Skip to main content

Modern Pulsed Diode Laser Sources for Time-Correlated Photon Counting

  • Chapter
  • First Online:
Advanced Photon Counting

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 15))

Abstract

Time-correlated single-photon counting applications require pulsed excitation sources at various wavelengths from the UV to the IR that feature a short pulse width (usually picoseconds or femtoseconds) as well as repetition rates in the kilohertz to megahertz range. The repetition rate should ideally be tunable in order to adapt the pulse period to the required measurement window. In the blue, red, and IR spectral range, such pulses with energies of up to 100 pJ can be readily provided by single gain-switched laser diodes which can be housed in compact and robust packages. Laser pulses in the UV or green-yellow spectral range are, however, not directly accessible and require more elaborate setups that are based on power amplification and frequency conversion. An alternative excitation source that has also become popular in the recent years is the supercontinuum laser as it gives direct access to a broad wavelength spectrum that spans from the blue to the IR.

This chapter provides an overview about the fundamental aspects and parameters of pulsed diode lasers as well as a short introduction into pulsed LEDs and supercontinuum lasers that are usually used for time-correlated single-photon counting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hecht J (2010) Beam: the race to make the laser. Oxford University Press, New York

    Google Scholar 

  2. Periasamy A, Clegg RM (eds) (2010) FLIM microscopy in biology and medicine. CRC, Boca Raton

    Google Scholar 

  3. Lakowicz JR (2010) Principles of fluorescence spectroscopy. Springer, Berlin

    Google Scholar 

  4. Wahl M (2014) Modern TCSPC electronics: principles and acquisition modes. Springer Ser Fluoresc. doi:10.1007/4243_2014_62

  5. Carlsson K, Liljeborg A, Andersson RM, Brismar H (2010) Confocal pH imaging of microscopic specimens using fluorescence lifetimes and phase fluorometry: influence of parameter choice on system performance. J Microsc 199:106–114

    Article  Google Scholar 

  6. Müller BK, Zaychikov E, Bräuchle C, Lamb DC (2005) Pulsed interleaved excitation. Biophys J 89:3508–3522

    Article  Google Scholar 

  7. Rüttinger S, Macdonald R, Krämer B, Koberling F, Roos M, Hildt E (2006) Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy. J Biomed Opt 11(2):24012

    Article  Google Scholar 

  8. Bülter A (2014) Single-photon counting detectors for the visible range between 300 and 1,000 nm. Springer Ser Fluoresc. doi:10.1007/4243_2014_63

  9. Buller GS, Collins RJ (2014) Single-photon detectors for infrared wavelengths in the range 1–1.7 μm. Springer Ser Fluoresc. doi:10.1007/4243_2014_64

  10. Keller U (2010) Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight. Appl Phys B 100(1):15–28

    Article  CAS  Google Scholar 

  11. Hall RN, Fenner JD, Kingsley JD, Soltys TJ, Carlson RO (1962) Coherent emission from GaAs junctions. Phys Rev Lett 9(9):366–368

    Article  CAS  Google Scholar 

  12. Dupuis RD, Dapkus RD, Chen R, Holonyak N Jr, Kirchhoefer SW (1979) Continuous 300 K laser operation of single quantum-well AlxGa1-xAs-GaAs heterostructure lasers grown by metalorganic chemical vapour deposition. Appl Phys Lett 34(4):265–267

    Article  CAS  Google Scholar 

  13. Erbert G, Bärwolff A, Sebastian J, Tomm J (2000) High-power broad-area diode lasers and laser bars, in high-power diode lasers: fundamentals, technologies, applications. Springer, Berlin

    Google Scholar 

  14. Unger P (2000) Introduction to power laser diodes in high-power diode lasers: fundamentals, technologies, applications. Springer, Berlin

    Google Scholar 

  15. Bimberg D, Ketterer K, Böttcher EH, Schöll E (1986) Gain modulation of unbiased semiconductor lasers: ultrashort light-pulse generation in the 0.8–1.3 μm wavelength range. Int J Electron 60(1):23–45

    Article  CAS  Google Scholar 

  16. Torphammar P, Eng ST (1980) Picosecond pulse generation in semiconductor laser using resonance oscillation. Electron Lett 16(15):587–589

    Article  Google Scholar 

  17. Picosecond pulsed diode lasers from PicoQuant (LDH Series). http://www.picoquant.com/images/uploads/downloads/ldh_series.pdf. Accessed 22 Oct 2014

  18. Paulus P, Langenhorst R, Jager D (1988) Generation and optimum control of picosecond optical pulses from gain-switched semiconductor-lasers. IEEE J Quant Electron 24:1519–1523

    Article  CAS  Google Scholar 

  19. Ernst S, Düser MG, Zarrabi N, Börsch M (2012) Three-color Förster resonance energy transfer within single FOF1-ATP synthases: monitoring elastic deformations of the rotary double motor in real time. J Biomed Opt 17:011004

    Article  Google Scholar 

  20. Buller GS, Harkins RD, McCarthy A, Hiskett PA, MacKinnon GR, Smith GR, Sung R, Wallace AM, Lamb RA, Ridley KD, Rarity JG (2005) Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting. Rev Sci Instrum 76:083112

    Article  Google Scholar 

  21. Steinkellner O, Wabnitz H, Walter A, Macdonald R (2013) Multiple source positions in time-domain optical brain imaging: a novel approach. Proc SPIE 8799:87990

    Google Scholar 

  22. Seefeldt B, Kasper R, Seidel T, Tinnefeld P, Dietz KJ, Heilemann M, Sauer M (2008) Fluorescent proteins for single-molecule fluorescence applications. J Biophotonics 01:074–082

    Article  CAS  Google Scholar 

  23. Leifgen M, Schröder T, Gädeke F, Riemann R, Métillon V, Neu E, Hepp C, Arend C, Becher C, Lauritsen K, Benson O (2014) Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution. New J Phys 16:023021–028001

    Article  Google Scholar 

  24. Ohla S, Beyreiss R, Fritzsche S, Glaser P, Nagl S, Stockhausen K, Schneider C, Belder D (2012) Monitoring on-chip pictet-spengler reactions by integrated analytical separation and label-free time-resolved fluorescence. Chem Eur J 18:1240–1246

    Article  CAS  Google Scholar 

  25. Morthier G, Vankwinkelberge P (1997) Handbook of distributed feedback laser diodes. Artech House, Boston

    Google Scholar 

  26. Achtenhagen M, Amarasinghe NV, Jiang L, Threadgill J, Young P (2009) Spectral properties of high-power distributed Bragg reflector lasers. J Lightwave Technol 27(16):3433–3437

    Article  CAS  Google Scholar 

  27. Lauritsen K, Riecke S, Langkopf M, Klemme D, Kaleva C, Pallassis C, McNeil S, Erdmann R (2008) Fiber amplified and frequency doubled diode lasers as a highly flexible pulse source at 532 nm. Proc SPIE 6871:68711L–68719L

    Google Scholar 

  28. Chestnut DA, Popov SV, Taylor JR, Roberts TD (2006) Second-harmonic generation to the green and yellow using picosecond fiber pump sources and periodically poled waveguides. Appl Phys Lett 88:071113

    Article  Google Scholar 

  29. Riecke S, Schwertfeger S, Lauritsen K, Paschke K, Erdmann R, Tränkle G (2010) 23 W peak power picosecond pulses from a single-stage all-semiconductor master oscillator power amplifier. Appl Phys B 98(2):295–299

    Article  CAS  Google Scholar 

  30. Woll D, Schumacher J, Robertson A, Tremont MA, Wallenstein R, Katz M, Eger D, Englander A (2002) Opt Lett 27(12):1055–1057

    Article  CAS  Google Scholar 

  31. Pask HM, Carman RJ, Hanna DC, Tropper AC, Mackechnie CJ, Barber PR, Dawes JM (1995) Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 m region. IEEE J Sel Top Quant Electron 1(1):2–13

    Article  CAS  Google Scholar 

  32. Riecke SM, Lauritsen K, Thiem H, Paschke K, Erdmann R (2009) Comparison of an Yb-doped fiber and a semiconductor taper for amplification of picosecond laser pulses. Proc SPIE 7212:72120O

    Google Scholar 

  33. Koponen JJ, Söderlund MJ, Hoffman HJ, Tammela SKT (2006) Measuring photodarkening from single-mode ytterbium doped silica fibers. Opt Express 14(24):11539–11544

    Article  CAS  Google Scholar 

  34. Kanzelmeyer S, Sayinc H, Theeg T, Frede M, Neumann J, Kracht D (2011) All-fiber based amplification of 40 ps pulses from a gain-switched laser diode. Opt Express 19(3):1854–1859

    Article  Google Scholar 

  35. Feng Y, Taylor LR, Calia DB (2009) 150 W highly-efficient Raman fiber laser. Opt Express 17(26):23678–23683

    Article  CAS  Google Scholar 

  36. Kivistö S, Herda R, Okhotnikov OG (2008) All-fiber supercontinuum source based on a mode-locked ytterbium laser with dispersion compensation by linearly chirped Bragg grating. Opt Express 16(1):265–270

    Article  Google Scholar 

  37. Boyd GD, Kleinman DA (1968) Parametric interaction of focused gaussian light beams. J Appl Phys 39:3597

    Article  CAS  Google Scholar 

  38. Kleinman DA, Ashkin A, Boyd GD (1966) Second-harmonic generation of light by focused laser beams. Phys Rev 145(1):338–379

    Article  CAS  Google Scholar 

  39. Dmitriev VG, Gurzadyan GG, Nikogosyan DN (1997) Handbook of nonlinear optical crystals, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  40. Canagasabey A, Corbari C, Gladyshev AV, Liegeois F, Guillemet S, Hernandez Y, Yashkov MV, Kosolapov A, Dianov EV, Ibsen M, Kazansky PG (2009) High-average-power second-harmonic generation from periodically poled silica fibers. Opt Lett 34(16):2483–2485

    Article  CAS  Google Scholar 

  41. Riecke SM, Lauritsen K, Erdmann R, Uebernickel M, Paschke K, Erbert G (2010) Pulse-shape improvement during amplification and second-harmonic generation of picosecond pulses at 531 nm. Opt Lett 35:1500–1502

    Article  Google Scholar 

  42. 532, 561, 594 nm Compact visible laser module from Qdlaser. http://www.qdlaser.com/?page_id=288. Accessed 22 Oct 2014

  43. Schönau T, Riecke SM, Lauritsen K, Erdmann R (2011) Amplification of ps-pulses from freely triggerable gain-switched laser diodes at 1062 nm and second harmonic generation in periodically poled lithium niobate. Proc SPIE 7917:791707

    Google Scholar 

  44. Amplified picosecond pulsed diode lasers from PicoQuant (LDH-FA Series). http://www.picoquant.com/images/uploads/downloads/ldh-fa-series.pdf. Accessed 22 Oct 2014

  45. Wahl M, Ortmann U, Lauritsen K, Erdmann R (2002) Application of sub-ns pulsed LEDs in fluorescence lifetime spectroscopy. Proc SPIE 4648:171–178

    CAS  Google Scholar 

  46. Sub-nanosecond pulsed LEDs from PicoQuant (PLS Series). http://www.picoquant.com/images/uploads/downloads/pls_series.pdf. Accessed 22 Oct 2014

  47. Fluorescence Lifetime Spectrometer from PicoQuant (FluoTime 300). http://www.picoquant.com/images/uploads/downloads/fluotime300_brochure.pdf. Accessed 22 Oct 2014

  48. Dudley JM, Genty G, Coen S (2006) Supercontinuum generation in photonic crystal fiber. Rev Mod Phys 78:1135–1176

    Article  CAS  Google Scholar 

  49. Supercontinuum laser from Fianium. http://www.fianium.com/supercontinuum.htm. Accessed 22 Oct 2014

  50. Supercontinuum laser from NKT Photonics. http://www.nktphotonics.com/supercontinuum_sources. Accessed 22 Oct 2014

  51. Supercontinuum laser from PicoQuant (Solea). http://www.picoquant.com/images/uploads/downloads/solea.pdf. Accessed 22 Oct 2014

  52. Supercontinuum laser from Leukos. http://www.leukos-systems.com/spip.php?rubrique30. Accessed 22 Oct 2014

  53. Boens N, Qin W, Basari N, Hofkens J, Ameloot M, Pouget J, Lefèvre J-P, Valeur B, Gratton E, vandeVen M, Silva ND Jr, Engelborghs Y, Willaert K, Sillen A, Rumbles G, Phillips D, Visser AJWG, van Hoek A, Lakowicz JR, Malak H, Gryczynski I, Szabo AG, Krajcarski DT, Tamai N, Miura A (2007) Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal Chem 79:2137–2149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schönau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schönau, T., Riecke, S., Bülter, A., Lauritsen, K. (2014). Modern Pulsed Diode Laser Sources for Time-Correlated Photon Counting. In: Kapusta, P., Wahl, M., Erdmann, R. (eds) Advanced Photon Counting. Springer Series on Fluorescence, vol 15. Springer, Cham. https://doi.org/10.1007/4243_2014_76

Download citation

Publish with us

Policies and ethics