Skip to main content

From Photoinduced Charge Separation to Light-driven Molecular Machines

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 123))

Abstract

The photochemical properties of transition metal complexes, such as those of iridium(III) or ruthenium(II),can be exploited in various ways to generate charge-separated (CS) states, in relation to the mimicry ofthe natural photosynthetic reaction centres, or to set multicomponent compounds or assemblies in motion.The first part of the present chapter summarizes the work carried out in our groups (Bologna and Strasbourg)in recent years with iridium(III)-terpy complexes (terpy: 2,2′,6′,6′′-terpyridine).The synthesis of multicomponent iridium(III) complexes in reasonable yields has been achieved and theirphotochemical properties have been investigated. Unexpectedly, the excited state lifetimes of some of thesecompounds are very long at room temperature (several microseconds) in fluid solution, making the Ir(terpy)2 3+fragment an interesting chromophore. Once attached to electron donor (D) groups, dyads of the Ir(terpy)2 3+-Dtype undergo fast photoinduced electron transfer. In addition Ir(terpy)2 3+in the ground state is a relatively good electron acceptor, displaying interesting properties as electronrelay in porphyrinic triads. A triad, consisting of an Ir(terpy)2 3+central core, a Zn porphyrin as the primary donor on one side and a gold(III) porphyrin as theterminal acceptor on the other side, leads to a relatively long-lived CS state (close to the microsecond).The other section of the present chapter deals with light-driven molecular machines built around Ru(bpy)3 2+derivatives, including catenanes and rotaxanes. In order to set the system in motion, a dissociativeligand field (LF) state is generated from the light-absorbing metal-to-ligand charge transfer (MLCT) state,originating in the expulsion of a given ligand in a perfectly controlled fashion. This step israpidly followed by coordination of another ligand to afford a kinetically stable new complex. Theprocess can be inverted by thermal energy, so as to regenerate the starting state of the system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

Acceptor

bpqpy:

2,6-bis(4′-phenyl-2′-quinolyl)-pyridine

bpy:

2,2′-bipyridine

CR:

Charge Recombination

CS:

Charge Separation or Charge Separated

CT:

Charge Transfer

D:

Donor

dmbp:

6,6′-dimethyl-2,2′-bipyridine

dmp:

2,9-dimethyl-1,10-phenanthroline

DPAA:

di-p-anisylamine

dpbp:

6,6′-diphenyl-2,2′bipyridine

DQ:

N,N′-polymethylenebridged-2,2′-bipyridinium

HOMO:

Highest Occupied Molecular Orbital

ILCT:

Intra Ligand Charge Tranfer

LC:

Ligand Centered

LF:

Ligand Field

LLCT:

Ligand to Ligand Charge Transfer

LUMO:

Lowest Unoccupied Molecular Orbital

MLCT:

Metal to Ligand Charge Transfer

MV:

1,1′-dimethyl-4,4′-bipyridinium, methyl viologen

OLED:

Organic Light-Emitting Diode

PC:

Photoactive Centre

phen:

1,10-phenanthroline

PTZ:

phenothiazine

py:

pyridine

RCM:

Ring Closing Metathesis

terpy:

2,2′:6′,2′′-terpyridine

tterpy:

4′-(p-tolyl)-2,2′:6′,2′′-terpyridine

References

  1. Balzani V, Carassiti V (1970) Photochemistry of Coordination Compounds. Academic Press, London

    Google Scholar 

  2. Balzani V, Moggi L (1990) Coord Chem Rev 97:313

    Article  CAS  Google Scholar 

  3. Gafney HD, Adamson AW (1972) J Am Chem Soc 94:8238

    Article  CAS  Google Scholar 

  4. Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, von Zelewsky A (1988) Coord Chem Rev 84:85

    Article  CAS  Google Scholar 

  5. Danielson E, Elliott CM, Merkert JW, Meyer TJ (1987) J Am Chem Soc 109:2519

    Article  CAS  Google Scholar 

  6. Di Marco G, Lanza M, Mamo A, Stefio I, Di Pietro C, Romeo G, Campagna S (1998) Anal Chem 70:5019

    Article  Google Scholar 

  7. Gao RM, Ho DG, Hernandez B, Selke M, Murphy D, Djurovich PI, Thompson ME (2002) J Am Chem Soc 124:14828

    Article  CAS  Google Scholar 

  8. Lo KKW, Chung CK, Lee TKM, Lui LH, Tsang KHK, Zhu NY (2003) Inorg Chem 42:6886

    Article  CAS  Google Scholar 

  9. Adachi C, Baldo MA, Forrest SR, Thompson ME (2000) Appl Phys Lett 77:904

    Article  CAS  Google Scholar 

  10. Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee HE, Adachi C, Burrows PE, Forrest SR, Thompson ME (2001) J Am Chem Soc 123:4304

    Article  CAS  Google Scholar 

  11. Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K (2003) J Am Chem Soc 125:12971

    Article  CAS  Google Scholar 

  12. Gong X, Ostrowski JC, Moses D, Bazan GC, Heeger AJ (2003) Adv Funct Mat 13:439

    Article  CAS  Google Scholar 

  13. Nazeeruddin MK, Humphry-Baker R, Berner D, Rivier S, Zuppiroli L, Graetzel M (2003) J Am Chem Soc 125:8790

    Article  CAS  Google Scholar 

  14. Beeby A, Bettington S, Samuel IDW, Wang ZJ (2003) J Mater Chem 13:80

    Article  CAS  Google Scholar 

  15. Holder E, Langeveld BMW, Schubert US (2005) Adv Mater 17:1109

    Article  CAS  Google Scholar 

  16. Holder E, Marin V, Kozodaev D, Meier MAR, Lohmeijer BGG, Schubert US (2005) Macromol Chem Phys 206:989

    Article  CAS  Google Scholar 

  17. Leslie W, Poole RA, Murray PR, Yellowlees LJ, Beeby A, Williams JAG (2004) Polyhedron 23:2769

    Article  CAS  Google Scholar 

  18. Sajoto T, Djurovich PI, Tamayo A, Yousufuddin M, Bau R, Thompson ME, Holmes RJ, Forrest SR (2005) Inorg Chem 44:7992

    Article  CAS  Google Scholar 

  19. Yang CH, Li SW, Chi Y, Cheng YM, Yeh YS, Chou PT, Lee GH, Wang CH, Shu CF (2005) Inorg Chem 44:7770

    Article  CAS  Google Scholar 

  20. Collin JP, Guillerez S, Sauvage JP, Barigelletti F, De Cola L, Flamigni L, Balzani V (1991) Inorg Chem 30:4230

    Article  CAS  Google Scholar 

  21. Collin JP, Guillerez S, Sauvage JP, Barigelletti F, De Cola L, Flamigni L, Balzani V (1992) Inorg Chem 31:4112

    Article  CAS  Google Scholar 

  22. Harriman A, Odobel F, Sauvage JP (1995) J Am Chem Soc 117:9461

    Article  CAS  Google Scholar 

  23. Andreasson J, Kodis G, Lin S, Moore AL, Moore TA, Gust D, Martensson J, Albinsson B (2002) Photochem Photobiol 76:47

    Article  CAS  Google Scholar 

  24. Flamigni L, Barigelletti F, Armaroli N, Collin JP, Sauvage JP, Williams JAG (1998) Chem Eur J 4:1744

    Article  CAS  Google Scholar 

  25. Flamigni L, Armaroli N, Barigelletti F, Balzani V, Collin JP, Dalbavie JO, Heitz V, Sauvage JP (1997) J Phys Chem B 101:5936

    Article  CAS  Google Scholar 

  26. Sauvage JP, Collin JP, Chambron JC, Guillerez S, Coudret C, Balzani V, Barigelletti F, De Cola L, Flamigni L (1994) Chem Rev 94:993

    Article  CAS  Google Scholar 

  27. Flamigni L, Barigelletti F, Armaroli N, Ventura B, Collin JP, Sauvage JP, Williams JAG (1999) Inorg Chem 38:661

    Article  CAS  Google Scholar 

  28. Huynh MHV, Dattelbaum DM, Meyer TJ (2005) Coord Chem Rev 249:457

    Article  CAS  Google Scholar 

  29. Kober EM, Caspar JV, Lumpkin RS, Meyer TJ (1986) J Phys Chem 90:3722

    Article  CAS  Google Scholar 

  30. Treadway JA, Chen PY, Rutherford TJ, Keene FR, Meyer TJ (1997) J Phys Chem A 101:6824

    Article  CAS  Google Scholar 

  31. Goze C, Chambron JC, Heitz V, Pomeranc D, Salom-Roig XJ, Sauvage JP, Morales AF, Barigelletti F (2003) Eur J Inorg Chem, p 3752

    Google Scholar 

  32. Flynn CM Jr, Demas JN (1974) J Am Chem Soc 96:1959

    Article  CAS  Google Scholar 

  33. Demas JN, Harris EW, Flynn CM, Diemente D (1975) J Am Chem Soc 97:3838

    Article  CAS  Google Scholar 

  34. Collin JP, Dixon IM, Sauvage JP, Williams JAG, Barigelletti F, Flamigni L (1999) J Am Chem Soc 121:5009

    Article  CAS  Google Scholar 

  35. Flamigni L, Ventura B, Barigelletti F, Baranoff E, Collin JP, Sauvage JP (2005) Eur J Inorg Chem, p 1312

    Google Scholar 

  36. Baranoff E, Griffiths K, Collin JP, Sauvage JP, Ventura B, Flamigni L (2004) New J Chem 28:1091

    Article  CAS  Google Scholar 

  37. De Cola L, Balzani V, Barigelletti F, Flamigni L, Belser P, Vonzelewsky A, Frank M, Vogtle F (1993) Inorg Chem 32:5228

    Article  Google Scholar 

  38. Guardigli M, Flamigni L, Barigelletti F, Richards CSW, Ward MD (1996) J Phys Chem 100:10620

    Article  CAS  Google Scholar 

  39. Stone ML, Crosby GA (1981) Chem Phys Lett 79:169

    Article  CAS  Google Scholar 

  40. Passalacqua R, Loiseau F, Campagna S, Fang YQ, Hanan GS (2003) Angew Chem Int Ed 42:1608

    Article  CAS  Google Scholar 

  41. Wang JH, Hanan GS, Loiseau F, Campagna S (2004) Chem Commun, p 2068

    Google Scholar 

  42. Medlycott EA, Hanan GS (2005) Chem Soc Rev 34:133

    Article  CAS  Google Scholar 

  43. Abrahamsson M, Wolpher H, Johansson O, Larsson J, Kritikos M, Eriksson L, Norrby PO, Bergquist J, Sun LC, Akermark B, Hammarström L (2005) Inorg Chem 44:3215

    Article  CAS  Google Scholar 

  44. Dixon IM, Collin JP, Sauvage JP, Barigelletti F, Flamigni L (2000) Angew Chem Int Edit 39:1292

    Article  CAS  Google Scholar 

  45. Dixon IM, Collin JP, Sauvage JP, Flamigni L (2001) Inorg Chem 40:5507

    Article  CAS  Google Scholar 

  46. Marcus RA (1993) Angew Chem Int Ed 32:1111

    Article  Google Scholar 

  47. Flamigni L, Dixon IM, Collin JP, Sauvage JP (2000) Chem Commun, p 2479

    Google Scholar 

  48. Flamigni L, Marconi G, Dixon IM, Collin JP, Sauvage JP (2002) J Phys Chem B 106:6663

    Article  CAS  Google Scholar 

  49. Dixon IM, Collin JP, Sauvage JP, Flamigni L, Encinas S, Barigelletti F (2000) Chem Soc Rev 29:385

    Article  CAS  Google Scholar 

  50. Dietrich-Buchecker CO, Nierengarten JF, Sauvage JP, Armaroli N, Balzani V, De Cola L (1993) J Am Chem Soc 115:11237

    Article  CAS  Google Scholar 

  51. Baranoff E, Dixon IM, Collin JP, Sauvage JP, Ventura B, Flamigni L (2004) Inorg Chem 43:3057

    Article  CAS  Google Scholar 

  52. Eisenberg R, Nocera DG (2005) Inorg Chem 44:6799

    Article  CAS  Google Scholar 

  53. Alstrum-Acevedo JH, Brennaman MK, Meyer TJ (2005) Inorg Chem 44:6802

    Article  CAS  Google Scholar 

  54. Chakraborty S, Wadas TJ, Hester H, Schmehl R, Eisenberg R (2005) Inorg Chem 44:6865

    Article  CAS  Google Scholar 

  55. Mecklenburg SL, Peek BM, Erickson BW, Meyer TJ (1991) J Am Chem Soc 113:8540

    Article  CAS  Google Scholar 

  56. Borgström M, Shaikh N, Johansson O, Anderlund MF, Styring S, Akermark B, Magnuson A, Hammarström L (2005) J Am Chem Soc 127:17504

    Article  Google Scholar 

  57. Livoreil A, Sauvage J-P, Armaroli N, Balzani V, Flamigni L, Ventura B (1997) J Am Chem Soc 119:12114

    Article  CAS  Google Scholar 

  58. Armaroli N, Balzani V, Collin J-P, Gaviña P, Sauvage J-P, Ventura B (1999) J Am Chem Soc 121:4397

    Article  CAS  Google Scholar 

  59. Mobian P, Kern J-M, Sauvage J-P (2004) Angew Chem Int Ed 43:2392

    Article  CAS  Google Scholar 

  60. Koumura N, Geertsema EM, v Gelder MB, Meetsma A, Feringa BL (2002) J Am Chem Soc 124:5037

    Article  CAS  Google Scholar 

  61. Koumura N, Zijistra RWJ, van Delden RA, Harada N, Feringa BL (1999) Nature 401:152

    Article  CAS  Google Scholar 

  62. ter Wiel MKJ, van Delden RA, Meetsma A, Feringa BL (2003) J Am Chem Soc 125:15076

    Article  Google Scholar 

  63. Norikane Y, Tamaoki N (2004) Organic Lett 6:2595

    Article  CAS  Google Scholar 

  64. Muraoka T, Kinbara K, Kabayashi Y, Aida T (2003) J Am Chem Soc 125:5612

    Article  CAS  Google Scholar 

  65. Kojima T, Sakamoto T, Matsuda Y (2004) Inorg Chem 43:2243

    Article  CAS  Google Scholar 

  66. Jouvenot D, Koizumi M, Collin J-P, Sauvage J-P (2005) Eur J Inorg Chem, p 1850

    Google Scholar 

  67. Ballardini R, Balzani V, Gandolfi MT, Prodi L, Venturi M, Philp D, Ricketts HG, Stoddart JF (1993) Angew Chem Int Ed Eng 32:1301

    Article  Google Scholar 

  68. Ashton PR, Ballardini R, Balzani V, Credi A, Dress KR, Ishow E, Kleverlaan CJ, Kocian O, Preece JA, Spencer N, Stoddart JF, Venturi M, Wenger S (2000) Chem Eur J 6:3558

    Article  CAS  Google Scholar 

  69. Murakami H, Kawabuchi A, Kotoo K, Kunitake M, Nakashima N (1997) J Am Chem Soc 119:7605

    Article  CAS  Google Scholar 

  70. Adelt M, Devenney M, Meyer TJ, Thompson DW, Treadway JA (1998) Inorg Chem 37:2616

    Article  CAS  Google Scholar 

  71. Van Houten J, Watts J (1978) Inorg Chem 17:3381

    Article  Google Scholar 

  72. Suen HF, Wilson SW, Pomerantz M, Walsch JL (1989) Inorg Chem 28:786

    Article  CAS  Google Scholar 

  73. Pinnick DV, Durham B (1984) Inorg Chem 23:1440

    Article  CAS  Google Scholar 

  74. Durham B, Caspar JV, Nagle JK, Meyer TJ (1982) J Am Chem Soc 104:4803

    Article  CAS  Google Scholar 

  75. Tachiyashiki S, Mizumachi K (1994) Coord Chem Rev 132:113

    Article  CAS  Google Scholar 

  76. von Zelewsky A, Gremaud G (1988) Helv Chim Acta 71:1108

    Article  Google Scholar 

  77. Hichida H, Tachiyashiki S, Sasaki Y (1989) Chem Lett 1579

    Google Scholar 

  78. Collin J-P, Laemmel A-C, Sauvage J-P (2001) New J Chem 25:22

    Article  CAS  Google Scholar 

  79. Baranoff E, Collin J-P, Furusho J, Furusho Y, Laemmel A-C, Sauvage J-P (2002) Inorg Chem 41:1215

    Article  CAS  Google Scholar 

  80. Laemmel A-C, Collin J-P, Sauvage J-P, Accorsi G, Armaroli N (2003) Eur J Inorg Chem, p 467

    Google Scholar 

  81. Laemmel A-C, Collin J-P, Sauvage J-P (2000) CR Acad Sci 3:43

    CAS  Google Scholar 

  82. Bonnet S, Collin J-P, Gruber N, Sauvage J-P, Schofield ER (2003) Dalton Trans

    Google Scholar 

  83. Schofield ER, Collin J-P, Gruber N, Sauvage J-P (2003) Chem Commun, p 188

    Google Scholar 

  84. Bonnet S, Schofield ER, Collin J-P, Sauvage J-P (2004) Inorg Chem 43:8346

    Article  CAS  Google Scholar 

  85. Sauvage J-P, Dietrich-Buchecker CO (eds) (1999) Molecular Catenanes, Rotaxanes and Knots. Wiley, Weinheim

    Book  Google Scholar 

  86. Baranoff E, Collin J-P, Furusho Y, Laemmel A-C, Sauvage J-P (2000) Chem Commun, p 1935

    Google Scholar 

  87. Leising RA, Grzybowski J-J, Takeuchi KJ (1988) Inorg Chem 27:

    Google Scholar 

  88. Perez WJ, Lake CH, See RF, Toomey LM, Churchill MR, Takeuchi KJ, Radano CP, Boyko WJ, Bessel CA (1999) J Chem Soc Dalton Trans, p 2281

    Google Scholar 

  89. Cardenas DJ, Gavina P, Sauvage J-P (1997) J Am Chem Soc 119:2656

    Article  CAS  Google Scholar 

  90. Fujita M (1999) Acc Chem Res 32:53

    Article  CAS  Google Scholar 

  91. Hecker CR, Fanwick PE, McMillin DR (1991) Inorg Chem 30:659

    Article  CAS  Google Scholar 

  92. Dudek MJ, Ponder JW (1995) J Comput Chem 16:791

    Article  CAS  Google Scholar 

  93. Shinkai S, Nakaji T, Nishida Y, Ogawa T, Manabe O (1980) J Am Chem Soc 102:5860

    Article  CAS  Google Scholar 

  94. Fabbrizzi L, Foti F, Patroni S, Pallavicini P, Taglietti A (2004) Angew Chem Int Ed Eng 43:5073

    Article  CAS  Google Scholar 

  95. Pomeranc D, Jouvenot D, Chambron J-C, Collin J-P, Heitz V, Sauvage J-P (2003) Chem Eur J 9:4247

    Article  CAS  Google Scholar 

  96. Balzani V, Credi A, Venturi M (1998) Coord Chem Rev 171:3

    Article  CAS  Google Scholar 

  97. Hayoz P, von Zelewsky A, Stoeckli-Evans H (1993) J Am Chem Soc 115:51111

    Article  Google Scholar 

  98. Arico F, Mobian P, Kern J-M, Sauvage J-P (2003) Organic Lett 5:1887

    Article  CAS  Google Scholar 

  99. Mobian P, Kern J-M, Sauvage J-P (2003) J Am Chem Soc 125:2016

    Article  CAS  Google Scholar 

  100. Mobian P, Kern J-M, Sauvage J-P (2003) Helv Chim Acta 86:4195

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all the very talented and enthusiastic researchers who participated in the work discussed in the present review article. Their names appear in the references. We thank CNR of Italy (PM-P04-ISTM-C1/ISOF-M5), CNRS (France), Ministero dell'Istruzione, dell'Universita' e della Ricerca of Italy (FIRB, RBNE019H9K) and COST D31 for financial support. SB acknowledges the Région Alsace for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Sauvage .

Editor information

Vivian W. W. Yam

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baranoff, E. et al. (2006). From Photoinduced Charge Separation to Light-driven Molecular Machines. In: Yam, V.W.W. (eds) Photofunctional Transition Metal Complexes. Structure and Bonding, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_037

Download citation

Publish with us

Policies and ethics