Advertisement

Sensitivities of High Energy Compounds

  • Svatopluk ZemanEmail author
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 125)

Abstract

The article presents a survey of the development trends in studies of sensitivity (initiation reactivity) of energetic materials (EMs) over the last nine years, focusing mainly on impact and shock sensitivities. Attention is given to the initiation by heat, laser, electrostatic discharge, impact and shock, including the influence of hydrostatic compression, crystal defects, molecular structure and desensitizing admixtures on the initiation reactivity. Problems of the initiation of nitromethane are examined with a special accent. It is stated that one of the best-developed theories for such studies is Dlott's Model of the Multiphonon Up-Pumping. Also significant is the model based on Non-Equilibrium Zeldovich–von Neuman–Döring theory. Very important are approaches devised by Politzer and Murray, updated by Price et al. as a hybrid model of prediction of the impact sensitivity of CHNO explosives. The physical organic chemistry approach to the sensitivity problem (POC model) is discussed with special emphasis. In this way it has been found that the electron structure and close neighborhood of the primarily leaving nitro group are dominant factors in the initiation by shock, electric spark and heat of polynitro compounds.

Detonation Energetic materials Electric spark Impact Shock Sensitivity Thermal decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dlott DD (2005) Multi-phonon up-pumping in energetic materials. In: Shaw RW, Brill TB, Thompson DL (eds) Overviews of recent research on energetic materials. Adv Ser Phys Chem, vol 16. World Sci Publ Co Ptc Ltd., Singapore, p 303 CrossRefGoogle Scholar
  2. 2.
    Politzer P, Murray J (eds) (2003) Theor Comp Chem, vol 13. Energetic materials, Part 2, Detonation, combustion. Elsevier, Amsterdam Google Scholar
  3. 3.
    Fried LE, Manaa MR (2005) Modeling the reactions of energetic materials in the condensed phase. In: Shaw RW, Brill TB, Thompson DL (eds) Overviews of recent research on energetic materials. Adv Ser Phys Chem, vol 16. World Sci Publ Co Ptc Ltd., Singapore, p 275 CrossRefGoogle Scholar
  4. 4.
    Rice BM (2005) Application of theoretical chemistry in assesing energetic materials for performance and sensitivity. In: Shaw RW, Brill TB, Thompson DL (eds) Overviews of recent research on energetic materials. Adv Ser Phys Chem, vol 16. World Sci Publ Co Ptc Ltd., Singapore, p 335 CrossRefGoogle Scholar
  5. 5.
    Tarver CM, Manaa RM (2004) Chemistry of detonation waves in condensed phase explosives. In: Manaa RM (ed) Chemistry at extreme conditions. Elsevier, Amsterdam, p 495 Google Scholar
  6. 6.
    Zeman S (2003) A study of chemical micro-mechanisms of initiation of organic polynitro compounds. In: Politzer P, Murray J (eds) Theor Comp Chemistry, vol 13, Energetic materials, Part 2, Detonation, combustion. Elsevier, Amsterdam, p 25 CrossRefGoogle Scholar
  7. 7.
    Zeman S (2006) J Hazard Mater A132:155 CrossRefGoogle Scholar
  8. 8.
    Zeman S, Friedl Z, Kočí J, Pelikán V, Majzlík J (2006) Cent Eur J Energ Mater 3(3):27 Google Scholar
  9. 9.
    Zeman S (2002) Thermochim Acta 384:137 CrossRefGoogle Scholar
  10. 10.
    Zeman S (1999) Thermochim Acta 333:121 CrossRefGoogle Scholar
  11. 11.
    Manelis GB, Nazin GM, Rubtsov YI, Strunin VA (1996) Thermal decomposition and combustion of explosives and powders. Izdat Nauka, Moscow Google Scholar
  12. 12.
    Zeman S, Huczala R, Friedl Z (2002) J Energet Mater 20:53 CrossRefGoogle Scholar
  13. 13.
    Maksimov YY, Kogut EN (1979) Tr Mosk, Khim-Tekhnol Inst Mendeleeva 104:30 Google Scholar
  14. 14.
    Shu Y, Korssounskii BL, Nazin GM (2004) Russ Chem Rev 73(3):293 CrossRefGoogle Scholar
  15. 15.
    Kuklja MM (2001) J Phys Chem B105:10159 Google Scholar
  16. 16.
    Zeman S (2000) Propellants Explos Pyrotech 25:66 CrossRefGoogle Scholar
  17. 17.
    Chakraborty D, Muller RP, Dasgupta S, Goddard WA III (2000) J Phys Chem A104:2261 Google Scholar
  18. 18.
    Zhang S, Nguyen HN, Truong TN (2003) J Phys Chem A107:2981 Google Scholar
  19. 19.
    Lur'e BA, Svetlov BS (1967) Tr Mosk, Khim-Tekhnol Inst Mendeleeva 53:40 Google Scholar
  20. 20.
    Nazin GM, Prokudin VG, Manelis GB (2000) Russ Chem Bull 49(2):234 CrossRefGoogle Scholar
  21. 21.
    Park J, Chakraborty D, Jamindra S, Xia WS, Lin MC, Bedford C (2002) Thermochim Acta 384:101 CrossRefGoogle Scholar
  22. 22.
    Sorescu DC, Alavi S, Thompson DL (2005) Theoretical and computational studies of energetic salts. In: Manaa MR (ed) Chemistry at extreme conditions. Elsevier, Amsterdam, p 431 CrossRefGoogle Scholar
  23. 23.
    Oxley JC, Smith JL, Chen H (2002) Thermochim Acta 384:91 CrossRefGoogle Scholar
  24. 24.
    Loebbecke S, Schuppler H, Schweikert W (2003) J Thermal Anal Calorim 72:453 CrossRefGoogle Scholar
  25. 25.
    Gong XD, Xiao HM, Dong HS (1998) Chin J Chem 16(4):311 Google Scholar
  26. 26.
    Gong XD, Xiao HM, Dong HS (1999) Chem Res Chin Univ 15(2):152 Google Scholar
  27. 27.
    Gu ZM, Fan JF, Xiao HM, Dong HS (2000) Chem Res Chin Univ 16:21 Google Scholar
  28. 28.
    Xiao H, Fan J, Gu Z, Dong H (1998) Chem Phys 226:15 CrossRefGoogle Scholar
  29. 29.
    Fan J, Gu Z, Xiao H, Dong H (1998) J Phys Org Chem 11:177 CrossRefGoogle Scholar
  30. 30.
    Dubnikova F, Kosloff R, Almong J, Zeiri Y, Boese R, Itzhaky H, Alf A, Keiman E (2005) J Am Chem Soc 127:1146 CrossRefGoogle Scholar
  31. 31.
    Adri CT, van Duin ACT, Zeiri Y, Dubnikova F, Kosloff R, Goddard W (2005) J Am Chem Soc 127:11053 CrossRefGoogle Scholar
  32. 32.
    Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J (2005) J Phys Chem A109:2964 Google Scholar
  33. 33.
    Xu XJ, Xiao HM, Ju XH, Gong XD (2005) Youji Huaxue 25(1):536. Quoted in: Chem Abstr (2006) 144:173738 Google Scholar
  34. 34.
    Manaa MR, Fried LF, Melius CF, Elstner M, Frauenheim T (2002) J Phys Chem A106:9024 Google Scholar
  35. 35.
    Manaa MR, Fried LE, Reed EJ (2003) J Comput Aided Mater Des 10:75 CrossRefGoogle Scholar
  36. 36.
    Reed EJ, Fried LE, Manaa MR, Joannopoulos JD (2005) A multi-scale approach to molecular dynamic simulations of shock waves. In: Manaa RM (ed) Chemistry at extreme conditions. Elsevier, Amsterdam, p 297 CrossRefGoogle Scholar
  37. 37.
    Čapková P, Pospíšil M, Vávra P, Zeman S (2003) Characterization of explosive materials using molecular dynamics simulations. In: Politzer P, Murray J (eds) Theoretical and computational chemistry, vol 13, Energetic Materials, Part 1, Decomposition, crystal and molecular properties. Elsevier, Amsterdam, p 49 CrossRefGoogle Scholar
  38. 38.
    Pospíšil M, Vávra P (2005) In: Vágenknecht J (ed) Proc 8th Seminar New Trends in Research of Energetic Materials. Univ. of Pardubice, p 302 Google Scholar
  39. 39.
    Sorescu DC, Rice BM, Thompson DL (2003) Molecular dynamic simulations of energetic materials. In: Politzer P, Murray J (eds) Theoretical and computational chemistry, vol 13, Energetic Materials, Part 1, Decomposition, crystal and molecular properties. Elsevier, Amsterdam, p 125 CrossRefGoogle Scholar
  40. 40.
    Tarzhanov VI (2003) Fiz Goreniya Vzryva 39(2):3 Google Scholar
  41. 41.
    Bourne NK (2000) Proc R Soc London A457:1401 Google Scholar
  42. 42.
    Iliushin MA, Tselinskii IV (2000) Zh Prikl Khim 73(3):1233 Google Scholar
  43. 43.
    Aluker ED, Aduev BP, Belokurov GM, Tupitsin EV (2005) Fiz Goreniya Vryva 41(2):116 Google Scholar
  44. 44.
    Aduev BP, Aluker ED, Belokurov GM, Zakharov YA, Krechetov AG (1999) J Experim Theor Phys 89(1):906 CrossRefGoogle Scholar
  45. 45.
    Kuklja MM, Aduev BP, Aluker ED, Krasheninin VI, Krechetov AG, Mitrofanov AY (2001) J Appl Phys 89(7):4156 CrossRefGoogle Scholar
  46. 46.
    Zakharov YA, Aluker ED, Aduev BP, Belokurova GM, Krechetov AG (2002) Predvryvnye yavleniya v azidakh tyazholykh metallov (Pre-explosion effects in the heavy metal azides), Tsentr ekonom. issled. Khimmash, Moscow Google Scholar
  47. 47.
    Aduev BP, Aluker ED, Krechetov AG, Mitrofanov AY (2003) Fiz Goreniya Vzryva 39(1):105 Google Scholar
  48. 48.
    Aluker ED, Krechetov AG, Mitrofanov AY, Pashpekin AS (2004) Techn Phys Letters 30(4):772 CrossRefGoogle Scholar
  49. 49.
    Aluker ED, Aduev BP, Krechetov AG, Mitrofanov AY, Zakharov YA (2006) Early stages of explosive decomposition of energetic materials. In: Jiang SZ (ed) Decomposition of energetic materials, Focus on Combustion research. Nova Science Publ., Inc., New York Google Scholar
  50. 50.
    Lisitsyn VM, Oleshko VI, Tsipilev VP (2005) Rus Phys J 48(2):109 CrossRefGoogle Scholar
  51. 51.
    Zhilin AY, Ilyushin MA, Tselinskii IV, Kozlov AS, Lisker IS (2003) Rus J Appl Chem 76(4):572 CrossRefGoogle Scholar
  52. 52.
    Korepanov VI, Lisitsyn VM, Oleshko VI, Tsipilev VP (2004) Fiz Goreniya Vryva 40(1):126 Google Scholar
  53. 53.
    Nagayama K, Inou K, Nakahara M (2001) In: Chiba A, Tanimura S, Hokamoto K (eds) Impact Engineering and Application. Elsevier, Amsterdam, p 515 Google Scholar
  54. 54.
    Kubota S, Nagayama K, Shimada H, Matsui K (2001) In: Chiba A, Tanimura S, Hokamoto K (eds) Impact Engineering and Application. Elsevier, New York, p 521 Google Scholar
  55. 55.
    Capellos C (1998) In: Proc 11th Detonation Symp, Snowmass Village, Colorado, p 3 Google Scholar
  56. 56.
    Yu H, Hambir SA, Dlott DD (2006) Ultrafast dynamics of nanotechnology energetic materials. In: Thadhani NN, Armstrong RW, Gash AE, Wilson WH (eds) Multifunctional energetic materials. Mat Res Soc Symp Proc 896:71 Google Scholar
  57. 57.
    Skinner D, Olson D, Block-Bolten A (1997) Propellants Explos Pyrotech 23:34 CrossRefGoogle Scholar
  58. 58.
    Sorescu DC, Rice BM, Thompson DL (1999) J Phys Chem B103:6783 Google Scholar
  59. 59.
    Kuklja MM, Kunz AB (2000) J Appl Phys 87(1):2215 CrossRefGoogle Scholar
  60. 60.
    Manaa MR (2003) Initiation and decomposition mechanism of energetic materials. In: Politzer P, Murray J (eds) Theoretical and computational chemistry, Vol. 13, Energetic materials, Part 2, Detonation, combustion. Elsevier, Amsterdam, p 71 CrossRefGoogle Scholar
  61. 61.
    Goto N, Yamawaki H, Tonokura K, Wakabayashi K, Yoshida M, Koshi M (2004) Mat Sci Forum, Vols. 465–466. Trans Tech Publ, Switzerland, p 189 Google Scholar
  62. 62.
    Armstrong RW, Elban WL (2004) Dislocation in energetic materials. In: Nabarro FRN, Hirth JP (eds) Dislocation in solids. Elsevier, Amsterdam, p 404 Google Scholar
  63. 63.
    Armstrong RW, Elban WL (2006) Mater Sci Technol 22:381 CrossRefGoogle Scholar
  64. 64.
    Kunz AB, Kuklja MM, Botcher TR, Russell TP (2002) Thermochim Acta 384:279 CrossRefGoogle Scholar
  65. 65.
    Kuklja MM, Kunz B (2001) J Appl Phys 89:4962 CrossRefGoogle Scholar
  66. 66.
    Kuklja MM, Rashkeev SN, Zerilli FJ (2006) Appl Phys Lett 89:071904 CrossRefGoogle Scholar
  67. 67.
    Coffey CS (2003) Initiation due to plastic deformation from shock or impact. In: Politzer P, Murray J (eds) Theoretical and computational chemistry, vol 13, Energetic materials, Part 2, Detonation, combustion. Elsevier, Amsterdam, p 101 CrossRefGoogle Scholar
  68. 68.
    Coffey CS (1998) Khim Fiz 17(1):4 Google Scholar
  69. 69.
    Kuklja MM, Kunz AB (2000) J Phys Chem 61:35 Google Scholar
  70. 70.
    Kuklja MM, Stefanovich EV, Kunz AB (2000) J Chem Phys 112(7):3417 CrossRefGoogle Scholar
  71. 71.
    Kuklja MM, Kunz AB (1999) J Phys Chem B103:8424 Google Scholar
  72. 72.
    Holmes W, Francis RS, Fayer MD (1999) J Chem Phys 110(7):3576 CrossRefGoogle Scholar
  73. 73.
    Dlott DD (2003) Fast molecular processes in energetic materials. In: Politzer P, Murray J (eds) Theoretical and computational chemistry, vol 13, Energetic materials, Part 2, Detonation, combustion. Elsevier, Amsterdam, p 125 CrossRefGoogle Scholar
  74. 74.
    McNesby KL, Coffey CS (1997) J Phys Chem B101:3097 Google Scholar
  75. 75.
    Ye S, Tonokura K, Koshi M (2003) Combust Flame 132:240 CrossRefGoogle Scholar
  76. 76.
    Alper HE, Abu-Awwad F, Politzer P (1999) J Phys Chem B103:9738 Google Scholar
  77. 77.
    Politzer P, Murray JS, Seminario JM, Lane P, Grice ME, Concha MC (2001) J Mol Struct (Theochem) 573:1 CrossRefGoogle Scholar
  78. 78.
    Politzer P, Boyd S (2002) Struct Chem 13(2):105 CrossRefGoogle Scholar
  79. 79.
    Murray JS, Lane P, Politzer P (1998) Mol Phys 93(2):187 CrossRefGoogle Scholar
  80. 80.
    Politzer P, Murray JS (2003) Sensitivity correlations. In: Politzer P, Murray J (eds) Theoretical and computational chemistry, vol 13, Energetic materials, Part 2, Detonation, combustion. Elsevier, Amsterdam, p 5 CrossRefGoogle Scholar
  81. 81.
    Politzer P, Lane P, Concha MC (2005) Computtional determination of the energetics of boron and aluminium combustion reaction. In: Manaa RM (ed) Chemistry at extreme conditions. Elsevier, Amsterdam, p 473 CrossRefGoogle Scholar
  82. 82.
    Rice BM, Sahu S, Owens FJ (2002) J Mol Struct (Theochem) 583:69 CrossRefGoogle Scholar
  83. 83.
    Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Annu Rev Mater Res 31:291 CrossRefGoogle Scholar
  84. 84.
    Rice BM, Hare JJ (2002) J Phys Chem A106:1770 Google Scholar
  85. 85.
    Edwars J, Eybl C, Johnson B (2004) Int J Quant Chem 100:713 CrossRefGoogle Scholar
  86. 86.
    Chen ZX, Xiao H, Yang S (1999) Chem Phys 250:243 CrossRefGoogle Scholar
  87. 87.
    Türker L (2005) J Mol Struct (Theochem) 725:85 CrossRefGoogle Scholar
  88. 88.
    Xiao MM, Fan JF, Gong XD (1997) Propellants Explos Pyrotech 22:360 CrossRefGoogle Scholar
  89. 89.
    Zhang C, Shu Y, Huang Y, Zhao X, Dong H (2005) J Phys Chem B109:8978 Google Scholar
  90. 90.
    Zhang C, Shu Y, Wang X (2005) Energ Mater 23:107 CrossRefGoogle Scholar
  91. 91.
    Xiao HM, Li JS, Dong HS (2000) Acta Chim Sin 58(3):297 Google Scholar
  92. 92.
    Loginov NP, Surkova SN (2006) Fiz Goreniya Vzryva 42(1):100 Google Scholar
  93. 93.
    Vaullerin M, Espagnacq A (1998) Propellants Explos Pyrotech 23:237 CrossRefGoogle Scholar
  94. 94.
    Cho SG, No KT, Goh EM, Kim JK, Shin JH, Joo YD, Seong S (2005) Bull Korean Chem Soc 26(3):399 CrossRefGoogle Scholar
  95. 95.
    Keshavarsz MH, Jaafari M (2006) Propellants Explos Pyrotech 31:216 CrossRefGoogle Scholar
  96. 96.
    Wolker FE (1998) Khim Fiz 17(1):25 Google Scholar
  97. 97.
    Zeman S (1999) J Energ Mater 17:305 CrossRefGoogle Scholar
  98. 98.
    Klimenko VY, Yakoventsev MA, Dremin AN (1993) Khim Fizika 12:671 Google Scholar
  99. 99.
    Klimenko VY (1998) Khim Fizika 17:11 Google Scholar
  100. 100.
    Dremin AN (1999) Toward detonation theory. Springer, Berlin Heidelberg New York Google Scholar
  101. 101.
    Hong X, Hill JR, Dlot DD (1995) Vibrational Energy Transfer in High Explosives: Nitromethane. In: Brill TB, Russell TP, Tao VC, Wardl RB (eds) Mat Res Soc Symp Proc 418:357 Google Scholar
  102. 102.
    Tarver CM (1997) J Phys Chem A101:4845 Google Scholar
  103. 103.
    Tarver CM, Utriew PA, Forbes JW (2001) Khim Fiz 20(3):38 Google Scholar
  104. 104.
    Koshi M, Ye S, Widijaja J, Tonokura K (2001) Estimation of shock sensitivity based on molecular properties. In: Chiba A, Tanimura S, Hokamoto K (eds) Impact engineering and application. Elsevier, Amsterdam, p 175 Google Scholar
  105. 105.
    Kuklja MM (2001) Electronic excitations in initiation of chemistry in molecular solids. In: Bulatov V, Cleri F, Colombo L, Lewi L, Mousseau N (eds) Advances in materials theory and modeling, bridging over ultiple-length and time scales. Mat Res Soc Symp Proc 677:AA2.4.1 Google Scholar
  106. 106.
    Mathieu D, Martin P, La Hargue J-P (2005) Phys Scripta T118:171 CrossRefGoogle Scholar
  107. 107.
    Méreau R, Mathieu D, Elstner M, Frauenheim T (2004) Phys Rev B69:104101 Google Scholar
  108. 108.
    White CT, Swanson DR, Robertson DH (2001) Molecular dynamics simulations of detonations. In: Dressler RA (ed) Chemical dynamics in extreme environments. World Sci., Singapore, p 547 CrossRefGoogle Scholar
  109. 109.
    van der Hejden AEDM, Bouma RHB, van der Steen AC (2004) Propellants Explos Pyrotech 29:304 CrossRefGoogle Scholar
  110. 110.
    Jindal VK, Dlott DD (1998) J Appl Phys 83(5):5203 CrossRefGoogle Scholar
  111. 111.
    Yoo CS, Holmes NC, Souers PC, Wu CJ, Ree FH, Dick JJ (2000) J Appl Phys 88(01):70 CrossRefGoogle Scholar
  112. 112.
    Rice BM, Mattson W, Trevino SF (1998) Phys Rev E57(1):5106 Google Scholar
  113. 113.
    Engelke R, Blais NC, Sheffield SA, Sander RK (2001) J Phys Chem A105:6955 Google Scholar
  114. 114.
    Andreev SG (1998) Fiz Khim 17(1):55 Google Scholar
  115. 115.
    Wu CJ, Ree FH, Yoo CS (2004) Propellants Explos Pyrotech 29:296 CrossRefGoogle Scholar
  116. 116.
    Dreger ZA, Gruzdkov YA, Gupta YM (2002) J Phys Chem B106:247 Google Scholar
  117. 117.
    Raikova VM, Likholatov EA (2005) Propellants Explos Pyrotech 30:250 CrossRefGoogle Scholar
  118. 118.
    Hu WF, He TJ, Chen DM, Liu FC (2002) J Phys Chem A106(32):7294 Google Scholar
  119. 119.
    Nguen MT, Le HT, Hajgato B, Veszpremi T, Lin MC (2003) J Phys Chem A107:4286 Google Scholar
  120. 120.
    Arenas JF, Otero JC, Pealez D, Soto J (2003) J Chem Phys 119(15):7814 CrossRefGoogle Scholar
  121. 121.
    Reed EJ, Joannopoulos JD, Laurence E (2000) Phys Rev B: Condens Matter Mater Phys 62:16500 CrossRefGoogle Scholar
  122. 122.
    Margetis D, Kaxiras E, Elstner M, Frauenheim T, Manaa MR (2002) J Chem Phys 117:788 CrossRefGoogle Scholar
  123. 123.
    Zhang XX, Bauer SH (1997) J Phys Chem B101:8717 Google Scholar
  124. 124.
    Glaborg P, Bendsen AB, Miller JA (1999) Int J Chem Kinet 31:591 CrossRefGoogle Scholar
  125. 125.
    Winey JM, Gupta YM (1997) J Phys Chem B101:10733 Google Scholar
  126. 126.
    Blais NC, Engelke R, Sheffield SA (1997) J Phys Chem A101:8285 Google Scholar
  127. 127.
    Bouyer V, Darbord I, Herve P, Baudin G, Le Gallic C, Clément F, Chavent G (2006) Combust Flame 144:139 CrossRefGoogle Scholar
  128. 128.
    Leiber CO (2003) Assesment of safety and risk with a microscopic model of detonation. Elsevier, Amsterdam Google Scholar
  129. 129.
    Bharatam PV, Lammertsma K (2003) Nitro-aci-nitro tautomerizm in high-energetic compounds. In: Politzer P, Murray J (eds) Theoretical and computational chemistry, vol 13, Energetic materials, Part 1, Detonation, combustion. Elsevier, Amsterdam, p 61 Google Scholar
  130. 130.
    Ferm EN (1999) Propellants Explos Pyrotech 24:1 CrossRefGoogle Scholar
  131. 131.
    Gruzdkov YA, Gupta YM (1998) J Phys Chem A102:2322 Google Scholar
  132. 132.
    Woods E III, Dessiaterik Y, Miller RE, Baer T (2001) J Phys Chem A105:8273 Google Scholar
  133. 133.
    Engelke R, Schiferel D, Storm CB, Earl WI (1988) J Phys Chem 92:6815 CrossRefGoogle Scholar
  134. 134.
    Nabatov SS, Zakushev VV, Dremin AN (1975) Fiz Goreniya Vryva 11:300 Google Scholar
  135. 135.
    Engelke R, Sheffield SA, Stacy HL, Quintana JP (2005) Phys Fluids 17:096102 CrossRefGoogle Scholar
  136. 136.
    Cudzilo S, Trzcinski WA (1999) Pol J Tech Phys 40(2):223 Google Scholar
  137. 137.
    Andreev SG, Babkin AV, Baum FN, Imkhovik NA, Kobylkin IF, Kolpakov VI, Ladov SV, Odintsov VA, Orlenko LP, Okhitin VN, Selivanov VV, Solovev VS, Stanyukovich KP, Chelyshev VP, Shekhte BI (2002) Fizika vzryva, Tom 1 (Physics of explosion, vol 1). Fizmatlit, Moscow Google Scholar
  138. 138.
    Licht H-H (2000) Propellants Explos Pyrotech 25:126 CrossRefGoogle Scholar
  139. 139.
    Yang S, Yue S (2003) HanNeg CaiLiao 11(4):231 Google Scholar
  140. 140.
    Agrawal JP (1998) Progr Energy Combust Sci 24:1 CrossRefGoogle Scholar
  141. 141.
    Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) Thermochim Acta 384:187 CrossRefGoogle Scholar
  142. 142.
    Chapman RD, Wilson WS, Fronabarger JW, Merwin LH, Ostrom GS (2002) Thermochim Acta 384:229 CrossRefGoogle Scholar
  143. 143.
    Talawar MB, Sivabalan R, Asthana SN, Singh H (2005) Fiz Goreniya Vzryva 41(3):29 Google Scholar
  144. 144.
    Zeman S (1980) Thermochim Acta 41:199 CrossRefGoogle Scholar
  145. 145.
    Zeman S (1998) In: Proc 29th Int Annual Conf on ICT, Karlsruhe, p 141/1 Google Scholar
  146. 146.
    Zeman S, Krupka M (2003) Propellants Explos Pyrotech 28:301 CrossRefGoogle Scholar
  147. 147.
    Zeman S, Krupka M (2003) Propellants Explos Pyrotech 28:249 CrossRefGoogle Scholar
  148. 148.
    Clawson JS, Strohmeier M, Stueber D, Orend AM, Baric DH, Asay BA, Hiskey MA, Pugmire RJ, Grant DM (2002) J Phys Chem A106:6352 Google Scholar
  149. 149.
    Zeman S, Pešková M (2005) Cent Eur J Energ Mater 2(3):71 Google Scholar
  150. 150.
    Zeman S (1997) Thermochim Acta 290:199 CrossRefGoogle Scholar
  151. 151.
    Zeman S, Friedl Z (2004) J Thermal Anal Calorim 77:217 CrossRefGoogle Scholar
  152. 152.
    Zeman S, Kohlíček P, Maranda M (2003) Thermochim Acta 398:185 CrossRefGoogle Scholar
  153. 153.
    Kissinger HE (1957) Anal Chem 29:1702 CrossRefGoogle Scholar
  154. 154.
    Zeman S (2003) Propellants Explos Pyrotech 28:308 CrossRefGoogle Scholar
  155. 155.
    Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23 CrossRefGoogle Scholar
  156. 156.
    Pepekin VI, Makhov NM, Lebedev YA (1977) Dokl Akad Nauk SSSR 230:852 Google Scholar
  157. 157.
    TITAN (2001) v.1.0.8. Wavefunction. Schrödinger, USA Google Scholar
  158. 158.
    Zeman S, Zemanová E (2004) J Energ Mater 22:171 CrossRefGoogle Scholar
  159. 159.
    Zeman S, Friedl Z, Roháč M (2007) Thermochim Acta 451:105 CrossRefGoogle Scholar
  160. 160.
    Zeman S, Friedl Z (2004) Centr Eur J Energet Mater 1:1 Google Scholar
  161. 161.
    Galwey AK, Brown ME (1999) Thermal decomposition of ionic solids. Elsevier, Amsterdam, p 22 Google Scholar
  162. 162.
    Kohno Y, Ueda K, Imamura A (1996) J Phys Chem 100:4701 CrossRefGoogle Scholar
  163. 163.
    Bondi A (1968) Physical properties of molecular crystals, liquids, and glasses. Wiley, New York Google Scholar
  164. 164.
    Zeman S, Shu Y, Wang X (2005) Cent Eur J Energ Mater 2(4):47 Google Scholar
  165. 165.
    Belmas R, Bry A, David C, Gautier L, Keromnés A, Thevenot G, Le Gallic C, Chenault J, Guillaument G (2004) Propellants Explos Pyrotech 29:282 CrossRefGoogle Scholar
  166. 166.
    Koroban VA, Maksimov YY (1968) Khim Khim Tekhnol 11:1032 Google Scholar
  167. 167.
    Semenov NN (1958) Some problems of chemical kinetics and of reaction capability. USSR Acad Sci, Moscow, p 41, p 101 Google Scholar
  168. 168.
    Zeman S, Varga R (2005) Cent Eur J Energ Mater 2(4):77 Google Scholar
  169. 169.
    Zeman S, Roháč M (2006) HanNeng CaiLiao 14(1):361 Google Scholar
  170. 170.
    Zeman S (1993) Thermochim Acta 216:157 CrossRefGoogle Scholar
  171. 171.
    Zeman S (2006) Proc 34th NATAS Annual Conf Thermal Anal Appl, Bowling Green, August 8th, p 074.1.05.208/1 Google Scholar
  172. 172.
    Ou Y, Wang C, Pan Z, Chen B (1999) HanNeng CaiLiao 7:100 Google Scholar
  173. 173.
    Zeman S, Valenta P, Zema V, Jakubko J, Kamenský Z (1998) HanNeng CaiLiao 6:118 Google Scholar
  174. 174.
    Zeman V, Kočí J, Zeman S (1999) HanNeng CaiLiao 7:127 Google Scholar
  175. 175.
    Zeman V, Kočí J, Zeman S (1999) HanNeng CaiLiao 7:172 Google Scholar
  176. 176.
    Zeman S, Kočí J (2000) HanNeng CaiLiao 8:18 Google Scholar
  177. 177.
    Kočí J, Zeman V, Zeman S (2001) HanNeg CaiLiao 9:60 Google Scholar
  178. 178.
    Wang G-X, Xiao HM, Xu X-J, Ju XH (2006) Propellants Explos Pyrotech 31(2):102 CrossRefGoogle Scholar
  179. 179.
    Zeman S, Kočí J, Pelikán V, Majzlík J (2006) Cent Eur J Energ Mater 3(3):45 Google Scholar
  180. 180.
    Auzanneau M, Roux M (1995) Propellants Explos Pyrotech 20:96 CrossRefGoogle Scholar
  181. 181.
    Varga R, Zeman S (2006) J Hazard Mater A132:165 CrossRefGoogle Scholar
  182. 182.
    Varga R, Zeman S, Kouba M (2006) J Hazard Mater A137:1345 CrossRefGoogle Scholar
  183. 183.
    Chen Z-X, Xiao H (2000) Int J Quantum Chem 79:350 CrossRefGoogle Scholar
  184. 184.
    Bulusu S, Autera JR (1983) J Energ Mater 1:133 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Institute of Energetic MaterialsUniversity of PardubicePardubiceCzech Republic

Personalised recommendations