Skip to main content

Interaction Potentials for Water from Accurate Cluster Calculations

  • Chapter
  • First Online:
Intermolecular Forces and Clusters II

Part of the book series: Structure and Bonding ((STRUCTURE,volume 116))

Abstract

Recent advances in the area of ab initio theory combined with the development of efficient electronic structure software suites that take advantage of parallel hardware architectures, have resulted in our ability to obtain accurate energetics for medium-size (up to 30 molecules) clusters of water molecules. These advances offer a new route in the development of empirical interaction potentials for water, especially in the absence of experimental information regarding the cluster energetics. The use of systematically improvable methodological approaches, together with the understanding of the salient issues associated with the transferability of the models across different environments, allow for the development of hierarchical approaches in the description of the intermolecular interactions in water. The use of accurate models, which are transferable across dissimilar environments, in conjunction with quantum dynamical simulation protocols, can provide new insight into the origin of the anomalous behavior of water across the various temperature and pressure ranges that are pertinent to its chemical and biological.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sciortino F, La Nave E, Scala A, Stanley HE, Starr FW (2002) Eur Phys J E 9:233

    Article  CAS  Google Scholar 

  2. Stanley HE, Buldyrev SV, Canpolat M, Havlin S, Mishima O, Sadr Lahijany MR, Scala A, Starr FW (1999) Physica D, 133:453

    Article  CAS  ISI  Google Scholar 

  3. Stanley HE (May 1999) MRS Bull 24(5):22–30

    Google Scholar 

  4. Robinson GW, Zhu SB, Singh S, Evans MW (1996) Water in Biology, Chemistry and Physics. Experimental Overviews and Computational Methodologies. World Scientific Publishing Co. Pte. Ltd, Singapore

    Google Scholar 

  5. Franks F (ed) (1972) Water: A comprehensive Treatise, vol 1–7. Plenum Press, New York

    Google Scholar 

  6. Bernal JD, Fowler RH (1933) J Chem Phys 1:515

    Article  CAS  Google Scholar 

  7. Guillot B (2002) J Mol Liq 101:219

    Article  CAS  Google Scholar 

  8. Barker JA, Watts RO (1969) Chem Phys Lett 3:144

    Article  CAS  Google Scholar 

  9. Rahman A, Stillinger FH (1971) J Chem Phys 55:3336

    Article  CAS  Google Scholar 

  10. Popkie H, Kistenmacher H, Clementi E (1973) J Chem Phys 59:1325

    Article  CAS  Google Scholar 

  11. Kistenmacher H, Lie GC, Popkie H, Clementi E (1974) J Chem Phys 61:546

    CAS  Google Scholar 

  12. Lie GC, Clementi E (1975) J Chem Phys 62:2195

    Article  CAS  Google Scholar 

  13. Matsuoka O, Clementi E, Yoshimine M (1976) J Chem Phys 64:1351

    Article  CAS  Google Scholar 

  14. Lie GC, Clementi E, Yoshimine M (1976) J Chem Phys 64:2314

    CAS  Google Scholar 

  15. Laasonen K, Sprik M, Parrinello M, Carr R (1993) J Chem Phys 99:9080

    Article  CAS  Google Scholar 

  16. Jorgensen WL (1981) J Am Chem Soc 103:335

    CAS  Google Scholar 

  17. Jorgensen WL (1982) J Chem Phys 77:4156

    CAS  Google Scholar 

  18. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926

    Article  CAS  Google Scholar 

  19. Berensen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) In: Pullman B (ed) Intermolecular Forces. Reidel, Dordrecht, p 331

    Google Scholar 

  20. Ahlström P, Wallqvist A, Engström S, Jönsson B (1989) Mol Phys 68:563

    Google Scholar 

  21. Cieplak P, Kollman P, Lybrand T (1990) J Chem Phys 92:6755

    CAS  Google Scholar 

  22. Sprik M (1991) J Chem Phys 95:2283

    Article  CAS  Google Scholar 

  23. Kozack RE, Jordan PC (1992) J Chem Phys 96:3120

    CAS  Google Scholar 

  24. Dang LX (1992) J Chem Phys 97:2659

    CAS  Google Scholar 

  25. Dang LX, Chang TM (1997) J Chem Phys 106:8149

    Article  CAS  Google Scholar 

  26. Pugliano N, Saykally RJ (1992) Science 257:1937

    CAS  ISI  Google Scholar 

  27. Liu K, Loeser JG, Elrod MJ, Host BC, Rzepiela JA, Pugliano N, Saykally RJ (1994) J Am Chem Soc 116:3507

    CAS  Google Scholar 

  28. Suzuki S, Blake GA (1994) Chem Phys Lett 229:499

    CAS  Google Scholar 

  29. Viant MR, Cruzan JD, Lucas DD, Brown MG, Liu K, Saykally RJ (1997) J Phys Chem A 101:9032

    Article  CAS  Google Scholar 

  30. Cruzan JD, Braly LB, Liu K, Brown MG, Loeser JG, Saykally RJ (1996) Science 271:59

    CAS  ISI  Google Scholar 

  31. Cruzan JD, Brown MG, Liu K, Braly LB, Saykally RJ (1996) J Chem Phys 105:6634

    Article  CAS  Google Scholar 

  32. Cruzan JD, Viant MR, Brown MG, Saykally RJ (1997) J Phys Chem A 101:9022

    Article  CAS  Google Scholar 

  33. Liu K, Brown MG, Cruzan JD, Saykally RJ (1996) Science 271:62

    CAS  ISI  Google Scholar 

  34. Liu K, Brown MG, Cruzan JD, Saykally RJ (1997) J Phys Chem A 101:9011

    CAS  Google Scholar 

  35. Liu K, Brown MG, Carter C, Saykally RJ, Gregory JK, Clary DC (1996) Nature 381:501

    CAS  ISI  Google Scholar 

  36. Liu K, Brown MG, Saykally RJ (1997) J Phys Chem A 101:8995

    CAS  Google Scholar 

  37. Xantheas SS, Dunning TH Jr (1993) J Chem Phys 98:8037

    Article  CAS  Google Scholar 

  38. Xantheas SS, Dunning TH Jr (1993) J Chem Phys 99:8774

    Article  CAS  Google Scholar 

  39. Xantheas SS (1994) J Chem Phys 100:7523

    Article  CAS  Google Scholar 

  40. Xantheas SS (1996) Phil Mag B 73:107

    CAS  Google Scholar 

  41. Soper AK (2000) Chem Phys 258:121

    CAS  Google Scholar 

  42. Hura G, Sorenson JM, Glaeser RM, Head-Gordon T (2000) J Chem Phys 113:9140

    Article  CAS  Google Scholar 

  43. Sorenson JM, Hura G, Glaeser RM, Head-Gordon T (2000) J Chem Phys 113:9149

    Article  CAS  Google Scholar 

  44. Hankins D, Moskowitz JW, Stillinger FH (1970) J Chem Phys 53:4544

    Article  CAS  Google Scholar 

  45. Xantheas SS (1994) J Phys Chem 98:13489

    Article  CAS  Google Scholar 

  46. Xantheas SS (1995) J Am Chem Soc 117:10373

    Article  CAS  Google Scholar 

  47. Burnham CJ, Xantheas SS, Miller MA, Applegate BE, Miller RE (2002) J Chem Phys 117:1109

    Article  CAS  Google Scholar 

  48. Thiessen WE, Narten AH (1982) J Chem Phys 77:2656

    Article  CAS  Google Scholar 

  49. Kuhs WF, Lehman MS (1983) J Phys Chem 87:4312

    Article  CAS  Google Scholar 

  50. Benedict WS, Gailar N, Plyler EK (1956) J Chem Phys 24:1139

    CAS  Google Scholar 

  51. Buch V, Devlin JP (1999) J Chem Phys 110:3437

    Article  CAS  Google Scholar 

  52. Xantheas SS (2000) Chem Phys 258:225

    Article  CAS  Google Scholar 

  53. Chalasinski G, Szczesniak MM, Cieplak C, Scheiner S (1991) J Chem Phys 94:2873

    CAS  Google Scholar 

  54. Dunning TH Jr (2000) J Phys Chem A 104:9062

    Article  CAS  Google Scholar 

  55. Coseter F (1958) Nucl Phys 7:421

    Google Scholar 

  56. Coseter F, Kümmel H (1960) Nucl Phys 17:477

    Google Scholar 

  57. Cizek J (1966) J Chem Phys 45:4256

    CAS  Google Scholar 

  58. Cizek J (1969) Adv Chem Phys 14:35

    CAS  Google Scholar 

  59. Bartlett RJ, Purvis GD (1978) Int J Quant Chem 14:561

    Article  CAS  Google Scholar 

  60. Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910

    Article  CAS  Google Scholar 

  61. Kucharski SA, Bartlett RJ (1992) J Chem Phys 97:4282 and references therein

    CAS  Google Scholar 

  62. Peterson KA, Dunning TH Jr (1995) J Chem Phys 102:2032

    CAS  Google Scholar 

  63. Halkier A, Klopper W, Helgaker T, Jorgensen P, Taylor PR (1999) J Chem Phys 111:9157

    CAS  Google Scholar 

  64. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    CAS  Google Scholar 

  65. Raghavachari K, Pople JA, Replogle ES, Head-Gordon M (1990) J Phys Chem 94:5579

    CAS  Google Scholar 

  66. Møller C, Plesset MS (1934) Phys Rev 46:618

    Google Scholar 

  67. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  68. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  69. Dunning TH Jr, Peterson KA, Woon DE (1998) In: Schleyer PvR (ed) Encyclopedia of Computational Chemistry. Wiley, New York, p 88

    Google Scholar 

  70. Bunge CF (1970) Theor Chim Acta 16:126

    Article  CAS  Google Scholar 

  71. Termath V, Klopper W, Kutzelnigg W (1991) Chem J Phys 94:2002

    CAS  Google Scholar 

  72. Feller D (1992) J Chem Phys 96:6104

    Article  CAS  Google Scholar 

  73. Xantheas SS, Dunning TH Jr (1993) J Phys Chem 97:18

    CAS  Google Scholar 

  74. Klopper W (1995) J Chem Phys 102:6168

    Article  CAS  Google Scholar 

  75. Martin JML (1996) Chem Phys Lett 259:669

    CAS  Google Scholar 

  76. Wilson AK, Dunning TH Jr (1997) J Chem Phys 106:8718

    Article  CAS  Google Scholar 

  77. Halkier A, Klopper W, Helgaker T, Jørgensen P, Taylor PR (1999) J Chem Phys 111:9157 and references therein

    CAS  Google Scholar 

  78. Fast PL, Sanchez L, Truhlar DG (1999) J Chem Phys 111:2921

    Article  CAS  Google Scholar 

  79. Clementi E (1967) J Chem Phys 46:3851

    CAS  Google Scholar 

  80. Liu B, Mc Lean AD (1973) J Chem Phys 59:4557

    CAS  Google Scholar 

  81. Boys SF, Bernardi F (1970) Mol Phys 19:553

    CAS  Google Scholar 

  82. Chalasinski G, Szczesniak M (1994) Chem Rev 94:1723 and references therein

    Article  CAS  Google Scholar 

  83. van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH (1994) Chem Rev 94:1873 and references therein

    Google Scholar 

  84. Xantheas SS (1996) J Chem Phys 104:8821

    Article  CAS  Google Scholar 

  85. Emsley J, Hoyte OPA, Overill RE (1978) J Am Chem Soc 100:3303

    Article  CAS  Google Scholar 

  86. Smit PH, Derissen JL, van Duijneveldt FB (1978) J Chem Phys 69:4241

    Article  CAS  Google Scholar 

  87. van Lenthe JH, van Duijneveldt-van de Rijdt JGCM, van Duijneveldt FB (1987) Adv Chem Phys 69:521

    Google Scholar 

  88. Leclercq JM, Allavena M, Bouteiller Y (1983) J Chem Phys 78:4606

    Article  CAS  Google Scholar 

  89. Kendall RA, Simons J, Gutowski M, Chalasinski G (1989) J Phys Chem 93:621

    Article  CAS  Google Scholar 

  90. Eggenberger R, Gerber S, Huber H, Searles D (1991) Chem Phys Lett 183:223

    Article  CAS  Google Scholar 

  91. Mayer I, Surjan PR (1992) Chem Phys Lett 191:497

    Article  CAS  Google Scholar 

  92. van Duijneveldt-van de Rijdt JGCM, van Duijneveldt FB (1992) J Chem Phys 97:5019

    Google Scholar 

  93. Xantheas SS, Dunning TH Jr (1998) Ab-initio Characterization of Water and Negative Ion-Water Clusters. In: Bacic Z, Bowman JM (eds) Advances in Molecular Vibrations and Collision Dynamics, vol 3. JAI Press, Stanford, Conneticut, p 281–309

    Google Scholar 

  94. Feyereisen MW, Feller D, Dixon DA (1996) J Phys Chem 100:2993–2997

    Article  CAS  Google Scholar 

  95. Burnham CJ, Xantheas SS (2002) J Chem Phys 116:1479

    CAS  Google Scholar 

  96. Keutsch FN, Goldman N, Karyakin EN, Harker HA, Sanz ME, Leforestier C, Saykally RJ (2001) Faraday Discuss 118:79

    Article  CAS  ISI  Google Scholar 

  97. Goldman N, Fellers RS, Brown MG, Braly LB, Keoshian CJ, Leforestier C, Saykally RJ (2002) J Chem Phys 116:10148 and references therein

    Article  CAS  Google Scholar 

  98. Watanabe Y, Taketsugu T, Wales DJ (2004) J Chem Phys 120:5993

    Article  CAS  Google Scholar 

  99. Wales DJ (1999) In: Jellinek J (ed) Theory of Atomic and Molecular Clusters. Springer-Verlag, Heidelberg, pp 86–110

    Google Scholar 

  100. Millot C, Stone A (1992) Mol Phys 77:439

    CAS  Google Scholar 

  101. Fellers RS, Leforestier C, Braly LB, Brown MG, Saykally RJ (1999) Science 284:945

    Article  CAS  ISI  Google Scholar 

  102. Burnham CJ, Li JC, Xantheas SS, Leslie M (1999) J Chem Phys 110:4566

    Article  CAS  Google Scholar 

  103. Burnham CJ, Xantheas SS (2002) J Chem Phys 116:1500

    CAS  Google Scholar 

  104. Xantheas SS, Aprà E (2004) J Chem Phys 120:823

    Article  CAS  Google Scholar 

  105. Nielsen IMB, Seidl ET, Janssen CL (1999) J Chem Phys 110:9435

    Article  CAS  Google Scholar 

  106. Xantheas SS, to be published

    Google Scholar 

  107. Xantheas SS, Burnham CJ, Harrison RJ (2002) J Chem Phys 116:1493

    Article  CAS  Google Scholar 

  108. Fanourgakis GS, Aprà E, Xantheas SS (2004) J Chem Phys 121:2655

    Article  CAS  Google Scholar 

  109. Wales DJ, Hodges MP (1998) Chem Phys Lett 286:65

    Article  CAS  Google Scholar 

  110. Kendall RA, Aprà E, Bernholdt DE, Bylaska EJ, Dupuis M, Fann GI, Harrison RJ, Ju J, Nichols JA, Nieplocha J, Straatsma TP, Windus TL, Wong AT (2000) Comp Phys Comm 128:260

    CAS  Google Scholar 

  111. High Performance Computational Chemistry Group (2003) NWChem, A Computational Chemistry Package for Parallel Computers, Version 4.6. Pacific Northwest National Laboratory, Richland, WA 99352, USA

    Google Scholar 

  112. Mahoney MW, Jorgensen WL (2001) J Chem Phys 115:10758

    Article  CAS  Google Scholar 

  113. Jorgensen WL, Tirado-Rives J (1988) J Am Chem Soc 110:1657–1666

    CAS  Google Scholar 

  114. Damm W, Frontera A, Tirado-Rives J, Jorgensen WL (1997) J Comp Chem 18:1955

    CAS  Google Scholar 

  115. Kaplan IG, Hernandez-Cobos J, Ortega-Blake II, Novaro O (1996) Phys Rev A 53:2493–2500

    Article  CAS  Google Scholar 

  116. Groenenboom GC, Mas EM, Bukowski R, Szalewicz K, Wormer PES, van der Avoird A (2000) Phys Rev Lett 84:4072

    Article  CAS  Google Scholar 

  117. Mas EM, Bukowski R, Szalewicz K (2003) J Chem Phys 118:4404

    CAS  Google Scholar 

  118. Burnham CJ, Xantheas SS (2002) J Chem Phys 116:5115

    CAS  Google Scholar 

  119. Stone AJ (1997) Theory of Intermolecular Forces. Clarendon Press, Oxford

    Google Scholar 

  120. Millot C, Soetens JC, Martins Costa MTC, Hodges MP, Stone AJ (1998) J Phys Chem A 102:54

    Article  Google Scholar 

  121. Whalley E (1984) J Chem Phys 81:4087

    CAS  Google Scholar 

  122. Burnham CJ, Xantheas SS (2004) J Mol Liq 110:177

    Article  CAS  Google Scholar 

  123. Thole BT (1981) Chem Phys 59:341

    Article  CAS  Google Scholar 

  124. Murphy WF (1977) J Chem Phys 67:5877

    Article  CAS  Google Scholar 

  125. Partridge H, Schwenke DW (1997) J Chem Phys 106:4618

    Article  CAS  Google Scholar 

  126. Ikawa SI, Maeda S (1968) Spectrochim Acta, Part A 24:655

    CAS  Google Scholar 

  127. Whalley E, Klug DD (1986) J Chem Phys 84:78

    CAS  Google Scholar 

  128. Reimers JR, Watts RO, Klein ML (1981) Chem Phys 64:95

    Google Scholar 

  129. Reimers JR, Watts RO (1984) Chem Phys 85:83

    CAS  Google Scholar 

  130. Suhm MA, Watts RO (1991) Mol Phys 73:463

    CAS  Google Scholar 

  131. Soper AK (2000) Chem Phys 258:121

    CAS  Google Scholar 

  132. Krynicki K, Green CD, Sawyer DW (1978) Discuss Faraday Soc 66:199

    Google Scholar 

Download references

Acknowledgments

This research effort has greatly benefited through valuable contributions from Drs. C. J. Burnham, G. S. Fanourgakis, E. Aprà and R. J. Harrison and helpful discussions with Drs. L. X. Dang and G. K. Schenter. This work was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy. Battelle operates the Pacific Northwest National Laboratory for the Department of Energy. Calculations were performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Additional computer resources were provided by the Office of Science, US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotiris S. Xantheas .

Editor information

D. J. Wales

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Xantheas, S.S. Interaction Potentials for Water from Accurate Cluster Calculations. In: Wales, D.J. (eds) Intermolecular Forces and Clusters II. Structure and Bonding, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_009

Download citation

Publish with us

Policies and ethics