Skip to main content

Luminescence in Photovoltaics

  • Chapter
  • First Online:
Fluorescence in Industry

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 18))

Abstract

This chapter reviews the applications of luminescence-based techniques in the photovoltaic industry, with special focus on crystalline silicon-based devices – the dominant technology in the market.

Section 1 introduces the principles of the photovoltaic effect and describes the light capture and conversion in the device. A brief description of the state-of-the-art device manufacture is then given along with a description of how power conversion efficiency of photovoltaic devices is determined.

Section 2 describes the origin of luminescence in photovoltaic devices and also describes the luminescence-based characterization of photovoltaic cells and modules.

Section 3 describes in detail how luminescence (photo- and electroluminescence) measurements are applied in the complete value chain of the PV industry, from ingot, to wafer, to device, to module, to complete infield systems.

Section 4 briefly describes how luminescence is also relevant for emerging thin-film photovoltaic technologies.

Section 5 describes a recently developed technique, reverse bias electroluminescence, where the photovoltaic devices are inversely polarized. The emitted photons here are a result of charge carrier acceleration and consequent scattering and/or recombination in a high electric field.

Section 6 concludes this chapter with an outlook on how luminescence imaging is expected to develop in the near future, namely, how currently under development lab techniques will likely be transferred to the industrial environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The quality requirements for the microelectronics industry are far more restrictive than the PV industry. In the past when the PV industry was of a far small scale, it survived on discarded microelectronic grade silicon.

  2. 2.

    Although the dopants (boron and phosphorous) usually used for silicon PV materials have segregation coefficients close to one, there is always a dopant variation along the ingot height.

  3. 3.

    Hotspots on modules are known cause of solar modules to eventually ignite causing severe damage to the module, system, and location where modules are installed.

References

  1. European Photovoltaic Industry Association (2014) Global market outlook for PV 2014–2018. European Photovoltaic Industry Association, Brussels

    Google Scholar 

  2. Fthenakis VM, Hyung CK, Alsema E (2008) Emissions from photovoltaic life cycles. Environ Sci Technol 42(6):2168–2174. https://doi.org/10.1021/es071763q

    Article  CAS  PubMed  Google Scholar 

  3. Würfel P (2009) Physics of solar cells: from basic principles to advanced concepts, 2nd edn. Wiley, New York

    Google Scholar 

  4. Pizzini S (2012) Advanced silicon materials for photovoltaic applications. Wiley, Chichester

    Book  Google Scholar 

  5. Nakajima K, Usami N (2009) Crystal growth of silicon for solar cells. Springer, Berlin

    Google Scholar 

  6. Luque A, Hegedus S (2010) Handbook of photovoltaic science and engineering, 2nd edn. Wiley, Chichester

    Google Scholar 

  7. Zhang Y, Tao J, Chen Y et al (2016) A large-volume manufacturing of multi-crystalline silicon solar cells with 18.8% efficiency incorporating practical advanced technologies. RSC Adv 6(63):58046–58054. https://doi.org/10.1039/c6ra05765a

    Article  CAS  Google Scholar 

  8. Kim KH, Park CS, Lee JD et al (2017) Record high efficiency of screen-printed silicon aluminum back surface field solar cell: 20.29%. Jpn J Appl Phys 56:08MB25

    Article  Google Scholar 

  9. International Technology Roadmap for Photovoltaic (2018) ITRPV Ninth Edition 2018 including maturity report

    Google Scholar 

  10. Fossum JG (1977) Physical operation of back-surface-field silicon solar cells. IEEE Trans Electron Devices 24:322–325. https://doi.org/10.1109/T-ED.1977.18735

    Article  Google Scholar 

  11. Aberle AG (2000) Surface passivation of crystalline silicon solar cells: a review. Prog Photovolt Res Appl 8:473–487. https://doi.org/10.1002/1099-159X(200009/10)8:5<473::AID-PIP337>3.0.CO;2-D

    Article  CAS  Google Scholar 

  12. Sze SM, Lee KM (2012) Semiconductor devices: physics and technology, 3rd edn. Wiley, New York

    Google Scholar 

  13. Munoz MA, Alonso-García MC, Vela N, Chenlo F (2011) Early degradation of silicon PV modules and guaranty conditions. Sol Energy 85:2264–2274. https://doi.org/10.1016/j.solener.2011.06.011

    Article  CAS  Google Scholar 

  14. Goetzberger A, Knobloch J, Voß B (2014) Crystalline silicon solar cells. Wiley, Chichester

    Book  Google Scholar 

  15. Sauer R, Weber J, Stolz J et al (1985) Dislocation-related photoluminescence in silicon. Appl Phys A Solids Surfaces 36:1–13. https://doi.org/10.1007/BF00616453

    Article  Google Scholar 

  16. Yang MJ, Yamaguchi M, Takamoto T et al (1997) Photoluminescence analysis of InGaP top cells for high-efficiency multi-junction solar cells. Sol Energy Mater Sol Cells 45:331–339. https://doi.org/10.1016/S0927-0248(96)00079-7

    Article  CAS  Google Scholar 

  17. Schick K, Daub E, Finkbeiner S, Wurfel P (1992) Verification of a generalized Planck law for luminescence radiation from silicon solar cells. Appl Phys A Solids Surfaces 54:109–114. https://doi.org/10.1007/BF00323895

    Article  Google Scholar 

  18. Trupke T, Daub E, Wurfel P (1998) Absorptivity of silicon solar cells obtained from luminescence. Sol Energy Mater Sol Cells 53:103–114. https://doi.org/10.1016/S0927-0248(98)00016-6

    Article  CAS  Google Scholar 

  19. Livescu G, Angell M, Filipe J, Knox WH (1990) A real-time photoluminescence imaging system. J Electron Mater 19:937–942. https://doi.org/10.1007/BF02652919

    Article  CAS  Google Scholar 

  20. Fuyuki T, Kondo H, Yamazaki T et al (2005) Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence. Appl Phys Lett 86:1–3. https://doi.org/10.1063/1.1978979

    Article  CAS  Google Scholar 

  21. Trupke T (2017) Photoluminescence and electroluminescence characterization in silicon photovoltaics. In: Reinders A, Verlinden P, van Sark W, Freundlich A (eds) Photovoltaic solar energy: from fundamentals to applications. Wiley, Chichester, pp 322–338

    Chapter  Google Scholar 

  22. Sinton RA, Cuevas A, Stuckings M (1996) Quasi-steady-state photoconductance, a new method for solar cell material and device characterization. In: Conference record of the twenty fifth IEEE Photovoltaic specialists conference – 1996. IEEE, Washington, DC, pp 457–460

    Google Scholar 

  23. Trupke T, Bardos RA, Schubert MC, Warta W (2006) Photoluminescence imaging of silicon wafers. Appl Phys Lett 89:044107. https://doi.org/10.1063/1.2234747

    Article  CAS  Google Scholar 

  24. Hinken D, Schinke C, Herlufsen S et al (2011) Experimental setup for camera-based measurements of electrically and optically stimulated luminescence of silicon solar cells and wafers. Rev Sci Instrum 82:033706. https://doi.org/10.1063/1.3541766

    Article  CAS  PubMed  Google Scholar 

  25. MacDonald DH (2001) Recombination and trapping in multicrystalline silicon solar cells. The Australian National University, Canberra

    Google Scholar 

  26. Demant M, Welschehold T, Oswald M et al (2016) Microcracks in silicon wafers I: inline detection and implications of crack morphology on wafer strength. IEEE J Photovolt 6:126–135. https://doi.org/10.1109/JPHOTOV.2015.2494692

    Article  Google Scholar 

  27. Stephens A (1997) Effectiveness of 0.08 molar iodine in ethanol solution as a means of chemical surface passivation for photoconductance decay measurements. Sol Energy Mater Sol Cells 45:255–265. https://doi.org/10.1016/S0927-0248(96)00061-X

    Article  CAS  Google Scholar 

  28. Schmidt J, Aberle AG (1997) Accurate method for the determination of bulk minority-carrier lifetimes of mono- and multicrystalline silicon wafers. J Appl Phys 81:6186–6199. https://doi.org/10.1063/1.364403

    Article  CAS  Google Scholar 

  29. Haunschild J, Glatthaar M, Demant M et al (2010) Quality control of as-cut multicrystalline silicon wafers using photoluminescence imaging for solar cell production. Sol Energy Mater Sol Cells 94:2007–2012. https://doi.org/10.1016/j.solmat.2010.06.003

    Article  CAS  Google Scholar 

  30. Ghandhi SK (1994) VLSI fabrication principles: silicon and gallium arsenide, 2nd edn. Wiley, New York

    Google Scholar 

  31. Würfel P, Trupke T, Puzzer T et al (2007) Diffusion lengths of silicon solar cells from luminescence images. J Appl Phys 101:123110. https://doi.org/10.1063/1.2749201

    Article  CAS  Google Scholar 

  32. Mitchell B, Trupke T, Weber JW, Nyhus J (2011) Bulk minority carrier lifetimes and doping of silicon bricks from photoluminescence intensity ratios. J Appl Phys 109:083111. https://doi.org/10.1063/1.3575171

    Article  CAS  Google Scholar 

  33. Rau U (2007) Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys Rev B Condens Matter Mater Phys 76:1–8. https://doi.org/10.1103/PhysRevB.76.085303

    Article  CAS  Google Scholar 

  34. Kirchartz T, Helbig A, Reetz W et al (2009) Reciprocity between electroluminescence and quantum efficiency used for the characterization of silicon solar cells. Prog Photovolt Res Appl 17:394–402. https://doi.org/10.1002/pip.895

    Article  CAS  Google Scholar 

  35. Breitenstein O, Rakotoniaina JP, Al Rifai MH, Werner M (2004) Shunt types in crystalline silicon solar cells. Prog Photovolt Res Appl 12:529–538. https://doi.org/10.1002/pip.544

    Article  CAS  Google Scholar 

  36. Breitenstein O, Bauer J, Trupke T, Bardos RA (2008) On the detection of shunts in silicon solar cells by photo- and electroluminescence imaging. Prog Photovolt Res Appl 16:325–330. https://doi.org/10.1002/pip.803

    Article  CAS  Google Scholar 

  37. Trupke T, Pink E, Bardos RA, Abbott MD (2007) Spatially resolved series resistance of silicon solar cells obtained from luminescence imaging. Appl Phys Lett 90:093506. https://doi.org/10.1063/1.2709630

    Article  CAS  Google Scholar 

  38. Glatthaar M, Haunschild J, Zeidler R et al (2010) Evaluating luminescence based voltage images of silicon solar cells. J Appl Phys 108:014501. https://doi.org/10.1063/1.3443438

    Article  CAS  Google Scholar 

  39. Müller J, Bothe K, Herlufsen S et al (2012) Reverse saturation current density imaging of highly doped regions in silicon employing photoluminescence measurements. IEEE J Photovolt 2:473–478. https://doi.org/10.1109/JPHOTOV.2012.2201916

    Article  Google Scholar 

  40. Haunschild J, Glatthaar M, Kasemann M et al (2009) Fast series resistance imaging for silicon solar cells using electroluminescence. Phys Status Solidi Rapid Res Lett 3:227–229. https://doi.org/10.1002/pssr.200903175

    Article  CAS  Google Scholar 

  41. Fuyuki T, Kitiyanan A (2009) Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence. Appl Phys A Mater Sci Process 96:189–196. https://doi.org/10.1007/s00339-008-4986-0

    Article  CAS  Google Scholar 

  42. Frazão M, Silva JA, Lobato K, Serra JM (2017) Electroluminescence of silicon solar cells using a consumer grade digital camera. Meas J Int Meas Confed 99:7–12. https://doi.org/10.1016/j.measurement.2016.12.017

    Article  Google Scholar 

  43. Zhao J, Wang A, Altermatt P et al (1996) 24% efficient perl silicon solar cell: recent improvements in high efficiency silicon cell research. Sol Energy Mater Sol Cells 41–42:87–99. https://doi.org/10.1016/0927-0248(95)00117-4

    Article  Google Scholar 

  44. Haase F, Hollemann C, Schäfer S et al (2018) Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells. Sol Energy Mater Sol Cells 186:184–193. https://doi.org/10.1016/j.solmat.2018.06.020

    Article  CAS  Google Scholar 

  45. Franklin E, Fong K, McIntosh K et al (2016) Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell. Prog Photovolt Res Appl 24:411–427. https://doi.org/10.1002/pip.2556

    Article  CAS  Google Scholar 

  46. Moors M, Baert K, Caremans T et al (2012) Industrial PERL-type solar cells exceeding 19% with screen-printed contacts and homogeneous emitter. Sol Energy Mater Sol Cells 106:84–88. https://doi.org/10.1016/j.solmat.2012.05.006

    Article  CAS  Google Scholar 

  47. Horbelt R, Hahn G, Job R, Terheiden B (2015) Void formation on PERC solar cells and their impact on the electrical cell parameters verified by luminescence and scanning acoustic microscope measurements. Energy Procedia 84:47–55. https://doi.org/10.1016/j.egypro.2015.12.294

    Article  CAS  Google Scholar 

  48. Padilla M, Höffler H, Reichel C et al (2014) Surface recombination parameters of interdigitated-back-contact silicon solar cells obtained by modeling luminescence images. Sol Energy Mater Sol Cells 120:363–375. https://doi.org/10.1016/j.solmat.2013.05.050

    Article  CAS  Google Scholar 

  49. Johnston S, Al-Jassim M, Hacke P et al (2016) Module degradation mechanisms studied by a multi-scale approach. In: IEEE photovoltaic specialists conference (PVSC). IEEE, New York, pp 0889–0893

    Google Scholar 

  50. Packard CE, Wohlgemuth JH, Kurtz SR (2012) Development of a visual inspection data collection tool for evaluation of fielded pv module condition – NREL technical report. Golden Colorado, USA

    Google Scholar 

  51. Stoicescu L, Reuter M, Werner JH (2014) DaySy: luminescence imaging of PV modules in daylight. In: 29th European photovoltaics solar energy conference and exhibition, Amsterdam, Netherlands, Amsterdam, Holland, pp 2553–2554

    Google Scholar 

  52. Luo W, Khoo YSS, Hacke P et al (2017) Potential-induced degradation in photovoltaic modules: a critical review. Energy Environ Sci 10:43–68. https://doi.org/10.1039/C6EE02271E

    Article  CAS  Google Scholar 

  53. Martínez-Moreno F, Pigueiras EL, Cano JM et al (2013) On-site tests for the detection of potential induced degradation in modules. In: 28th European photovoltaic solar energy conference and exhibition, p 3313

    Google Scholar 

  54. Koch S, Weber T, Sobottka C et al (2016) Outdoor electroluminescence imaging of crystalline photovoltaic modules: comparative study between manual ground-level inspections and drone-based aerial surveys. In: 32nd European photovoltaic solar energy conference and exhibition energy conference and exhibition (EU PVSEC), p 1736

    Google Scholar 

  55. Koch S, Berghold J, Hinz C et al (2015) Improvement of a prediction model for potential induced degradation by better understanding the regeneration mechanism. In: 31st European photovoltaic solar energy conference and exhibition (EU PVSEC), Munich, Germany, pp 1813–1820

    Google Scholar 

  56. Köntges M, Kurtz S, Packard CE et al (2014) Review of failures of photovoltaic modules. International Energy Agency, St. Ursen

    Google Scholar 

  57. dos Reis Benatto GA, Riedel N, Mantel C et al (2017) Luminescence imaging strategies for drone-based PV array inspection. In: 33rd European photovoltaic solar energy conference and exhibition (EU PVSEC), Amsterdam, Holland, p 2016

    Google Scholar 

  58. dos Reis Benatto GA, Mantel C, Riedel N et al (2018) Outdoor electroluminescence acquisition using a movable testbed. In: NREL PV Reliability Workshop. NREL, Boulder, p 6154

    Google Scholar 

  59. Kurtz S (2017) 2017 NREL photovoltaic module reliability workshop. In: Kurtz S (ed) NREL photovoltaic module reliability workshop

    Google Scholar 

  60. dos Reis Benatto GA, Riedel N, Thorsteinsson S et al (2017) Development of outdoor luminescence imaging for drone-based PV array inspection. In: IEEE photovoltaic specialists conference

    Google Scholar 

  61. Bhoopathy R, Kunz O, Juhl M et al (2018) Outdoor photoluminescence imaging of photovoltaic modules with sunlight excitation. Prog Photovolt Res Appl 26:69–73. https://doi.org/10.1002/pip.2946

    Article  CAS  Google Scholar 

  62. Abou-Ras D, Kirchartz T, Rau U (2016) Advanced characterization techniques for thin film solar cells, 2nd edn. Wiley, Weinheim

    Google Scholar 

  63. Tran TMH, Pieters BE, Ulbrich C et al (2013) Transient phenomena in Cu(In,Ga)Se2 solar modules investigated by electroluminescence imaging. Thin Solid Films 535:307–310. https://doi.org/10.1016/j.tsf.2012.10.039

    Article  CAS  Google Scholar 

  64. Raguse J, McGoffin JT, Sites JR (2012) Electroluminescence system for analysis of defects in CdTe cells and modules. In: Photovoltaic specialists conference (PVSC), 2012 38th IEEE, pp 448–451

    Google Scholar 

  65. Hu X, Chen T, Xue J et al (2017) Absolute electroluminescence imaging diagnosis of GaAs thin-film solar cells. IEEE Photon J 9:1–9. https://doi.org/10.1109/JPHOT.2017.2731800

    Article  Google Scholar 

  66. Müller TCM, Pieters BE, Kirchartz T et al (2014) Effect of localized states on the reciprocity between quantum efficiency and electroluminescence in Cu(In,Ga)Se2 and Si thin-film solar cells. Sol Energy Mater Sol Cells 129:95–103. https://doi.org/10.1016/j.solmat.2014.04.018

    Article  CAS  Google Scholar 

  67. Gerber A, Huhn V, Tran TMH et al (2015) Advanced large area characterization of thin-film solar modules by electroluminescence and thermography imaging techniques. Sol Energy Mater Sol Cells 135:35–42. https://doi.org/10.1016/j.solmat.2014.09.020

    Article  CAS  Google Scholar 

  68. Hoheisel R, Dimroth F, Bett AW et al (2013) Electroluminescence analysis of irradiated GaInP/GaInAs/Ge space solar cells. Sol Energy Mater Sol Cells 108:235–240. https://doi.org/10.1016/j.solmat.2012.06.015

    Article  CAS  Google Scholar 

  69. Lausch D, Petter K, Von Wenckstern H, Grundmann M (2009) Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells. Phys Status Solidi Rapid Res Lett 3:70–72. https://doi.org/10.1002/pssr.200802264

    Article  Google Scholar 

  70. Bothe K, Ramspeck K, Hinken D et al (2009) Luminescence emission from forward- and reverse-biased multicrystalline silicon solar cells. J Appl Phys 106:104510. https://doi.org/10.1063/1.3256199

    Article  CAS  Google Scholar 

  71. Breitenstein O, Bauer J, Bothe K et al (2011) Understanding junction breakdown in multicrystalline solar cells. J Appl Phys 109:071101. https://doi.org/10.1063/1.3562200

    Article  CAS  Google Scholar 

  72. Lausch D, Petter K, Bakowskie R et al (2010) Identification of pre-breakdown mechanism of silicon solar cells at low reverse voltages. Appl Phys Lett 97:073506. https://doi.org/10.1063/1.3480415

    Article  CAS  Google Scholar 

  73. Eissa MA, Silva J, Serra JM et al (2018) Low-cost electroluminescence system for infield PV modules. In: 35th European photovoltaic solar energy conference and exhibition (EU PVSEC), Brussels, Belgium

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Hugo Silva at Enertis Madrid, Dr. Michael Reuter and Liviu Stoicescu at Solarzentrum Stuttgart GmbH, Dr. Francisco Martínez-Moreno at the Instituto de Energía Solar – Universidad Politécnica de Madrid, Dr. Simon Koch at the Photovoltaic Institute Berlin, and Dr. Gisele A. dos Reis Benatto at the Department of Photonics Engineering, Technical University of Denmark. This chapter is significantly richer because of their willingness to openly discuss their work and to permit the use of their data. We also wish to thank WIP Renewable Energies EU PVSEC for permitting the reproduction of copyrighted material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Almeida Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva, J.A., Serra, J.M., Vallêra, A.M., Lobato, K. (2019). Luminescence in Photovoltaics. In: Pedras, B. (eds) Fluorescence in Industry. Springer Series on Fluorescence, vol 18. Springer, Cham. https://doi.org/10.1007/4243_2018_7

Download citation

Publish with us

Policies and ethics