Skip to main content

Photochemical Redox Reactions of Mercury

  • Chapter
  • First Online:
Recent Developments in Mercury Science

Part of the book series: Structure and Bonding ((STRUCTURE,volume 120))

Abstract

Mercury is a unique heavy metal element with several oxidation states, whose changes are sensitive to photo energy, directly or indirectly. Because of the existence of stable oxidation states of mercury, redox reactions are important in the element's chemistry. Photochemical redox reactions of mercury involve electron transfer induced, directly, by absorption of light and consequent electronic excitation of a mercury species in a specific oxidation state, or indirectly, by another non-mercury species, i.e., the reactive intermediates (reductants or oxidants) photo-induced. In this chapter, some recent development in the photochemical redox chemistry of mercury in the last five to ten years is reviewed. First, aqueous phase and heterogeneous photochemical redox reactions of mercury in artificial media are discussed. The review is then centered on photochemical redox reactions of mercury in aquatic media relevant to natural surface waters.

Notable progress has been made in the aqueous photochemistry of Hg(II) complexes. Recent studies on heterogeneous reduction of Hg(II) photocatalyzed by semiconductor TiO2 indicate that a group of parameters control the process, including characteristics of TiO2 (surface properties, particle size, surface coating, concentration, etc.), pH, irradiation, hole scavengers, and interfering ions (e.g., Cl-). Aquatic Hg(II) species could be reduced through secondary photochemical processes mediated by intermediate reactive reductants (e.g., .O2 -/HO2 .) photochemically produced involving aquatic organic matter and through heterogeneous reduction photocatalyzed by particles (e.g., TiO2), and probably also through primary photochemical processes (e.g., direct photolysis of Hg(OH)2 and Hg(II)-oxalate). Aquatic organic substances are the major electron donors for Hg(II) reduction, but the mechanisms remain to be fully uncovered. The role of metal ions (e.g., Fe, Cu) in photoredox chemistry of aquatic mercury warrants more attention. While the role of the strong oxidants, i.e., .OH, in photo-induced secondary oxidation of aquatic Hg(0) is known, other possible oxidants are to be revealed. Much still remains unknown about the photochemical behavior of the unstable Hg(I) species in aquatic photochemical redox chemistry of mercury, which may hold a special key to understanding the photochemoredox cycle of aquatic mercury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley, New York

    Google Scholar 

  2. Balzani V, Carassiti V (1970) Photochemistry of coordination compounds. Academic Press, London

    Google Scholar 

  3. Nriagu JO (1994) Sci Total Environ 154:1

    Article  CAS  Google Scholar 

  4. Campell NA (1990) Biology, 2nd edn. Benjaming/Cummings Publishing Company Inc, Redwood City, p 41

    Google Scholar 

  5. Schroeder WH, Munthe J (1998) Atmos Environ 32:809

    Article  CAS  Google Scholar 

  6. Ariya PA, Ryzhkov A (2003) J Phys IV France 107:57

    CAS  Google Scholar 

  7. Balabanov NB, Peterson KA (2003) J Phys Chem A 107:7465

    Article  CAS  Google Scholar 

  8. Bauer D, D'Ottone L, Campuzano-Jost P, Hynes AJ (2003) J Photochem Photobiol A Chem 157:247

    Article  CAS  Google Scholar 

  9. Granite EJ, Pennline HW (2002) Ind Eng Chem Res 41:5470

    Article  CAS  Google Scholar 

  10. Hall B (1995) Water Air Soil Pollut 80:301

    Article  CAS  Google Scholar 

  11. Lee TG, Biswas P, Hedrick E (2004) Ind Eng Chem Res 43:1411

    Article  CAS  Google Scholar 

  12. Pal B, Ariya PA (2003) J Phys IV France 107:189

    Google Scholar 

  13. Pal B, Ariya PA (2004) Phys Chem Chem Phys 6:572

    Article  CAS  Google Scholar 

  14. Pal B, Ariya PA (2004) Environ Sci Technol 38:5555

    Article  CAS  Google Scholar 

  15. Sheu G-R, Mason RP (2004) J Atmos Chem 48:107

    Article  CAS  Google Scholar 

  16. Sommar J, Hallquist M, Ljungstrom E (1996) Chem Phys Let 257:434

    CAS  Google Scholar 

  17. Tossell JA (2003) J Phys Chem 107:7804

    CAS  Google Scholar 

  18. McAuliffe CA (ed) (1977) The chemistry of mercury. Macmillan of Canada/Maclean-Hunter Press, Toronto

    Google Scholar 

  19. Cotton FA, Wilkinson G (1966) Advanced inorganic chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  20. Lindsay WL (1979) Chemical equilibria in soil. Wiley, New York

    Google Scholar 

  21. Turro NJ (1991) Modern molecular photochemistry. University Science Books, Sausalito

    Google Scholar 

  22. Wayne RP (1988) Principles and applications of photochemistry. Oxford University Press, Oxford

    Google Scholar 

  23. Brezonik PL (1994) Chemical kinetics and process dynamics in aquatic systems. Lewis Publishers, Boca Raton

    Google Scholar 

  24. Leifer A (1988) The kinetics of environmental aquatic photochemistry. ACS professional reference book. American Chemical Society, Washington, DC

    Google Scholar 

  25. Stumm W, Morgan JJ (1996) Aquatic chemistry, chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York

    Google Scholar 

  26. Kettle SFA (1998) Physical inorganic chemistry, a coordination chemistry approach. Oxford University Press, Oxford

    Google Scholar 

  27. Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry, principles of structure and reactivity, 4th edn. HarperCollins College Publishers, New York

    Google Scholar 

  28. Adamson AW, Waltz WL, Zinato E, Watts DW, Fleischauser PD, Lindholm RD (1968) Chem Rev 68:541

    Article  CAS  Google Scholar 

  29. Uri N (1952) Chem Rev 50:375

    Article  CAS  Google Scholar 

  30. Martell AE, Hancock RD (1996) Metal complexes in aqueous solutions. Plenum Press, New York

    Google Scholar 

  31. Levason W, McAuliffe CA (1977) In: McAuliffe CA (ed) The chemistry of mercury. Macmillan of Canada/Maclean-Hunter Press, Toronto, p 49

    Google Scholar 

  32. Kunkely H, Horvath O, Vogler A (1997) Coordin Chem Rev 159:85

    Article  CAS  Google Scholar 

  33. Horvath O, Vogler A (1998) Inorg Chem Commun 1:270

    Article  CAS  Google Scholar 

  34. Horvath O, Vogler A (1993) Inorg Chem 32:5485

    Article  CAS  Google Scholar 

  35. Kunkely H, Vogler A (1993) Z Naturforsch 48b:397

    Google Scholar 

  36. Horvath O, Miko I (1999) J Photochem Photobiol A Chem 128:33

    Article  CAS  Google Scholar 

  37. Hegyi J, Horvath O (2004) Progr Colloid Polym Sci 125:10

    CAS  Google Scholar 

  38. Mills A, Le Hunte S (1997) J Photochem Photobiol A Chem 108:1

    Article  CAS  Google Scholar 

  39. Pal B, Ikeda S, Ohtani B (2003) Inorg Chem 42:1518

    Article  CAS  Google Scholar 

  40. Stephens RE, Ke B, Trivich D (1955) J Phys Chem 59:966

    Article  CAS  Google Scholar 

  41. Wang X, Pehkonen SO, Ray AK (2004) Electrochimca Acta 49:1435

    CAS  Google Scholar 

  42. Habibi MH, Habibian G, Haghighipor MA (2003) Fresenius Environ Bull 12:808

    CAS  Google Scholar 

  43. Zhang FS, Nriagu JO, Itoh H (2004) J Photochem Photobiol A Chem 167:223

    Article  CAS  Google Scholar 

  44. Skubal LR, Meshkov NK (2002) J Photochem Photobiol A Chem 148:211

    Article  CAS  Google Scholar 

  45. Castillo-Rojas S, Gonzalez-Chavez JL, Vicente L, Burillo G (2001) J Phys Chem A 105:8038

    Article  CAS  Google Scholar 

  46. Finlayson-Pitts BJ, Pitts JN Jr (2000) Chemistry of the upper and lower atmosphere, theory, experiments, and applications. Academic Press, San Diego

    Google Scholar 

  47. Amyot M, Mierle G, Lean D, McQueen DJ (1994) Environ Sci Technol 28:2366

    Article  CAS  Google Scholar 

  48. Amyot M, Mierle G, Lean D, McQueen DJ (1997a) Geochim Cosmochim Acta 61:975

    Google Scholar 

  49. Amyot M, Lean D, Mierle G (1997b) Environ Toxic Chem 16:2054

    Google Scholar 

  50. Amyot M, Morel FMM, Ariya PA (2005) Environ Sci Technol 39:110

    Article  CAS  Google Scholar 

  51. Dill C, Kuiken T, Zhang H, Ensor M (2005) Sci Total Environ (in press)

    Google Scholar 

  52. Krabbenhoft DP, Hurley JP, Olson ML, Cleckner LB (1998) Biogeochem 40:311

    Article  CAS  Google Scholar 

  53. Hines NA, Brezonik PL (2004) Mar Chem 90:137

    Article  CAS  Google Scholar 

  54. O'Driscoll NJ, Beauchamp S, Siciliano SD, Rencz AN, Lean DRS (2003) Environ Sci Technol 37:2226

    Article  CAS  Google Scholar 

  55. Poulain AJ, Amyot M, Findlay D, Telor S, Barkay T, Hintelmann H (2004) Limnol Oceanogr 49:2265

    Article  CAS  Google Scholar 

  56. Zhang H, Lindberg SE (2000) Sci Total Environ 259:123

    Article  CAS  Google Scholar 

  57. Zhang H, Lindberg SE (2001) Environ Sci Technol 35:928

    Article  CAS  Google Scholar 

  58. Zhang H, Lindberg SE (2002) Water Air Soil Pollut 133:379

    CAS  Google Scholar 

  59. Amyot M, Gill GA, Morel FMM (1997c) Environ Sci Technol 31:3606

    Google Scholar 

  60. Costa M, Liss PS (1999) Mar Chem 68:87

    Article  CAS  Google Scholar 

  61. O'Driscoll NJ, Lean DRS, Loseto LL, Carignan R, Siciliano SD (2004) Environ Sci Technol 38:2664

    Article  CAS  Google Scholar 

  62. Munthe J, McElroy WJ (1992) Atmos Environ 26A:553

    CAS  Google Scholar 

  63. Munthe J, Xiao ZF, Lindqvist O (1991) Water Air Soil Pollut 56:621

    Article  CAS  Google Scholar 

  64. Xiao ZF, Munthe J, Stromberg D, Lindqvist O (1994) In: Watras CJ, Huckabee JW (eds) Mercury as a global pollutant-integration and synthesis. Lewis Publishers, Boca Raton, p 581

    Google Scholar 

  65. Lin C-J, Pehkonen SO (1999) Atmos Environ 33:2067

    Article  CAS  Google Scholar 

  66. Ravichandran M (2004) Chemosphere 55:319

    Article  CAS  Google Scholar 

  67. Matthiessen A (1996) Fresenius J Anal Chem 354:747

    CAS  Google Scholar 

  68. Matthiessen A (1998) Sci Total Environ 213:177

    Article  CAS  Google Scholar 

  69. Rocha JC, Sargentini E Jr, Zara LF, Rosa AH, dos Santos A, Burba P (2003) Talanta 61:699

    Article  CAS  Google Scholar 

  70. Xiao ZF, Stromberg D, Lindqvist O (1995) Water Air Soil Pollut 80:789

    Article  CAS  Google Scholar 

  71. Ravichandran M (2000) Environ Chem Div ACS Extended Abstract August 40:641

    CAS  Google Scholar 

  72. Liu J, Wang W, Peng A (2000) J Environ Sci Health A35:1859

    Article  CAS  Google Scholar 

  73. Allard B, Arsenie I (1991) Water Air Soil Pollut 56:457

    Article  CAS  Google Scholar 

  74. Pehkonen SO, Lin C-J (1998) J Air Waste Manage Assoc 48:144

    CAS  Google Scholar 

  75. Lin C-J, Pehkonen SO (1997) Atmos Environ 31:4125

    Article  CAS  Google Scholar 

  76. Gardfeldt K, Jonsson M (2003) J Phys Chem A 107:4478

    Article  CAS  Google Scholar 

  77. Sellers P, Kelly CA, Rudd JWM, MacHutchon AR (1996) Nature 380:694

    Article  CAS  Google Scholar 

  78. Chen J, Pehkonen SO, Lin C-J (2003) Water Res 37:2496

    Article  CAS  Google Scholar 

  79. Inoko M (1981) Environ Pollut Ser B 2:3

    Article  CAS  Google Scholar 

  80. Yamamoto M (1996) Chemosphere 32:1217

    Article  CAS  Google Scholar 

  81. Lalonde JD, Amyot M, Kraepiel AML, Morel FMM (2001) Environ Sci Technol 35:1367

    Article  CAS  Google Scholar 

  82. Lalonde JD, Amyot M, Orvoine J, Morel FMM, Auclair J-C, Ariya PA (2004) Environ Sci Technol 38:508

    Article  CAS  Google Scholar 

  83. Sawyer DT (1991) Oxygen chemistry. Oxford University Press, Oxford

    Google Scholar 

  84. Afanas'ev IB (1989) Superoxide ion: chemistry and biological implications, vol I. CRC Press, Boca Raton

    Google Scholar 

  85. Gardfeldt K, Sommar J, Stromberg D, Feng X (2001) Atmos Environ 35:3039

    Article  CAS  Google Scholar 

  86. Zepp RG, Hoigne J, Bader H (1987) Environ Sci Technol 21:443

    Article  CAS  Google Scholar 

  87. Helz GR, Zepp RG, Crosby DG (eds) (1994) Aquatic and surface photochemistry. Lewis Publishers, Boca Raton

    Google Scholar 

  88. Munthe J (1994) In: Watras CJ, Huckabee JW (eds) Mercury as a global pollutant-integration and synthesis. Lewis Publishers, Boca Raton, p 273

    Google Scholar 

  89. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) J Phys Chem Ref Data 17:513

    CAS  Google Scholar 

  90. Munthe J (1992) Atmos Environ 26A:1461

    CAS  Google Scholar 

  91. Zhang H, Lindberg SE (1999) J Geophys Res 104:21889

    Article  CAS  Google Scholar 

  92. Canonica S, Jans U, Stemmler K, Hoigne J (1995) Environ Sci Technol 29:1822

    Article  CAS  Google Scholar 

  93. Gerecke AC, Canonica S, Muller SR, Scharer M, Schwarzenbach RP (2001) Environ Sci Technol 35:3915

    Article  CAS  Google Scholar 

  94. Canonica S, Hoigne J (1995) Chemosphere 30:2365

    Article  CAS  Google Scholar 

  95. Bonzongo J-CJ, Donkor AK (2003) Chemosphere 52:1263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded in part by a US EPA STAR grant (#R829800). The encouragement and help from Dr. David Atwood of the Department of Chemistry at the University of Kentucky during preparation of this chapter is greatly appreciated. Special thanks go to Dr. Steve Lindberg for his encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhang .

Editor information

David A. Atwood

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Zhang, H. Photochemical Redox Reactions of Mercury. In: Atwood, D.A. (eds) Recent Developments in Mercury Science. Structure and Bonding, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_015

Download citation

Publish with us

Policies and ethics