Skip to main content

Imaging Lifetimes

  • Chapter
  • First Online:
Perspectives on Fluorescence

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 17))

  • 929 Accesses

Abstract

This chapter discusses the critical contributions of Gregorio Weber to the development of techniques to measure fluorescence lifetimes. The fluorescence lifetime is the average time required for a population of fluorophores in the excited state to decay to the ground state. Events in a fluorophore’s environment that influence the excited state can alter the lifetime, and this is measured using fluorescence lifetime imaging microscopy (FLIM). This chapter describes the application of FLIM to quantify Förster resonance energy transfer (FRET) between labeled proteins inside living cells. FRET is a non-radiative pathway through which a donor fluorophore in the excited state transfers energy to nearby acceptor molecules. The transfer of energy reduces the donor’s fluorescence lifetime, and this can be quantified by FLIM. Since energy transfer occurs through near-field electromagnetic interactions, it can only occur over a distance of 80 angstroms or less. Thus, FRET microscopy has become a valuable tool for investigating biochemical networks inside living cells. In this regard, Gregorio Weber recognized the importance of measuring the biological and physical properties of proteins as integrated systems. Here, proteins labeled with the genetically encoded fluorescent proteins (FPs) are used to demonstrate how FRET-FLIM enables robust and sensitive measurements of protein interactions inside living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pliny, Bostock J, Riley HT (1855) The natural history of Pliny, Book XXXII. Remedies derived from aquatic animals. Chapter 52—Other aquatic productions. Adarca or Calamochnos: three remedies. Reeds: eight remedies. The ink of the sæpia. Gaius Plinius Secundus (Pliny the Elder). AD77. Bohn’s classical library. H.G. Bohn, London

    Google Scholar 

  2. Phipson TL (1862) Phosphorescence, or, the emission of light by minerals, plants, and animals. L. Reeve, London

    Book  Google Scholar 

  3. Day RN, Davidson MW (2014) The fluorescent protein revolution. Series in cellular and clinical imaging. Taylor & Francis, Boca Raton

    Google Scholar 

  4. Periasamy A, Clegg RM (2010) FLIM microscopy in biology and medicine. CRC Press, Boca Raton

    Google Scholar 

  5. Elson DS, Marcu L, French PMW (2014) Fluorescence lifetime spectroscopy and imaging. Principles and applications in biomedical diagnostics. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  6. Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110(5):2641–2684

    Article  CAS  Google Scholar 

  7. Becquerel AE (1867) La Lumière, ses cause et ses effets, tome 1: sources de lumière. Didot, Paris

    Google Scholar 

  8. Nichols EL, Merritt E (1912) Studies in luminescence. The Carnegie Institution of Washington, Publication 152. Gibson Brothers Press, Washington

    Google Scholar 

  9. Wood RW (1921) The time interval between absorption and emission of light in fluorescence. Proc R Soc London Ser A 99(700):362–371

    Article  CAS  Google Scholar 

  10. Gottling PF (1923) The determination of the time between excitation and emission for certain fluorescent solids. Phys Rev 22:566–573

    Article  CAS  Google Scholar 

  11. Bohr N (1913) On the constitution of atoms and molecules. Philos Mag Ser 6 26:1–25

    Article  CAS  Google Scholar 

  12. Abraham H, Lemoine J (1899) Disparition instantanée du phénomène de Kerr. Comptes rendus hebdomadaines des seances de academic des sciences. Sci Nat 129:206–208

    Google Scholar 

  13. Rayleigh L (1904) On the measurement of certain very short intervals of time. Nature 69(1798):560–561

    Google Scholar 

  14. Gaviola E (1926) The time decay of the fluorescence of dye solutions. Ann Phys (Leipzig) 81:681–710

    Article  CAS  Google Scholar 

  15. Förster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern quantum chemistry. Academic, New York, pp 93–137

    Google Scholar 

  16. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846

    Article  CAS  Google Scholar 

  17. Gaviola E (1926) Die Abklingungszetem der Fluoreszenz. Ann Phys 386(23):681–710

    Article  Google Scholar 

  18. Clegg RM (2006) The history of FRET. In: Geddes CD, Lakowicz JR (eds) Reviews in fluorescence. Springer Science+Business Media Inc., New York, pp 1–145

    Google Scholar 

  19. Perrin J (1927) Fluorescence et induction moleculaire par resonance. CR Hebd Seances Acad Sci 184:1097–1100

    CAS  Google Scholar 

  20. Perrin F (1932) Théorie quantique des transferts ďactivation entre molécules de méme espèce. Cas des solutions fluorescentes. Ann Chim Phys 17:283–314

    CAS  Google Scholar 

  21. Perrin F (1926) Polarisation de la lumière de fluorescence. Vie moyenne des molécules dans l’état excité. J Phys 7:390–401

    CAS  Google Scholar 

  22. Jameson DM (2001) The seminal contributions of Gregorio weber to modern fluorescence spectroscopy. In: Valeur B, Brochon J-C (eds) New trends in fluorescence spectroscopy. Springer, Berlin, pp 35–58

    Google Scholar 

  23. Förster T (2012) Energy migration and fluorescence. 1946. J Biomed Opt 17(1):011002

    Article  Google Scholar 

  24. Arnold W, Oppenheimer JR (1950) Internal conversion in the photosynthetic mechanism of blue-green algae. J Gen Physiol 33:423–435

    Article  CAS  Google Scholar 

  25. Weber G (1960) Fluorescence-polarization spectrum and electronic-energy transfer in tyrosine, tryptophan, and related compounds. Biochem J 75:335–345

    Google Scholar 

  26. Weber G (1960) Fluorescence-polarization spectrum and electronic-energy transfer in proteins. Biochem J 75:345–352

    Article  CAS  Google Scholar 

  27. Fernandez SM, Berlin RD (1976) Cell surface distribution of lectin receptors determined by resonance energy transfer. Nature 264(5585):411–415

    Article  CAS  Google Scholar 

  28. Adams SR, Harootunian AT, Buechler YJ, Taylor SS, Tsien RY (1991) Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349(6311):694–697

    Article  CAS  Google Scholar 

  29. Gadella TW Jr, Jovin TM (1995) Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J Cell Biol 129(6):1543–1558

    Article  CAS  Google Scholar 

  30. Periasamy A, Day RN (2005) Molecular imaging: FRET microscopy and spectroscopy. The American physiological society methods in physiology series. Oxford University Press, New York

    Google Scholar 

  31. Spencer RD, Weber G (1969) Measurements of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer. Ann N Y Acad Sci 158:361–376

    Article  CAS  Google Scholar 

  32. Weber G (1981) Resolution of the fluorescence lifetimes in a heterogeneous system by phase and modulation measurements. J Phys Chem 85:949–953

    Article  CAS  Google Scholar 

  33. Gratton E, Limkeman M (1983) A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution. Biophys J 44(3):315–324

    Article  CAS  Google Scholar 

  34. Jameson DM, Gratton E, Hall RD (1984) The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry. Appl Spectrosc Rev 20(1):55–106

    Article  CAS  Google Scholar 

  35. Redford GI, Clegg RM (2005) Polar plot representation for frequency-domain analysis of fluorescence lifetimes. J Fluoresc 15(5):805–815

    Article  CAS  Google Scholar 

  36. Eichorst JP, Wen Teng K, Clegg RM (2014) Polar plot representation of time-resolved fluorescence. Methods Mol Biol 1076:97–112

    Article  CAS  Google Scholar 

  37. Hinde E, Digman MA, Welch C, Hahn KM, Gratton E (2012) Biosensor Forster resonance energy transfer detection by the phasor approach to fluorescence lifetime imaging microscopy. Microsc Res Tech 75(3):271–281

    Article  Google Scholar 

  38. Day RN (2014) Measuring protein interactions using Forster resonance energy transfer and fluorescence lifetime imaging microscopy. Methods 66:200–207

    Article  CAS  Google Scholar 

  39. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  40. Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22(4):445–449

    Article  CAS  Google Scholar 

  41. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909

    Article  CAS  Google Scholar 

  42. Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, Tsien RY (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5(6):545–551

    Article  CAS  Google Scholar 

  43. Markwardt ML, Kremers GJ, Kraft CA, Ray K, Cranfill PJ, Wilson KA, Day RN, Wachter RM, Davidson MW, Rizzo MA (2011) An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching. PLoS One 6(3), e17896

    Article  CAS  Google Scholar 

  44. Goedhart J, van Weeren L, Hink MA, Vischer NO, Jalink K, Gadella TW Jr (2010) Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nat Methods 7(2):137–139

    Article  CAS  Google Scholar 

  45. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20(1):87–90

    Article  CAS  Google Scholar 

  46. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276(31):29188–29194

    Article  CAS  Google Scholar 

  47. Thaler C, Koushik SV, Blank PS, Vogel SS (2005) Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer. Biophys J 89(4):2736–2749

    Article  CAS  Google Scholar 

  48. Koushik SV, Chen H, Thaler C, Puhl HL 3rd, Vogel SS (2006) Cerulean, Venus, and Venus Y67C FRET reference standards. Biophys J 91(12):L99–L101

    Article  CAS  Google Scholar 

  49. Vogel SS, Nguyen TA, van der Meer BW, Blank PS (2012) The impact of heterogeneity and dark acceptor states on FRET: implications for using fluorescent protein donors and acceptors. PLoS One 7(11), e49593

    Article  CAS  Google Scholar 

  50. Weber G (1992) Protein interactions. Chapman and Hall, New York

    Google Scholar 

  51. Weber G (1975) Energetics of ligand binding to proteins. Adv Protein Chem 29:1–83

    Article  CAS  Google Scholar 

  52. Siegel AP, Hays NM, Day RN (2013) Unraveling transcription factor interactions with heterochromatin protein 1 using fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy. J Biomed Opt 18(2):25002

    Article  Google Scholar 

  53. Stringari C, Cinquin A, Cinquin O, Digman MA, Donovan PJ, Gratton E (2011) Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc Natl Acad Sci U S A 108(33):13582–13587

    Article  CAS  Google Scholar 

  54. Wright BK, Andrews LM, Markham J, Jones MR, Stringari C, Digman MA, Gratton E (2012) NADH distribution in live progenitor stem cells by phasor-fluorescence lifetime image microscopy. Biophys J 103(1):L7–9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This chapter is dedicated in memory of Dr. Robert (Bob) M. Clegg, a colleague of Gregorio Weber at the University of Illinois at Urbana-Champaign. In 2011, Bob presented a lecture entitled “History of trials, blunders, tribulations and finally success in the dark ages of fluorescence lifetime measurements” that contained many historical insights referenced here. The author thanks Drs. Yuansheng Sun and Shih-Chu (Jeff) Liao (ISS Inc., Champaign, IL) for their advice and technical help with FLIM, Michael Davidson (FSU) for providing plasmids encoding the FPs, and Dr. Jing Qi for excellent laboratory support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard N. Day .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Day, R.N. (2016). Imaging Lifetimes. In: Jameson, D. (eds) Perspectives on Fluorescence. Springer Series on Fluorescence, vol 17. Springer, Cham. https://doi.org/10.1007/4243_2016_1

Download citation

Publish with us

Policies and ethics