Skip to main content

Sensitivities of High Energy Compounds

  • Chapter
  • First Online:
Book cover High Energy Density Materials

Part of the book series: Structure and Bonding ((STRUCTURE,volume 125))

Abstract

The article presents a survey of the development trends in studies of sensitivity (initiation reactivity) of energetic materials (EMs) over the last nine years, focusing mainly on impact and shock sensitivities. Attention is given to the initiation by heat, laser, electrostatic discharge, impact and shock, including the influence of hydrostatic compression, crystal defects, molecular structure and desensitizing admixtures on the initiation reactivity. Problems of the initiation of nitromethane are examined with a special accent. It is stated that one of the best-developed theories for such studies is Dlott's Model of the Multiphonon Up-Pumping. Also significant is the model based on Non-Equilibrium Zeldovich–von Neuman–Döring theory. Very important are approaches devised by Politzer and Murray, updated by Price et al. as a hybrid model of prediction of the impact sensitivity of CHNO explosives. The physical organic chemistry approach to the sensitivity problem (POC model) is discussed with special emphasis. In this way it has been found that the electron structure and close neighborhood of the primarily leaving nitro group are dominant factors in the initiation by shock, electric spark and heat of polynitro compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dlott DD (2005) Multi-phonon up-pumping in energetic materials. In: Shaw RW, Brill TB, Thompson DL (eds) Overviews of recent research on energetic materials. Adv Ser Phys Chem, vol 16. World Sci Publ Co Ptc Ltd., Singapore, p 303

    Chapter  Google Scholar 

  2. Politzer P, Murray J (eds) (2003) Theor Comp Chem, vol 13. Energetic materials, Part 2, Detonation, combustion. Elsevier, Amsterdam

    Google Scholar 

  3. Fried LE, Manaa MR (2005) Modeling the reactions of energetic materials in the condensed phase. In: Shaw RW, Brill TB, Thompson DL (eds) Overviews of recent research on energetic materials. Adv Ser Phys Chem, vol 16. World Sci Publ Co Ptc Ltd., Singapore, p 275

    Chapter  Google Scholar 

  4. Rice BM (2005) Application of theoretical chemistry in assesing energetic materials for performance and sensitivity. In: Shaw RW, Brill TB, Thompson DL (eds) Overviews of recent research on energetic materials. Adv Ser Phys Chem, vol 16. World Sci Publ Co Ptc Ltd., Singapore, p 335

    Chapter  Google Scholar 

  5. Tarver CM, Manaa RM (2004) Chemistry of detonation waves in condensed phase explosives. In: Manaa RM (ed) Chemistry at extreme conditions. Elsevier, Amsterdam, p 495

    Google Scholar 

  6. Zeman S (2003) A study of chemical micro-mechanisms of initiation of organic polynitro compounds. In: Politzer P, Murray J (eds) Theor Comp Chemistry, vol 13, Energetic materials, Part 2, Detonation, combustion. Elsevier, Amsterdam, p 25

    Chapter  Google Scholar 

  7. Zeman S (2006) J Hazard Mater A132:155

    Article  CAS  Google Scholar 

  8. Zeman S, Friedl Z, Kočí J, Pelikán V, Majzlík J (2006) Cent Eur J Energ Mater 3(3):27

    CAS  Google Scholar 

  9. Zeman S (2002) Thermochim Acta 384:137

    Article  CAS  Google Scholar 

  10. Zeman S (1999) Thermochim Acta 333:121

    Article  CAS  Google Scholar 

  11. Manelis GB, Nazin GM, Rubtsov YI, Strunin VA (1996) Thermal decomposition and combustion of explosives and powders. Izdat Nauka, Moscow

    Google Scholar 

  12. Zeman S, Huczala R, Friedl Z (2002) J Energet Mater 20:53

    Article  CAS  Google Scholar 

  13. Maksimov YY, Kogut EN (1979) Tr Mosk, Khim-Tekhnol Inst Mendeleeva 104:30

    CAS  Google Scholar 

  14. Shu Y, Korssounskii BL, Nazin GM (2004) Russ Chem Rev 73(3):293

    Article  CAS  Google Scholar 

  15. Kuklja MM (2001) J Phys Chem B105:10159

    Google Scholar 

  16. Zeman S (2000) Propellants Explos Pyrotech 25:66

    Article  CAS  Google Scholar 

  17. Chakraborty D, Muller RP, Dasgupta S, Goddard WA III (2000) J Phys Chem A104:2261

    Google Scholar 

  18. Zhang S, Nguyen HN, Truong TN (2003) J Phys Chem A107:2981

    Google Scholar 

  19. Lur'e BA, Svetlov BS (1967) Tr Mosk, Khim-Tekhnol Inst Mendeleeva 53:40

    Google Scholar 

  20. Nazin GM, Prokudin VG, Manelis GB (2000) Russ Chem Bull 49(2):234

    Article  CAS  Google Scholar 

  21. Park J, Chakraborty D, Jamindra S, Xia WS, Lin MC, Bedford C (2002) Thermochim Acta 384:101

    Article  CAS  Google Scholar 

  22. Sorescu DC, Alavi S, Thompson DL (2005) Theoretical and computational studies of energetic salts. In: Manaa MR (ed) Chemistry at extreme conditions. Elsevier, Amsterdam, p 431

    Chapter  Google Scholar 

  23. Oxley JC, Smith JL, Chen H (2002) Thermochim Acta 384:91

    Article  CAS  Google Scholar 

  24. Loebbecke S, Schuppler H, Schweikert W (2003) J Thermal Anal Calorim 72:453

    Article  CAS  Google Scholar 

  25. Gong XD, Xiao HM, Dong HS (1998) Chin J Chem 16(4):311

    CAS  Google Scholar 

  26. Gong XD, Xiao HM, Dong HS (1999) Chem Res Chin Univ 15(2):152

    CAS  Google Scholar 

  27. Gu ZM, Fan JF, Xiao HM, Dong HS (2000) Chem Res Chin Univ 16:21

    CAS  Google Scholar 

  28. Xiao H, Fan J, Gu Z, Dong H (1998) Chem Phys 226:15

    Article  CAS  Google Scholar 

  29. Fan J, Gu Z, Xiao H, Dong H (1998) J Phys Org Chem 11:177

    Article  CAS  Google Scholar 

  30. Dubnikova F, Kosloff R, Almong J, Zeiri Y, Boese R, Itzhaky H, Alf A, Keiman E (2005) J Am Chem Soc 127:1146

    Article  CAS  Google Scholar 

  31. Adri CT, van Duin ACT, Zeiri Y, Dubnikova F, Kosloff R, Goddard W (2005) J Am Chem Soc 127:11053

    Article  CAS  Google Scholar 

  32. Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J (2005) J Phys Chem A109:2964

    Google Scholar 

  33. Xu XJ, Xiao HM, Ju XH, Gong XD (2005) Youji Huaxue 25(1):536. Quoted in: Chem Abstr (2006) 144:173738

    Google Scholar 

  34. Manaa MR, Fried LF, Melius CF, Elstner M, Frauenheim T (2002) J Phys Chem A106:9024

    Google Scholar 

  35. Manaa MR, Fried LE, Reed EJ (2003) J Comput Aided Mater Des 10:75

    Article  CAS  Google Scholar 

  36. Reed EJ, Fried LE, Manaa MR, Joannopoulos JD (2005) A multi-scale approach to molecular dynamic simulations of shock waves. In: Manaa RM (ed) Chemistry at extreme conditions. Elsevier, Amsterdam, p 297

    Chapter  Google Scholar 

  37. Čapková P, Pospíšil M, Vávra P, Zeman S (2003) Characterization of explosive materials using molecular dynamics simulations. In: Politzer P, Murray J (eds) Theoretical and computational chemistry, vol 13, Energetic Materials, Part 1, Decomposition, crystal and molecular properties. Elsevier, Amsterdam, p 49

    Chapter  Google Scholar 

  38. Pospíšil M, Vávra P (2005) In: Vágenknecht J (ed) Proc 8th Seminar New Trends in Research of Energetic Materials. Univ. of Pardubice, p 302

    Google Scholar 

  39. Sorescu DC, Rice BM, Thompson DL (2003) Molecular dynamic simulations of energetic materials. In: Politzer P, Murray J (eds) Theoretical and computational chemistry, vol 13, Energetic Materials, Part 1, Decomposition, crystal and molecular properties. Elsevier, Amsterdam, p 125

    Chapter  Google Scholar 

  40. Tarzhanov VI (2003) Fiz Goreniya Vzryva 39(2):3

    CAS  Google Scholar 

  41. Bourne NK (2000) Proc R Soc London A457:1401

    Google Scholar 

  42. Iliushin MA, Tselinskii IV (2000) Zh Prikl Khim 73(3):1233

    Google Scholar 

  43. Aluker ED, Aduev BP, Belokurov GM, Tupitsin EV (2005) Fiz Goreniya Vryva 41(2):116

    Google Scholar 

  44. Aduev BP, Aluker ED, Belokurov GM, Zakharov YA, Krechetov AG (1999) J Experim Theor Phys 89(1):906

    Article  CAS  Google Scholar 

  45. Kuklja MM, Aduev BP, Aluker ED, Krasheninin VI, Krechetov AG, Mitrofanov AY (2001) J Appl Phys 89(7):4156

    Article  CAS  Google Scholar 

  46. Zakharov YA, Aluker ED, Aduev BP, Belokurova GM, Krechetov AG (2002) Predvryvnye yavleniya v azidakh tyazholykh metallov (Pre-explosion effects in the heavy metal azides), Tsentr ekonom. issled. Khimmash, Moscow

    Google Scholar 

  47. Aduev BP, Aluker ED, Krechetov AG, Mitrofanov AY (2003) Fiz Goreniya Vzryva 39(1):105

    CAS  Google Scholar 

  48. Aluker ED, Krechetov AG, Mitrofanov AY, Pashpekin AS (2004) Techn Phys Letters 30(4):772

    Article  CAS  Google Scholar 

  49. Aluker ED, Aduev BP, Krechetov AG, Mitrofanov AY, Zakharov YA (2006) Early stages of explosive decomposition of energetic materials. In: Jiang SZ (ed) Decomposition of energetic materials, Focus on Combustion research. Nova Science Publ., Inc., New York

    Google Scholar 

  50. Lisitsyn VM, Oleshko VI, Tsipilev VP (2005) Rus Phys J 48(2):109

    Article  CAS  Google Scholar 

  51. Zhilin AY, Ilyushin MA, Tselinskii IV, Kozlov AS, Lisker IS (2003) Rus J Appl Chem 76(4):572

    Article  CAS  Google Scholar 

  52. Korepanov VI, Lisitsyn VM, Oleshko VI, Tsipilev VP (2004) Fiz Goreniya Vryva 40(1):126

    CAS  Google Scholar 

  53. Nagayama K, Inou K, Nakahara M (2001) In: Chiba A, Tanimura S, Hokamoto K (eds) Impact Engineering and Application. Elsevier, Amsterdam, p 515

    Google Scholar 

  54. Kubota S, Nagayama K, Shimada H, Matsui K (2001) In: Chiba A, Tanimura S, Hokamoto K (eds) Impact Engineering and Application. Elsevier, New York, p 521

    Google Scholar 

  55. Capellos C (1998) In: Proc 11th Detonation Symp, Snowmass Village, Colorado, p 3

    Google Scholar 

  56. Yu H, Hambir SA, Dlott DD (2006) Ultrafast dynamics of nanotechnology energetic materials. In: Thadhani NN, Armstrong RW, Gash AE, Wilson WH (eds) Multifunctional energetic materials. Mat Res Soc Symp Proc 896:71

    Google Scholar 

  57. Skinner D, Olson D, Block-Bolten A (1997) Propellants Explos Pyrotech 23:34

    Article  Google Scholar 

  58. Sorescu DC, Rice BM, Thompson DL (1999) J Phys Chem B103:6783

    Google Scholar 

  59. Kuklja MM, Kunz AB (2000) J Appl Phys 87(1):2215

    Article  CAS  Google Scholar 

  60. Manaa MR (2003) Initiation and decomposition mechanism of energetic materials. In: Politzer P, Murray J (eds) Theoretical and computational chemistry, Vol. 13, Energetic materials, Part 2, Detonation, combustion. Elsevier, Amsterdam, p 71

    Chapter  Google Scholar 

  61. Goto N, Yamawaki H, Tonokura K, Wakabayashi K, Yoshida M, Koshi M (2004) Mat Sci Forum, Vols. 465–466. Trans Tech Publ, Switzerland, p 189

    Google Scholar 

  62. Armstrong RW, Elban WL (2004) Dislocation in energetic materials. In: Nabarro FRN, Hirth JP (eds) Dislocation in solids. Elsevier, Amsterdam, p 404

    Google Scholar 

  63. Armstrong RW, Elban WL (2006) Mater Sci Technol 22:381

    Article  CAS  Google Scholar 

  64. Kunz AB, Kuklja MM, Botcher TR, Russell TP (2002) Thermochim Acta 384:279

    Article  Google Scholar 

  65. Kuklja MM, Kunz B (2001) J Appl Phys 89:4962

    Article  CAS  Google Scholar 

  66. Kuklja MM, Rashkeev SN, Zerilli FJ (2006) Appl Phys Lett 89:071904

    Article  CAS  Google Scholar 

  67. Coffey CS (2003) Initiation due to plastic deformation from shock or impact. In: Politzer P, Murray J (eds) Theoretical and computational chemistry, vol 13, Energetic materials, Part 2, Detonation, combustion. Elsevier, Amsterdam, p 101

    Chapter  Google Scholar 

  68. Coffey CS (1998) Khim Fiz 17(1):4

    CAS  Google Scholar 

  69. Kuklja MM, Kunz AB (2000) J Phys Chem 61:35

    CAS  Google Scholar 

  70. Kuklja MM, Stefanovich EV, Kunz AB (2000) J Chem Phys 112(7):3417

    Article  CAS  Google Scholar 

  71. Kuklja MM, Kunz AB (1999) J Phys Chem B103:8424

    Google Scholar 

  72. Holmes W, Francis RS, Fayer MD (1999) J Chem Phys 110(7):3576

    Article  CAS  Google Scholar 

  73. Dlott DD (2003) Fast molecular processes in energetic materials. In: Politzer P, Murray J (eds) Theoretical and computational chemistry, vol 13, Energetic materials, Part 2, Detonation, combustion. Elsevier, Amsterdam, p 125

    Chapter  Google Scholar 

  74. McNesby KL, Coffey CS (1997) J Phys Chem B101:3097

    Google Scholar 

  75. Ye S, Tonokura K, Koshi M (2003) Combust Flame 132:240

    Article  CAS  Google Scholar 

  76. Alper HE, Abu-Awwad F, Politzer P (1999) J Phys Chem B103:9738

    Google Scholar 

  77. Politzer P, Murray JS, Seminario JM, Lane P, Grice ME, Concha MC (2001) J Mol Struct (Theochem) 573:1

    Article  CAS  Google Scholar 

  78. Politzer P, Boyd S (2002) Struct Chem 13(2):105

    Article  CAS  Google Scholar 

  79. Murray JS, Lane P, Politzer P (1998) Mol Phys 93(2):187

    Article  CAS  Google Scholar 

  80. Politzer P, Murray JS (2003) Sensitivity correlations. In: Politzer P, Murray J (eds) Theoretical and computational chemistry, vol 13, Energetic materials, Part 2, Detonation, combustion. Elsevier, Amsterdam, p 5

    Chapter  Google Scholar 

  81. Politzer P, Lane P, Concha MC (2005) Computtional determination of the energetics of boron and aluminium combustion reaction. In: Manaa RM (ed) Chemistry at extreme conditions. Elsevier, Amsterdam, p 473

    Chapter  Google Scholar 

  82. Rice BM, Sahu S, Owens FJ (2002) J Mol Struct (Theochem) 583:69

    Article  CAS  Google Scholar 

  83. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Annu Rev Mater Res 31:291

    Article  CAS  Google Scholar 

  84. Rice BM, Hare JJ (2002) J Phys Chem A106:1770

    Google Scholar 

  85. Edwars J, Eybl C, Johnson B (2004) Int J Quant Chem 100:713

    Article  CAS  Google Scholar 

  86. Chen ZX, Xiao H, Yang S (1999) Chem Phys 250:243

    Article  Google Scholar 

  87. Türker L (2005) J Mol Struct (Theochem) 725:85

    Article  CAS  Google Scholar 

  88. Xiao MM, Fan JF, Gong XD (1997) Propellants Explos Pyrotech 22:360

    Article  CAS  Google Scholar 

  89. Zhang C, Shu Y, Huang Y, Zhao X, Dong H (2005) J Phys Chem B109:8978

    Google Scholar 

  90. Zhang C, Shu Y, Wang X (2005) Energ Mater 23:107

    Article  CAS  Google Scholar 

  91. Xiao HM, Li JS, Dong HS (2000) Acta Chim Sin 58(3):297

    CAS  Google Scholar 

  92. Loginov NP, Surkova SN (2006) Fiz Goreniya Vzryva 42(1):100

    CAS  Google Scholar 

  93. Vaullerin M, Espagnacq A (1998) Propellants Explos Pyrotech 23:237

    Article  CAS  Google Scholar 

  94. Cho SG, No KT, Goh EM, Kim JK, Shin JH, Joo YD, Seong S (2005) Bull Korean Chem Soc 26(3):399

    Article  CAS  Google Scholar 

  95. Keshavarsz MH, Jaafari M (2006) Propellants Explos Pyrotech 31:216

    Article  CAS  Google Scholar 

  96. Wolker FE (1998) Khim Fiz 17(1):25

    Google Scholar 

  97. Zeman S (1999) J Energ Mater 17:305

    Article  CAS  Google Scholar 

  98. Klimenko VY, Yakoventsev MA, Dremin AN (1993) Khim Fizika 12:671

    CAS  Google Scholar 

  99. Klimenko VY (1998) Khim Fizika 17:11

    CAS  Google Scholar 

  100. Dremin AN (1999) Toward detonation theory. Springer, Berlin Heidelberg New York

    Google Scholar 

  101. Hong X, Hill JR, Dlot DD (1995) Vibrational Energy Transfer in High Explosives: Nitromethane. In: Brill TB, Russell TP, Tao VC, Wardl RB (eds) Mat Res Soc Symp Proc 418:357

    Google Scholar 

  102. Tarver CM (1997) J Phys Chem A101:4845

    Google Scholar 

  103. Tarver CM, Utriew PA, Forbes JW (2001) Khim Fiz 20(3):38

    CAS  Google Scholar 

  104. Koshi M, Ye S, Widijaja J, Tonokura K (2001) Estimation of shock sensitivity based on molecular properties. In: Chiba A, Tanimura S, Hokamoto K (eds) Impact engineering and application. Elsevier, Amsterdam, p 175

    Google Scholar 

  105. Kuklja MM (2001) Electronic excitations in initiation of chemistry in molecular solids. In: Bulatov V, Cleri F, Colombo L, Lewi L, Mousseau N (eds) Advances in materials theory and modeling, bridging over ultiple-length and time scales. Mat Res Soc Symp Proc 677:AA2.4.1

    Google Scholar 

  106. Mathieu D, Martin P, La Hargue J-P (2005) Phys Scripta T118:171

    Article  CAS  Google Scholar 

  107. Méreau R, Mathieu D, Elstner M, Frauenheim T (2004) Phys Rev B69:104101

    Google Scholar 

  108. White CT, Swanson DR, Robertson DH (2001) Molecular dynamics simulations of detonations. In: Dressler RA (ed) Chemical dynamics in extreme environments. World Sci., Singapore, p 547

    Chapter  Google Scholar 

  109. van der Hejden AEDM, Bouma RHB, van der Steen AC (2004) Propellants Explos Pyrotech 29:304

    Article  CAS  Google Scholar 

  110. Jindal VK, Dlott DD (1998) J Appl Phys 83(5):5203

    Article  CAS  Google Scholar 

  111. Yoo CS, Holmes NC, Souers PC, Wu CJ, Ree FH, Dick JJ (2000) J Appl Phys 88(01):70

    Article  CAS  Google Scholar 

  112. Rice BM, Mattson W, Trevino SF (1998) Phys Rev E57(1):5106

    Google Scholar 

  113. Engelke R, Blais NC, Sheffield SA, Sander RK (2001) J Phys Chem A105:6955

    Google Scholar 

  114. Andreev SG (1998) Fiz Khim 17(1):55

    CAS  Google Scholar 

  115. Wu CJ, Ree FH, Yoo CS (2004) Propellants Explos Pyrotech 29:296

    Article  CAS  Google Scholar 

  116. Dreger ZA, Gruzdkov YA, Gupta YM (2002) J Phys Chem B106:247

    Google Scholar 

  117. Raikova VM, Likholatov EA (2005) Propellants Explos Pyrotech 30:250

    Article  CAS  Google Scholar 

  118. Hu WF, He TJ, Chen DM, Liu FC (2002) J Phys Chem A106(32):7294

    Google Scholar 

  119. Nguen MT, Le HT, Hajgato B, Veszpremi T, Lin MC (2003) J Phys Chem A107:4286

    Google Scholar 

  120. Arenas JF, Otero JC, Pealez D, Soto J (2003) J Chem Phys 119(15):7814

    Article  CAS  Google Scholar 

  121. Reed EJ, Joannopoulos JD, Laurence E (2000) Phys Rev B: Condens Matter Mater Phys 62:16500

    Article  CAS  Google Scholar 

  122. Margetis D, Kaxiras E, Elstner M, Frauenheim T, Manaa MR (2002) J Chem Phys 117:788

    Article  CAS  Google Scholar 

  123. Zhang XX, Bauer SH (1997) J Phys Chem B101:8717

    Google Scholar 

  124. Glaborg P, Bendsen AB, Miller JA (1999) Int J Chem Kinet 31:591

    Article  Google Scholar 

  125. Winey JM, Gupta YM (1997) J Phys Chem B101:10733

    Google Scholar 

  126. Blais NC, Engelke R, Sheffield SA (1997) J Phys Chem A101:8285

    Google Scholar 

  127. Bouyer V, Darbord I, Herve P, Baudin G, Le Gallic C, Clément F, Chavent G (2006) Combust Flame 144:139

    Article  CAS  Google Scholar 

  128. Leiber CO (2003) Assesment of safety and risk with a microscopic model of detonation. Elsevier, Amsterdam

    Google Scholar 

  129. Bharatam PV, Lammertsma K (2003) Nitro-aci-nitro tautomerizm in high-energetic compounds. In: Politzer P, Murray J (eds) Theoretical and computational chemistry, vol 13, Energetic materials, Part 1, Detonation, combustion. Elsevier, Amsterdam, p 61

    Google Scholar 

  130. Ferm EN (1999) Propellants Explos Pyrotech 24:1

    Article  Google Scholar 

  131. Gruzdkov YA, Gupta YM (1998) J Phys Chem A102:2322

    Google Scholar 

  132. Woods E III, Dessiaterik Y, Miller RE, Baer T (2001) J Phys Chem A105:8273

    Google Scholar 

  133. Engelke R, Schiferel D, Storm CB, Earl WI (1988) J Phys Chem 92:6815

    Article  CAS  Google Scholar 

  134. Nabatov SS, Zakushev VV, Dremin AN (1975) Fiz Goreniya Vryva 11:300

    CAS  Google Scholar 

  135. Engelke R, Sheffield SA, Stacy HL, Quintana JP (2005) Phys Fluids 17:096102

    Article  CAS  Google Scholar 

  136. Cudzilo S, Trzcinski WA (1999) Pol J Tech Phys 40(2):223

    CAS  Google Scholar 

  137. Andreev SG, Babkin AV, Baum FN, Imkhovik NA, Kobylkin IF, Kolpakov VI, Ladov SV, Odintsov VA, Orlenko LP, Okhitin VN, Selivanov VV, Solovev VS, Stanyukovich KP, Chelyshev VP, Shekhte BI (2002) Fizika vzryva, Tom 1 (Physics of explosion, vol 1). Fizmatlit, Moscow

    Google Scholar 

  138. Licht H-H (2000) Propellants Explos Pyrotech 25:126

    Article  CAS  Google Scholar 

  139. Yang S, Yue S (2003) HanNeg CaiLiao 11(4):231

    CAS  Google Scholar 

  140. Agrawal JP (1998) Progr Energy Combust Sci 24:1

    Article  CAS  Google Scholar 

  141. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) Thermochim Acta 384:187

    Article  CAS  Google Scholar 

  142. Chapman RD, Wilson WS, Fronabarger JW, Merwin LH, Ostrom GS (2002) Thermochim Acta 384:229

    Article  CAS  Google Scholar 

  143. Talawar MB, Sivabalan R, Asthana SN, Singh H (2005) Fiz Goreniya Vzryva 41(3):29

    CAS  Google Scholar 

  144. Zeman S (1980) Thermochim Acta 41:199

    Article  CAS  Google Scholar 

  145. Zeman S (1998) In: Proc 29th Int Annual Conf on ICT, Karlsruhe, p 141/1

    Google Scholar 

  146. Zeman S, Krupka M (2003) Propellants Explos Pyrotech 28:301

    Article  CAS  Google Scholar 

  147. Zeman S, Krupka M (2003) Propellants Explos Pyrotech 28:249

    Article  CAS  Google Scholar 

  148. Clawson JS, Strohmeier M, Stueber D, Orend AM, Baric DH, Asay BA, Hiskey MA, Pugmire RJ, Grant DM (2002) J Phys Chem A106:6352

    Google Scholar 

  149. Zeman S, Pešková M (2005) Cent Eur J Energ Mater 2(3):71

    CAS  Google Scholar 

  150. Zeman S (1997) Thermochim Acta 290:199

    Article  CAS  Google Scholar 

  151. Zeman S, Friedl Z (2004) J Thermal Anal Calorim 77:217

    Article  CAS  Google Scholar 

  152. Zeman S, Kohlíček P, Maranda M (2003) Thermochim Acta 398:185

    Article  CAS  Google Scholar 

  153. Kissinger HE (1957) Anal Chem 29:1702

    Article  CAS  Google Scholar 

  154. Zeman S (2003) Propellants Explos Pyrotech 28:308

    Article  CAS  Google Scholar 

  155. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23

    Article  CAS  Google Scholar 

  156. Pepekin VI, Makhov NM, Lebedev YA (1977) Dokl Akad Nauk SSSR 230:852

    Google Scholar 

  157. TITAN (2001) v.1.0.8. Wavefunction. Schrödinger, USA

    Google Scholar 

  158. Zeman S, Zemanová E (2004) J Energ Mater 22:171

    Article  CAS  Google Scholar 

  159. Zeman S, Friedl Z, Roháč M (2007) Thermochim Acta 451:105

    Article  CAS  Google Scholar 

  160. Zeman S, Friedl Z (2004) Centr Eur J Energet Mater 1:1

    Google Scholar 

  161. Galwey AK, Brown ME (1999) Thermal decomposition of ionic solids. Elsevier, Amsterdam, p 22

    Google Scholar 

  162. Kohno Y, Ueda K, Imamura A (1996) J Phys Chem 100:4701

    Article  CAS  Google Scholar 

  163. Bondi A (1968) Physical properties of molecular crystals, liquids, and glasses. Wiley, New York

    Google Scholar 

  164. Zeman S, Shu Y, Wang X (2005) Cent Eur J Energ Mater 2(4):47

    CAS  Google Scholar 

  165. Belmas R, Bry A, David C, Gautier L, Keromnés A, Thevenot G, Le Gallic C, Chenault J, Guillaument G (2004) Propellants Explos Pyrotech 29:282

    Article  CAS  Google Scholar 

  166. Koroban VA, Maksimov YY (1968) Khim Khim Tekhnol 11:1032

    CAS  Google Scholar 

  167. Semenov NN (1958) Some problems of chemical kinetics and of reaction capability. USSR Acad Sci, Moscow, p 41, p 101

    Google Scholar 

  168. Zeman S, Varga R (2005) Cent Eur J Energ Mater 2(4):77

    CAS  Google Scholar 

  169. Zeman S, Roháč M (2006) HanNeng CaiLiao 14(1):361

    CAS  Google Scholar 

  170. Zeman S (1993) Thermochim Acta 216:157

    Article  CAS  Google Scholar 

  171. Zeman S (2006) Proc 34th NATAS Annual Conf Thermal Anal Appl, Bowling Green, August 8th, p 074.1.05.208/1

    Google Scholar 

  172. Ou Y, Wang C, Pan Z, Chen B (1999) HanNeng CaiLiao 7:100

    CAS  Google Scholar 

  173. Zeman S, Valenta P, Zema V, Jakubko J, Kamenský Z (1998) HanNeng CaiLiao 6:118

    CAS  Google Scholar 

  174. Zeman V, Kočí J, Zeman S (1999) HanNeng CaiLiao 7:127

    CAS  Google Scholar 

  175. Zeman V, Kočí J, Zeman S (1999) HanNeng CaiLiao 7:172

    CAS  Google Scholar 

  176. Zeman S, Kočí J (2000) HanNeng CaiLiao 8:18

    CAS  Google Scholar 

  177. Kočí J, Zeman V, Zeman S (2001) HanNeg CaiLiao 9:60

    Google Scholar 

  178. Wang G-X, Xiao HM, Xu X-J, Ju XH (2006) Propellants Explos Pyrotech 31(2):102

    Article  CAS  Google Scholar 

  179. Zeman S, Kočí J, Pelikán V, Majzlík J (2006) Cent Eur J Energ Mater 3(3):45

    CAS  Google Scholar 

  180. Auzanneau M, Roux M (1995) Propellants Explos Pyrotech 20:96

    Article  CAS  Google Scholar 

  181. Varga R, Zeman S (2006) J Hazard Mater A132:165

    Article  CAS  Google Scholar 

  182. Varga R, Zeman S, Kouba M (2006) J Hazard Mater A137:1345

    Article  CAS  Google Scholar 

  183. Chen Z-X, Xiao H (2000) Int J Quantum Chem 79:350

    Article  CAS  Google Scholar 

  184. Bulusu S, Autera JR (1983) J Energ Mater 1:133

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svatopluk Zeman .

Editor information

T. M. Klapötke

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zeman, S. (2007). Sensitivities of High Energy Compounds. In: Klapötke, T.M. (eds) High Energy Density Materials. Structure and Bonding, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2006_052

Download citation

Publish with us

Policies and ethics