. 23.
    Krause HH (2005) New Energetic Materials. In: Teipal U (ed) Energetic Materials. Wiley, Weinheim, Germany Google Scholar
  24. 24.
    Hiskey MA, Chavez DE, Naud DL, Son SF, Berghout HL, Bolme CA (2000) Proc Int Pyrotech Semin 27:3–14 Google Scholar
  25. 25.
    Pedley JB (1994) Thermochemical Data and Structure of Organic Compounds, vol I. Thermodynamic Research Center, College Station, TX Google Scholar
  26. 26.
    Jiminez P, Roux MV, Turrion CJ (1998) Chem Thermodyn 21:759–764 Google Scholar
  27. 27.
    Drake GW, Hawkins T, Brand A, Hall L, McKay M, Vij A, Ismail I (2003) Propell Explos Pyrotech 28(4):174–180 Google Scholar
  28. 28.
    Drake GW (2003) US Patent 6509473 B1 Google Scholar
  29. 29.
    Schmidt MW, Gordon MS, Boatz JA (2005) J Phys Chem A 109:7285–7295 Google Scholar
  30. 30.
    Xue H, Arritt SW, Twamley B, Shreeve JM (2004) Inorg Chem 43:7972–7977 Google Scholar
  31. 31.
    Xue H, Gao Y, Twamley B, Shreeve JM (2005) Chem Mater 17:191–198 Google Scholar
  32. 32.
    Drake GW, Hawkins T, Tollison K, Hall L, Vij A, Sobaski S (2005) In: Rogers RD, Seddon KR (eds) Ionic Liquids-III A: Fundamentals, Progress, Challenges, and Opportunities. ACS Symposium Series 902. ACS, Washington, DC, pp 259–302 Google Scholar
  33. 33.
    Trohalaki S, Pachter R, Drake GW, Hawkins T (2005) Energ Fuel 19:279–284 Google Scholar
  34. 34.
    Kaplan G, Drake G, Tollison K, Hall L, Hawkins T (2005) J Heterocycl Chem 42:19–27 CrossRefGoogle Scholar
  35. 35.
    Ostrovskii VA, Pevzner MS, Kofman TP, Tselinskii IV (1999) Targets Heterocycl Syst 3:467–526 Google Scholar
  36. 36.
    Denault CC, Marx PC, Takimoto HH (1968) J Chem Eng Data 13:514–516 Google Scholar
  37. 37.
    Xue H, Shreeve JM (2005) Adv Mater 17:2142–2146 Google Scholar
  38. 38.
    Buscemi S, Pace A, Pibiri I, Vivona N, Spinelli D (2003) J Org Chem 68:605–608 Google Scholar
  39. 39.
    Funabiki K, Noma N, Shibata K (1999) J Chem Res Synop pp 300–301, and references cited therein Google Scholar
  40. 40.
    Xue H, Twamley B, Shreeve JM (2004) J Org Chem 69:1397–1400 Google Scholar
  41. 41.
    Mirzaei YR, Shreeve JM (2003) Synthesis 24–26 Google Scholar
  42. 42.
    Mirzaei YR, Shreeve JM (2002) J Org Chem 67:9340–9345 Google Scholar
  43. 43.
    Mirzaei YR, Xue H, Shreeve JM (2004) Inorg Chem 43:361–367 Google Scholar
  44. 44.
    Shitov OP, Korolev VL, Bogdanov VS, Tartakovsky VA (2003) Russ Chem Bull Int Ed 52:695–699 Google Scholar
  45. 45.
    Egashira M, Scrosati B, Armand M, Beranger S, Michot C (2003) Electrochem Solid State Lett 6(4):A71–A73 Google Scholar
  46. 46.
    Katritzky A, Singh S, Kirichenko K, Holbrey JD, Smiglak M, Reichert MW, Rogers RD (2005) Chem Commun 868–870 Google Scholar
  47. 47.
    Sitzmann MI (1978) J Org Chem 43:3389–3391 Google Scholar
  48. 48.
    Kofman TP, Paketina EA (1997) Russ J Org Chem (Eng Trans) 33:1125–1132 Google Scholar
  49. 49.
    Chernyshev VM, Zemlyakov ND, Il'in VB, Taranushich VA (2000) Zh Prikl Khim 73:791–793 Google Scholar
  50. 50.
    Ogihara W, Yoshizawa M, Ohno H (2004) Chem Lett 33(8):1022–1023 Google Scholar
  51. 51.
    Xue H, Gao Y, Twamley B, Shreeve JM (2005) Inorg Chem 44:5068–5072 Google Scholar
  52. 52.
    Martin AR, Yallop HJ (1958) Trans Faraday Soc 54:257–267 Google Scholar
  53. 53.
    Ostrovskii VA, Koldobskii GI, Shirokova NP, Poplavskii VS (1981) Khim, Grterotsikl Soedin 4:559–562 Google Scholar
  54. 54.
    Krakovskii IM, MolChanova MS, Evtushenko AV, Shlyapochnikova VA (1998) Russ Chem Bull 47:1266–1273 Google Scholar
  55. 55.
    Kozyro AA, Simirsky VV, Krasulin AP, Sevruk VM, Kabo GJ, Gopanik ML, Grigotiev YV (1990) Zh Fiz Khim 64:656–661 Google Scholar
  56. 56.
    Gao A, Oyumi Y, Brill TB (1991) Combust Flame 83:345–352 Google Scholar
  57. 57.
    von Denffer M, Klapötke TM, Kramer G, Spieß G, Welch JM, Heeb G (2005) Propell Explos Pyrotech 30:191–195 Google Scholar
  58. 58.
    Klapötke TM, Mayer P, Schulz A, Weigand JJ (2005) J Am Chem Soc 127:2032–2033 Google Scholar
  59. 59.
    Gálvez-Ruiz JC, Holl G, Karaghiosoff K, Klapötke TM, Löhnwitz K, Mayer P, Nöth H, Polborn K, Rohbogner CJ, Suter M, Weigand JJ (2005) Inorg Chem 44:4237–4253 Google Scholar
  60. 60.
    Fisher G, Holl G, Klapötke TM, Weigand JJ (2005) Thermochim Acta 437:168–178 Google Scholar
  61. 61.
    Geith J, Klapötke TM, Weigand J (2004) Propell Explos Pyrotech 29:3–8 Google Scholar
  62. 62.
    Hammerl A, Klapötke TM, Nöth H, Warchhold M, Holl G (2003) Propell Explos Pyrotech 28:165–173 Google Scholar
  63. 63.
    Hammerl A, Klapötke TM, Mayer P, Weigand JJ, Holl G (2005) Propell Explos Pyrotech 30:17–26 Google Scholar
  64. 64.
    Klapötke TM, Mayer P, Verma V (2006) Propell Explos Pyrotech 31:263–268 Google Scholar
  65. 65.
    Klapötke TM, Karaghiosoff K, Mayer P, Penger A, Welch JM (2006) Propell Explos Pyrotech 31:188–195 Google Scholar
  66. 66.
    Karaghiosoff K, Klapötke TM, Mayer P, Piotrowski H, Polborn K, Willer RL, Weigand JJ (2006) J Org Chem 71:1295–1305 Google Scholar
  67. 67.
    Hammerl A, Klapötke TM (2002) Inorg Chem 41:906–912 Google Scholar
  68. 68.
    Thiele J (1892) Liebigs Ann 270:54–63 Google Scholar
  69. 69.
    Thiele J, Marais JT (1893) Justus Liebigs Ann Chem 273:144–160 Google Scholar
  70. 70.
    Thiele J (1893) Ber Dtsch Chem Ges 26:2645–2646 Google Scholar
  71. 71.
    Thiele J (1898) Justus Liebigs Ann Chem 303:57–75 Google Scholar
  72. 72.
    Hammerl A, Holl G, Klapötke TM, Mayer P, Noth H, Piotrowski H, Warchhold M (2002) Eur J Inorg Chem 834–845 Google Scholar
  73. 73.
    Hiskey MA, Goldman N, Stine JR (1998) J Energ Mater 16:119–127 Google Scholar
  74. 74.
    Peng Y, Wong C (1999) US Patent 5877300 CA 130:196656 Google Scholar
  75. 75.
    Hammerl A, Klapötke TM, Nöth H, Warchhod M, Holl G, Kaiser M, Ticmanis U (2001) Inorg Chem 3570–3575 Google Scholar
  76. 76.
    Hammerl A, Holl G, Kaiser M, Klapötke TM, Mayer P, Piotrowski H, Vogt M (2001) Naturforschung 847–856 Google Scholar
  77. 77.
    Hammerl A, Holl G, Kaiser M, Klapötke TM, Mayer P, Nöth H, Piotrowski H, Suter M (2001) Naturforschung 857–870 Google Scholar
  78. 78.
    Klapotke TM, Holl G (2001) Green Chem G75–G76 Google Scholar
  79. 79.
    Hammerl A, Hiskey MA, Holl G, Klapötke TM, Polborn K, Stierstorfer J, Weigand J (2005) Chem Mater 17:3784–3793 Google Scholar
  80. 80.
    Tappan BC, Ali AN, Son SF (2006) Propell Explos Pyrotech 31:163–168 Google Scholar
  81. 81.
    Ye C, Xiao J-C, Twamley B, Shreeve JM (2005) Chem Commun 2750–2752 Google Scholar
  82. 82.
    Hyoda S, Kita M, Sawada H, Nemugaki S, Otsuka S, Miyawaki Y, Ogawa T, Kubo Y (2000) US Patent 6040453, CA: 132:207845 Google Scholar
  83. 83.
    Hyoda S, Kita M, Sugino A, Ueta T, Sato K (2001) EU Patent 1162198, CA: 136:20077 Google Scholar
  84. 84.
    Hyoda S, Kita M, Swada H, Nemugaki S, Ueta T, Satoh K, Otsuka S, Miyawaki Y, Taniguchi H (2000) EU Patent Appl, EP 1016662, CA: 133:74021 Google Scholar
  85. 85.
    Torii S, Tsuyama M, Miyawaki Y, Kubo Y, Ogawa T (2000) Jpn Kokai Tokkyo Koho, JP 2000281662, CA 133:252440 Google Scholar
  86. 86.
    Friedrich M, Gálvez-Ruiz JC, Klapötke TM, Mayer P, Weber P, Weigand JJ (2005) Inorg Chem 44:8044–8052 Google Scholar
  87. 87.
    Hammerl A, Holl G, Kaiser M, Klapötke TM, Piotrowski H (2003) Z Anorg Allg Chem 629:2117–2121 Google Scholar
  88. 88.
    Kita M, Ueda T (2004) Jpn Kokai Tokkyo Koho, JP 2004067544, CA 140:217643 Google Scholar
  89. 89.
    Naud DL, Hiskey MA (2003) US Patent Appl Publ, 2003060634, CA:138:255236 Google Scholar
  90. 90.
    Highsmith TK, Hajik RM, Wardle RB, Lund GK, Blau RJ (1995) US Patent 5468866 Google Scholar
  91. 91.
    Gao Y, Ye C, Twamley B, Shreeve JM (2006) Chem-Eur J 12:9010 Google Scholar
  92. 92.
    Foss ME, Hirst EL, Jones JKN, Springall HD, Thomas AT, Urbanski T (1950) J Chem Soc 624–628 Google Scholar
  93. 93.
    Ang H-G, Fraenk W, Karaghiosoff K, Klapötke TM, Nöth H, Sprott J, Sutter M, Vogt M, Warchhold MZ (2002) Z Anorg Allg Chem 628:2901–2906 Google Scholar
  94. 94.
    Xue H, Twamley B, Shreeve JM (2006) Eur J Inorg Chem 2959–2965 Google Scholar
  95. 95.
    Chavez DE, Hiskey MA, Naud Di (2004) Propell Explos Pyrotech 29:209–215 Google Scholar
  96. 96.
    Oxley JC, Smith JL, Chen H (2002) Thermochim Acta 91–99 Google Scholar
  97. 97.
    Chavez DE, Hiskey MA, Gilardi RD (2004) Org Lett 6:2889–2891 Google Scholar
  98. 98.
    Chavez DE, Tappan BC, Hiskey MA, Son SF, Harry H, Montoya D, Hagelberg S (2005) Propell Explos Pyrotech 30:412–417 Google Scholar
  99. 99.
    Gao H, Wang R, Twamley B, Hiskey MA, Shreeve JM (2006) Chem Commun 4007–4009 Google Scholar
  100. 100.
    Kerth J, Löbbecke S (2002) Propell Explos Pyrotech 27:111–118 Google Scholar
  101. 101.
    Chavez DE, Hiskey MA, Gilardi RD (2000) Angew Chem Int Ed 39:1791–1793 Google Scholar
  102. 102.
    Huynh MHV, Hiskey MA, Chavez DE, Naud DL, Gilardi RD (2005) J Am Chem Soc 127:12537–12543 Google Scholar
  103. 103.
    Huynh MHV, Hiskey MA, Archuleta JG, Roemer EL, Gilardi R, Chavez DE, Naud DL, Gilardi RD (2004) Angew Chem Int Ed 43:5658–5661 Google Scholar
  104. 104.
    Miller DR, Swenson DC, Gillan EG (2004) J Am Chem Soc 126:5372–5373 Google Scholar
  105. 105.
    Huynh MHV, Hiskey MA, Hartline EL, Montoya DP, Gilardi R (2004) Angew Chem Int Ed 43:4924–4928 Google Scholar
  106. 106.
    Huynh MHV, Hiskey MA, Pollard CJ, Montoya DP, Hartline EL, Gilardi R (2004) J Energ Mater 22:217–229 Google Scholar
  107. 107.
    Frumkin AE, Churakov AM, Strelenko YA, Kachala VV, Tartakovsky VA (1999) Org Lett 1:721–724 Google Scholar
  108. 108.
    Archibald TG, Gilardi R, Baum K, George C (1990) J Org Chem 55:2920–2924 Google Scholar
  109. 109.
    Coburn MD, Hiskey MA, Archibald TG (1997) Waste Manag 17:143–146 Google Scholar
  110. 110.
    Hiskey MA, Coburn MD, Mitchell MA, Benicewicz BC (1992) J Heterocycl Chem 29:1855–1856 Google Scholar
  111. 111.
    Hiskey MA, Stincipher MM, Brown JE (1993) J Energ Mater 11:157–165 Google Scholar
  112. 112.
    Gilardi RD, Butcher RJ (1998) J Chem Crystallogr 28(3):163–169 Google Scholar
  113. 113.
    Coburn MD, Hiskey MA, Oxley JC, Smith JL, Zheng W, Rogers E (1998) J Energ Mater 16(2):73–99 Google Scholar
  114. 114.
    Jin C-M, Ye C, Piekarski C, Twamley B, Shreeve JM (2005) Eur J Inorg Chem 3760–3767 Google Scholar
  115. 115.
    Zhang M-X, Eaton PE, Gilardi R (2000) Angew Chem Int Ed 39(2):404–401 Google Scholar
  116. 116.
    Chung G, Schmidt MW, Gordon MS (2000) J Phys Chem A 104:5647–5650 Google Scholar
  117. 117.
    Fau S, Bartlett RJ (2001) J Phys Chem A 105:4096–4106 Google Scholar
  118. 118.
    Nguyen NT (2003) Coordinat Chem Rev 244:93–113 Google Scholar
  119. 119.
    Christe KO, Dixon DA, McLemore D, Wilson WW, Sheehy JA, Boatz JA (2000) J Fluor Chem 101:151–153 Google Scholar
  120. 120.
    Jones CB, Haiges R, Schroer T, Christe KO (2006) Angew Chem Int Ed 45:4981–4984 Google Scholar
  121. 121.
    Ju Y, Kumar D, Verma RS (2006) J Org Chem 71:6697–6700 Google Scholar
  122. 122.
    Muralidharan K, Omotowa BA, Twamley B, Piekarski C, Shreeve JM (2005) Chem Commun 5193–5195 Google Scholar
  123. 123.
    Göbel M, Karaghiosoff K, Klapötke TM (2006) Angew Chem Int Ed 45:6037–6040 Google Scholar
  124. 124.
    Gao H, Ye C, Winter RW, Gard GL, Sitzmann ME, Shreeve JM (2006) Eur J Inorg Chem 3221–3226 Google Scholar
  125. 125.
    Lukyanov OA, Shykova NI (2004) Russ Chem Bull Int Ed 53:566–568 Google Scholar
  126. 126.
    Gyeong S, Cho JR, Goh EM, Kim J-K (2005) Propell Explos Pyrotech 30:445–449 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Rajendra P. Singh
    • 1
  • Haixiang Gao
    • 2
  • Dayal T. Meshri
    • 1
  • Jean'ne M. Shreeve
    • 2
    Email author
  1. 1.Advance Research Chemicals, Inc.CatoosaUSA
  2. 2.Department of ChemistryUniversity of IdahoMoscowUSA

Personalised recommendations