Skip to main content

Anharmonic and Quantum Effects in KDP-Type Ferroelectrics: Modified Strong Dipole–Proton Coupling Model

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 124))

Abstract

Anharmonic and quantum effects caused by hydrogen bonds appear strongly in ferroelectric crystalsof the KH2PO4- or KDP-type. Both effects are closely relatedto the long-standing and still unresolved questions about the ferroelectric phase transition in these crystals:that of the type of phase transition, and that of the origin of strong isotope effects of proton-deuteronreplacement. In this chapter, the most relevant experimental studies devoted to these problems are reviewed.The proton-tunneling model, as widely accepted model of the phase transition in these crystals, was questionedin the 1980s. A development of the alternative model, modified strong dipole–proton coupling(MSDPC) model, is presented. The model assumes that quantum protons in KDP have higher characteristic frequenciesthan the heavy-ion sublattice represented by the system of three-dimensional dipoles. Therefore, protonsbeing in a ground state adiabatically follow dipole dynamics, as opposed to the proton-tunneling model.Proton tunneling is absent in the model, and ferroelectric ordering and anharmonicities in the dipole systemare caused by the proton ground-state energy. Different ground-state energies of protons and deuteronscause isotope effects and make deuterated systems more anharmonic, so that the phase transition in deuteratedcrystal is predicted as more of an order–disorder type than in non-deuterated crystal. Successesand shortcomings of the model in explaining experimental results are commented upon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Clarendon, Oxford

    Google Scholar 

  2. Blinc R (1960) J Phys Chem Solids 13:204

    Article  CAS  Google Scholar 

  3. Tokunaga M, Tatsuzaki I (1984) Phase Transit 4:97

    Article  CAS  Google Scholar 

  4. Tokunaga M, Matsubara T (1987) Ferroelectrics 72:175

    Article  CAS  Google Scholar 

  5. Krumhansl JA (1990) Nature 348:285

    Article  Google Scholar 

  6. Sugimoto H, Ikeda S (1991) Phys Rev Lett 67:1306

    Article  CAS  Google Scholar 

  7. Merunka D, Rakvin B (2000) Phys Rev B 61:11967

    Article  CAS  Google Scholar 

  8. Havlin S (1987) Ferroelectrics 71:183

    Article  CAS  Google Scholar 

  9. Nelmes RJ (1987) Ferroelectrics 71:87

    Article  CAS  Google Scholar 

  10. Nelmes RJ, Tun Z, Kuhs WF (1987) Ferroelectrics 71:125

    Article  CAS  Google Scholar 

  11. Samara GA (1987) Ferroelectrics 71:161

    Article  CAS  Google Scholar 

  12. Ichikawa M, Motida K, Yamada N (1987) Phys Rev B 36:874

    Article  CAS  Google Scholar 

  13. Nelmes RJ (1988) J Phys C: Solid State Phys 21:L881

    Article  CAS  Google Scholar 

  14. Nelmes RJ, McMahon MI, Piltz RO, Wright NG (1991) Ferroelectrics 124:355

    Article  CAS  Google Scholar 

  15. Hayward SA, Salje EKH (1998) J Phys: Condens Matter 10:1421

    Article  CAS  Google Scholar 

  16. Endo S, Deguchi K, Tokunaga M (2002) Phys Rev Lett 88:35503

    Article  Google Scholar 

  17. Kaminow IP, Damen TC (1968) Phys Rev Lett 20:1105

    Article  CAS  Google Scholar 

  18. Peercy PS (1973) Phys Rev Lett 31:379

    Article  CAS  Google Scholar 

  19. Peercy PS (1975) Phys Rev B 12:2725

    Article  CAS  Google Scholar 

  20. Shigenari T, Takagi Y (1977) J Phys Soc Japan 42:1650

    Article  CAS  Google Scholar 

  21. Tominaga Y, Kasahara M, Urabe H, Tatsuzaki I (1983) Solid State Commun 47:835

    Article  CAS  Google Scholar 

  22. Tominaga Y, Urabe H (1982) Solid State Commun 41:561

    Article  CAS  Google Scholar 

  23. Tominaga Y, Urabe H, Tokunaga M (1983) Solid State Commun 48:265

    Article  CAS  Google Scholar 

  24. Takagi Y (1987) Ferroelectrics 72:67

    Article  CAS  Google Scholar 

  25. Sakai A, Yagi T (1987) Ferroelectrics 72:51

    Article  CAS  Google Scholar 

  26. Shin S, Sugawara A, Tezuka Y, Ishigame M (1989) Solid State Commun 71:685

    Article  CAS  Google Scholar 

  27. Yoshioka S, Tsujimi Y, Yagi T (1998) Solid State Commun 106:577

    Article  CAS  Google Scholar 

  28. Simon P, Gervais F, Courtens E (1988) Phys Rev B 37:1969

    Article  CAS  Google Scholar 

  29. Bréhat F, Wyncke B (1985) Phys Stat Sol B 128:83

    Article  Google Scholar 

  30. Shin S, Tezuka Y, Saito S, Chiba Y, Ishigame M (1994) J Phys Soc Jpn 63:2612

    Article  CAS  Google Scholar 

  31. Bréhat F, Wyncke B (1988) J Phys C: Solid State Phys 21:4853

    Article  Google Scholar 

  32. Takagi Y, Shigenari T (1975) J Phys Soc Japan 39:440

    Article  CAS  Google Scholar 

  33. Wyncke B, Bréhat F (1986) J Phys C: Solid State Phys 19:2649

    Article  CAS  Google Scholar 

  34. Shibata K, Ikeda S (1992) J Phys Soc Jpn 61:411

    Article  CAS  Google Scholar 

  35. Ikeda S, Shibata K, Nakai Y, Stephens PW (1992) J Phys Soc Jpn 61:2619

    Article  CAS  Google Scholar 

  36. Reiter GF, Mayers J, Platzman P (2002) Phys Rev Lett 89:135505

    Article  CAS  Google Scholar 

  37. Mizoguchi K, Nakai Y, Ikeda S, Agui A, Tominaga Y (1993) J Phys Soc Jpn 62:451

    Article  CAS  Google Scholar 

  38. Todate Y, Ikeda S, Nakai Y, Agui A, Tominaga Y (1993) J Phys: Condens Matter 5:7761

    Article  CAS  Google Scholar 

  39. Belushkin AV, Adams MA (1997) Physica B 37:234–236

    Google Scholar 

  40. Ikeda S, Noda Y, Sugimoto H, Yamada Y (1994) J Phys Soc Jpn 63:1001

    Article  CAS  Google Scholar 

  41. Ikeda S, Yamada Y (1995) Physica B 652:213–214

    Google Scholar 

  42. Blinc R, Žekš B (1987) Ferroelectrics 72:193

    Article  CAS  Google Scholar 

  43. Dalal NS (1982) Adv Magn Reson 10:119

    CAS  Google Scholar 

  44. Müller KA (1987) Ferroelectrics 72:273

    Article  Google Scholar 

  45. Slater JC (1941) J Chem Phys 9:16

    Article  CAS  Google Scholar 

  46. Bussmann-Holder A, Dalal N, Fu R, Migoni R (2001) J Phys: Condens Matter 13:L231

    Article  CAS  Google Scholar 

  47. Bussmann-Holder A, Michel KH (1998) Phys Rev Lett 80:2173

    Article  CAS  Google Scholar 

  48. Dalal N, Klymachyov A, Bussmann-Holder A (1998) Phys Rev Lett 81:5924

    Article  CAS  Google Scholar 

  49. Ribeiro GM, Gonzaga LV, Chaves AS, Gazzinelli R, Blinc R, Cevc P, Prelovšek P, Silkin NI (1982) Phys Rev B 25:311

    Article  CAS  Google Scholar 

  50. Dalal NS, Rakvin B (1989) J Chem Phys 90:5262

    Article  CAS  Google Scholar 

  51. Rakvin B, Dalal NS (1989) Phys Rev B 39:7009

    Article  CAS  Google Scholar 

  52. Rakvin B, Dalal NS (1990) Phys Rev B 41:608

    Article  CAS  Google Scholar 

  53. Nakagawa K, Rakvin B, Dalal NS (1991) Solid State Commun 78:129

    Article  CAS  Google Scholar 

  54. Schmidt VH (1987) Ferroelectrics 72:157

    Article  CAS  Google Scholar 

  55. Takagi Y (1948) J Phys Soc Jpn 3:271

    Article  Google Scholar 

  56. Senko ME (1961) Phys Rev 121:1599

    Article  CAS  Google Scholar 

  57. Tokunaga M, Matsubara T (1966) Prog Theor Phys 35:581

    Article  CAS  Google Scholar 

  58. Fujii K (1994) J Phys Soc Jpn 63:1572

    Article  CAS  Google Scholar 

  59. Fujii K (1995) J Chem Phys 103:6662

    Article  CAS  Google Scholar 

  60. Sugimoto H, Ikeda S (1993) J Phys: Condens Matter 5:7409

    Article  CAS  Google Scholar 

  61. Sugimoto H, Ikeda S (1994) J Phys: Condens Matter 6:5561

    Article  CAS  Google Scholar 

  62. Sugimoto H, Ikeda S (1996) J Phys: Condens Matter 8:603

    Article  CAS  Google Scholar 

  63. Merunka D, Rakvin B (2002) Phys Rev B 66:174101

    Article  Google Scholar 

  64. Binder K, Heermann DW (2002) Monte Carlo simulations in statistical physics. Springer, Berlin Heidelberg New York

    Google Scholar 

  65. Haile M (1992) Molecular dynamics simulation. Wiley, New York

    Google Scholar 

  66. Merunka D, Rakvin B (2004) Solid State Commun 129:375

    Article  CAS  Google Scholar 

  67. Merunka D, Rakvin B (2004) Chem Phys Lett 393:558

    Article  CAS  Google Scholar 

  68. Kleemann W, Dec J, Westwañski B (1998) Phys Rev B 58:8985

    Article  CAS  Google Scholar 

  69. Peercy PS (1976) Phys Rev B 13:3945

    Article  CAS  Google Scholar 

  70. Endo S, Chino T, Tsuboi S, Koto K (1989) Nature 340:452

    Article  CAS  Google Scholar 

  71. Merunka D, Rakvin B (2004) Appl Magn Reson 27:215

    Article  CAS  Google Scholar 

  72. Koval S, Kohanoff J, Migoni RL (2002) Ferroelectrics 268:239

    Article  Google Scholar 

  73. Koval S, Kohanoff J, Migoni RL, Tosatti E (2002) Phys Rev Lett 89:187602

    Article  CAS  Google Scholar 

  74. Koval S, Kohanoff J, Lasave J, Colizzi G, Migoni RL (2005) Phys Rev B 71:184102

    Article  Google Scholar 

  75. Zhang Q, Chen F, Kioussis N, Demos SG, Radousky HB (2001) Phys Rev B 65:024108

    Article  Google Scholar 

  76. Matsushita E, Matsubara T (1982) Prog Theor Phys 67:1

    Article  CAS  Google Scholar 

  77. Colizzi G (2004) PhD thesis, Queen's University Belfast

    Google Scholar 

  78. Lasave J, Koval S, Dalal NS, Migoni R (2005) Phys Rev B 72:104104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Rakvin .

Editor information

Naresh S. Dalal Annette Bussmann-Holder

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Merunka, D., Rakvin, B. (2006). Anharmonic and Quantum Effects in KDP-Type Ferroelectrics: Modified Strong Dipole–Proton Coupling Model. In: Dalal, N.S., Bussmann-Holder, A. (eds) Ferro- and Antiferroelectricity. Structure and Bonding, vol 124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2006_048

Download citation

Publish with us

Policies and ethics