Luminescence in Photovoltaics

  • José Almeida SilvaEmail author
  • João Manuel Serra
  • António Manuel Vallêra
  • Killian Lobato
Part of the Springer Series on Fluorescence book series (SS FLUOR, volume 18)


This chapter reviews the applications of luminescence-based techniques in the photovoltaic industry, with special focus on crystalline silicon-based devices – the dominant technology in the market.

Section 1 introduces the principles of the photovoltaic effect and describes the light capture and conversion in the device. A brief description of the state-of-the-art device manufacture is then given along with a description of how power conversion efficiency of photovoltaic devices is determined.

Section 2 describes the origin of luminescence in photovoltaic devices and also describes the luminescence-based characterization of photovoltaic cells and modules.

Section 3 describes in detail how luminescence (photo- and electroluminescence) measurements are applied in the complete value chain of the PV industry, from ingot, to wafer, to device, to module, to complete infield systems.

Section 4 briefly describes how luminescence is also relevant for emerging thin-film photovoltaic technologies.

Section 5 describes a recently developed technique, reverse bias electroluminescence, where the photovoltaic devices are inversely polarized. The emitted photons here are a result of charge carrier acceleration and consequent scattering and/or recombination in a high electric field.

Section 6 concludes this chapter with an outlook on how luminescence imaging is expected to develop in the near future, namely, how currently under development lab techniques will likely be transferred to the industrial environment.


Electroluminescence (EL) Manufacture Modules Operation and maintenance (O&M) Photoluminescence (PL) Photovoltaic (PV) Reliability Silicon (Si) Solar cells Systems 



The authors wish to thank Hugo Silva at Enertis Madrid, Dr. Michael Reuter and Liviu Stoicescu at Solarzentrum Stuttgart GmbH, Dr. Francisco Martínez-Moreno at the Instituto de Energía Solar – Universidad Politécnica de Madrid, Dr. Simon Koch at the Photovoltaic Institute Berlin, and Dr. Gisele A. dos Reis Benatto at the Department of Photonics Engineering, Technical University of Denmark. This chapter is significantly richer because of their willingness to openly discuss their work and to permit the use of their data. We also wish to thank WIP Renewable Energies EU PVSEC for permitting the reproduction of copyrighted material.


  1. 1.
    European Photovoltaic Industry Association (2014) Global market outlook for PV 2014–2018. European Photovoltaic Industry Association, BrusselsGoogle Scholar
  2. 2.
    Fthenakis VM, Hyung CK, Alsema E (2008) Emissions from photovoltaic life cycles. Environ Sci Technol 42(6):2168–2174. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Würfel P (2009) Physics of solar cells: from basic principles to advanced concepts, 2nd edn. Wiley, New YorkGoogle Scholar
  4. 4.
    Pizzini S (2012) Advanced silicon materials for photovoltaic applications. Wiley, ChichesterCrossRefGoogle Scholar
  5. 5.
    Nakajima K, Usami N (2009) Crystal growth of silicon for solar cells. Springer, BerlinGoogle Scholar
  6. 6.
    Luque A, Hegedus S (2010) Handbook of photovoltaic science and engineering, 2nd edn. Wiley, ChichesterGoogle Scholar
  7. 7.
    Zhang Y, Tao J, Chen Y et al (2016) A large-volume manufacturing of multi-crystalline silicon solar cells with 18.8% efficiency incorporating practical advanced technologies. RSC Adv 6(63):58046–58054. CrossRefGoogle Scholar
  8. 8.
    Kim KH, Park CS, Lee JD et al (2017) Record high efficiency of screen-printed silicon aluminum back surface field solar cell: 20.29%. Jpn J Appl Phys 56:08MB25CrossRefGoogle Scholar
  9. 9.
    International Technology Roadmap for Photovoltaic (2018) ITRPV Ninth Edition 2018 including maturity reportGoogle Scholar
  10. 10.
    Fossum JG (1977) Physical operation of back-surface-field silicon solar cells. IEEE Trans Electron Devices 24:322–325. CrossRefGoogle Scholar
  11. 11.
    Aberle AG (2000) Surface passivation of crystalline silicon solar cells: a review. Prog Photovolt Res Appl 8:473–487.<473::AID-PIP337>3.0.CO;2-D CrossRefGoogle Scholar
  12. 12.
    Sze SM, Lee KM (2012) Semiconductor devices: physics and technology, 3rd edn. Wiley, New YorkGoogle Scholar
  13. 13.
    Munoz MA, Alonso-García MC, Vela N, Chenlo F (2011) Early degradation of silicon PV modules and guaranty conditions. Sol Energy 85:2264–2274. CrossRefGoogle Scholar
  14. 14.
    Goetzberger A, Knobloch J, Voß B (2014) Crystalline silicon solar cells. Wiley, ChichesterCrossRefGoogle Scholar
  15. 15.
    Sauer R, Weber J, Stolz J et al (1985) Dislocation-related photoluminescence in silicon. Appl Phys A Solids Surfaces 36:1–13. CrossRefGoogle Scholar
  16. 16.
    Yang MJ, Yamaguchi M, Takamoto T et al (1997) Photoluminescence analysis of InGaP top cells for high-efficiency multi-junction solar cells. Sol Energy Mater Sol Cells 45:331–339. CrossRefGoogle Scholar
  17. 17.
    Schick K, Daub E, Finkbeiner S, Wurfel P (1992) Verification of a generalized Planck law for luminescence radiation from silicon solar cells. Appl Phys A Solids Surfaces 54:109–114. CrossRefGoogle Scholar
  18. 18.
    Trupke T, Daub E, Wurfel P (1998) Absorptivity of silicon solar cells obtained from luminescence. Sol Energy Mater Sol Cells 53:103–114. CrossRefGoogle Scholar
  19. 19.
    Livescu G, Angell M, Filipe J, Knox WH (1990) A real-time photoluminescence imaging system. J Electron Mater 19:937–942. CrossRefGoogle Scholar
  20. 20.
    Fuyuki T, Kondo H, Yamazaki T et al (2005) Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence. Appl Phys Lett 86:1–3. CrossRefGoogle Scholar
  21. 21.
    Trupke T (2017) Photoluminescence and electroluminescence characterization in silicon photovoltaics. In: Reinders A, Verlinden P, van Sark W, Freundlich A (eds) Photovoltaic solar energy: from fundamentals to applications. Wiley, Chichester, pp 322–338CrossRefGoogle Scholar
  22. 22.
    Sinton RA, Cuevas A, Stuckings M (1996) Quasi-steady-state photoconductance, a new method for solar cell material and device characterization. In: Conference record of the twenty fifth IEEE Photovoltaic specialists conference – 1996. IEEE, Washington, DC, pp 457–460Google Scholar
  23. 23.
    Trupke T, Bardos RA, Schubert MC, Warta W (2006) Photoluminescence imaging of silicon wafers. Appl Phys Lett 89:044107. CrossRefGoogle Scholar
  24. 24.
    Hinken D, Schinke C, Herlufsen S et al (2011) Experimental setup for camera-based measurements of electrically and optically stimulated luminescence of silicon solar cells and wafers. Rev Sci Instrum 82:033706. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    MacDonald DH (2001) Recombination and trapping in multicrystalline silicon solar cells. The Australian National University, CanberraGoogle Scholar
  26. 26.
    Demant M, Welschehold T, Oswald M et al (2016) Microcracks in silicon wafers I: inline detection and implications of crack morphology on wafer strength. IEEE J Photovolt 6:126–135. CrossRefGoogle Scholar
  27. 27.
    Stephens A (1997) Effectiveness of 0.08 molar iodine in ethanol solution as a means of chemical surface passivation for photoconductance decay measurements. Sol Energy Mater Sol Cells 45:255–265. CrossRefGoogle Scholar
  28. 28.
    Schmidt J, Aberle AG (1997) Accurate method for the determination of bulk minority-carrier lifetimes of mono- and multicrystalline silicon wafers. J Appl Phys 81:6186–6199. CrossRefGoogle Scholar
  29. 29.
    Haunschild J, Glatthaar M, Demant M et al (2010) Quality control of as-cut multicrystalline silicon wafers using photoluminescence imaging for solar cell production. Sol Energy Mater Sol Cells 94:2007–2012. CrossRefGoogle Scholar
  30. 30.
    Ghandhi SK (1994) VLSI fabrication principles: silicon and gallium arsenide, 2nd edn. Wiley, New YorkGoogle Scholar
  31. 31.
    Würfel P, Trupke T, Puzzer T et al (2007) Diffusion lengths of silicon solar cells from luminescence images. J Appl Phys 101:123110. CrossRefGoogle Scholar
  32. 32.
    Mitchell B, Trupke T, Weber JW, Nyhus J (2011) Bulk minority carrier lifetimes and doping of silicon bricks from photoluminescence intensity ratios. J Appl Phys 109:083111. CrossRefGoogle Scholar
  33. 33.
    Rau U (2007) Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys Rev B Condens Matter Mater Phys 76:1–8. CrossRefGoogle Scholar
  34. 34.
    Kirchartz T, Helbig A, Reetz W et al (2009) Reciprocity between electroluminescence and quantum efficiency used for the characterization of silicon solar cells. Prog Photovolt Res Appl 17:394–402. CrossRefGoogle Scholar
  35. 35.
    Breitenstein O, Rakotoniaina JP, Al Rifai MH, Werner M (2004) Shunt types in crystalline silicon solar cells. Prog Photovolt Res Appl 12:529–538. CrossRefGoogle Scholar
  36. 36.
    Breitenstein O, Bauer J, Trupke T, Bardos RA (2008) On the detection of shunts in silicon solar cells by photo- and electroluminescence imaging. Prog Photovolt Res Appl 16:325–330. CrossRefGoogle Scholar
  37. 37.
    Trupke T, Pink E, Bardos RA, Abbott MD (2007) Spatially resolved series resistance of silicon solar cells obtained from luminescence imaging. Appl Phys Lett 90:093506. CrossRefGoogle Scholar
  38. 38.
    Glatthaar M, Haunschild J, Zeidler R et al (2010) Evaluating luminescence based voltage images of silicon solar cells. J Appl Phys 108:014501. CrossRefGoogle Scholar
  39. 39.
    Müller J, Bothe K, Herlufsen S et al (2012) Reverse saturation current density imaging of highly doped regions in silicon employing photoluminescence measurements. IEEE J Photovolt 2:473–478. CrossRefGoogle Scholar
  40. 40.
    Haunschild J, Glatthaar M, Kasemann M et al (2009) Fast series resistance imaging for silicon solar cells using electroluminescence. Phys Status Solidi Rapid Res Lett 3:227–229. CrossRefGoogle Scholar
  41. 41.
    Fuyuki T, Kitiyanan A (2009) Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence. Appl Phys A Mater Sci Process 96:189–196. CrossRefGoogle Scholar
  42. 42.
    Frazão M, Silva JA, Lobato K, Serra JM (2017) Electroluminescence of silicon solar cells using a consumer grade digital camera. Meas J Int Meas Confed 99:7–12. CrossRefGoogle Scholar
  43. 43.
    Zhao J, Wang A, Altermatt P et al (1996) 24% efficient perl silicon solar cell: recent improvements in high efficiency silicon cell research. Sol Energy Mater Sol Cells 41–42:87–99. CrossRefGoogle Scholar
  44. 44.
    Haase F, Hollemann C, Schäfer S et al (2018) Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells. Sol Energy Mater Sol Cells 186:184–193. CrossRefGoogle Scholar
  45. 45.
    Franklin E, Fong K, McIntosh K et al (2016) Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell. Prog Photovolt Res Appl 24:411–427. CrossRefGoogle Scholar
  46. 46.
    Moors M, Baert K, Caremans T et al (2012) Industrial PERL-type solar cells exceeding 19% with screen-printed contacts and homogeneous emitter. Sol Energy Mater Sol Cells 106:84–88. CrossRefGoogle Scholar
  47. 47.
    Horbelt R, Hahn G, Job R, Terheiden B (2015) Void formation on PERC solar cells and their impact on the electrical cell parameters verified by luminescence and scanning acoustic microscope measurements. Energy Procedia 84:47–55. CrossRefGoogle Scholar
  48. 48.
    Padilla M, Höffler H, Reichel C et al (2014) Surface recombination parameters of interdigitated-back-contact silicon solar cells obtained by modeling luminescence images. Sol Energy Mater Sol Cells 120:363–375. CrossRefGoogle Scholar
  49. 49.
    Johnston S, Al-Jassim M, Hacke P et al (2016) Module degradation mechanisms studied by a multi-scale approach. In: IEEE photovoltaic specialists conference (PVSC). IEEE, New York, pp 0889–0893Google Scholar
  50. 50.
    Packard CE, Wohlgemuth JH, Kurtz SR (2012) Development of a visual inspection data collection tool for evaluation of fielded pv module condition – NREL technical report. Golden Colorado, USAGoogle Scholar
  51. 51.
    Stoicescu L, Reuter M, Werner JH (2014) DaySy: luminescence imaging of PV modules in daylight. In: 29th European photovoltaics solar energy conference and exhibition, Amsterdam, Netherlands, Amsterdam, Holland, pp 2553–2554Google Scholar
  52. 52.
    Luo W, Khoo YSS, Hacke P et al (2017) Potential-induced degradation in photovoltaic modules: a critical review. Energy Environ Sci 10:43–68. CrossRefGoogle Scholar
  53. 53.
    Martínez-Moreno F, Pigueiras EL, Cano JM et al (2013) On-site tests for the detection of potential induced degradation in modules. In: 28th European photovoltaic solar energy conference and exhibition, p 3313Google Scholar
  54. 54.
    Koch S, Weber T, Sobottka C et al (2016) Outdoor electroluminescence imaging of crystalline photovoltaic modules: comparative study between manual ground-level inspections and drone-based aerial surveys. In: 32nd European photovoltaic solar energy conference and exhibition energy conference and exhibition (EU PVSEC), p 1736Google Scholar
  55. 55.
    Koch S, Berghold J, Hinz C et al (2015) Improvement of a prediction model for potential induced degradation by better understanding the regeneration mechanism. In: 31st European photovoltaic solar energy conference and exhibition (EU PVSEC), Munich, Germany, pp 1813–1820Google Scholar
  56. 56.
    Köntges M, Kurtz S, Packard CE et al (2014) Review of failures of photovoltaic modules. International Energy Agency, St. UrsenGoogle Scholar
  57. 57.
    dos Reis Benatto GA, Riedel N, Mantel C et al (2017) Luminescence imaging strategies for drone-based PV array inspection. In: 33rd European photovoltaic solar energy conference and exhibition (EU PVSEC), Amsterdam, Holland, p 2016Google Scholar
  58. 58.
    dos Reis Benatto GA, Mantel C, Riedel N et al (2018) Outdoor electroluminescence acquisition using a movable testbed. In: NREL PV Reliability Workshop. NREL, Boulder, p 6154Google Scholar
  59. 59.
    Kurtz S (2017) 2017 NREL photovoltaic module reliability workshop. In: Kurtz S (ed) NREL photovoltaic module reliability workshopGoogle Scholar
  60. 60.
    dos Reis Benatto GA, Riedel N, Thorsteinsson S et al (2017) Development of outdoor luminescence imaging for drone-based PV array inspection. In: IEEE photovoltaic specialists conferenceGoogle Scholar
  61. 61.
    Bhoopathy R, Kunz O, Juhl M et al (2018) Outdoor photoluminescence imaging of photovoltaic modules with sunlight excitation. Prog Photovolt Res Appl 26:69–73. CrossRefGoogle Scholar
  62. 62.
    Abou-Ras D, Kirchartz T, Rau U (2016) Advanced characterization techniques for thin film solar cells, 2nd edn. Wiley, WeinheimGoogle Scholar
  63. 63.
    Tran TMH, Pieters BE, Ulbrich C et al (2013) Transient phenomena in Cu(In,Ga)Se2 solar modules investigated by electroluminescence imaging. Thin Solid Films 535:307–310. CrossRefGoogle Scholar
  64. 64.
    Raguse J, McGoffin JT, Sites JR (2012) Electroluminescence system for analysis of defects in CdTe cells and modules. In: Photovoltaic specialists conference (PVSC), 2012 38th IEEE, pp 448–451Google Scholar
  65. 65.
    Hu X, Chen T, Xue J et al (2017) Absolute electroluminescence imaging diagnosis of GaAs thin-film solar cells. IEEE Photon J 9:1–9. CrossRefGoogle Scholar
  66. 66.
    Müller TCM, Pieters BE, Kirchartz T et al (2014) Effect of localized states on the reciprocity between quantum efficiency and electroluminescence in Cu(In,Ga)Se2 and Si thin-film solar cells. Sol Energy Mater Sol Cells 129:95–103. CrossRefGoogle Scholar
  67. 67.
    Gerber A, Huhn V, Tran TMH et al (2015) Advanced large area characterization of thin-film solar modules by electroluminescence and thermography imaging techniques. Sol Energy Mater Sol Cells 135:35–42. CrossRefGoogle Scholar
  68. 68.
    Hoheisel R, Dimroth F, Bett AW et al (2013) Electroluminescence analysis of irradiated GaInP/GaInAs/Ge space solar cells. Sol Energy Mater Sol Cells 108:235–240. CrossRefGoogle Scholar
  69. 69.
    Lausch D, Petter K, Von Wenckstern H, Grundmann M (2009) Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells. Phys Status Solidi Rapid Res Lett 3:70–72. CrossRefGoogle Scholar
  70. 70.
    Bothe K, Ramspeck K, Hinken D et al (2009) Luminescence emission from forward- and reverse-biased multicrystalline silicon solar cells. J Appl Phys 106:104510. CrossRefGoogle Scholar
  71. 71.
    Breitenstein O, Bauer J, Bothe K et al (2011) Understanding junction breakdown in multicrystalline solar cells. J Appl Phys 109:071101. CrossRefGoogle Scholar
  72. 72.
    Lausch D, Petter K, Bakowskie R et al (2010) Identification of pre-breakdown mechanism of silicon solar cells at low reverse voltages. Appl Phys Lett 97:073506. CrossRefGoogle Scholar
  73. 73.
    Eissa MA, Silva J, Serra JM et al (2018) Low-cost electroluminescence system for infield PV modules. In: 35th European photovoltaic solar energy conference and exhibition (EU PVSEC), Brussels, BelgiumGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • José Almeida Silva
    • 1
    Email author
  • João Manuel Serra
    • 1
  • António Manuel Vallêra
    • 1
  • Killian Lobato
    • 1
  1. 1.Instituto Dom Luiz – Faculdade de Ciências da Universidade de LisboaLisbonPortugal

Personalised recommendations