Skip to main content

Photon Counting in Diffuse Optical Imaging

  • Chapter
  • First Online:
Advanced Photon Counting

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 15))

Abstract

The high sensitivity and the picosecond time resolution of time-correlated single photon counting have led to the application of this technique for diffuse optical imaging of biological tissue in vivo in the near-infrared spectral range. In this chapter the fundamentals of photon propagation in biological tissue and the concept of the distribution of times of flight of scattered photons are briefly discussed. Then the main features of time-resolved, frequency-domain, and continuous-wave techniques are compared. An overview is given on the application of time-correlated single photon counting for investigations on human breast tissue, on the brain, and on muscle tissue. In the second part, experimental approaches and clinical studies on the detection and characterization of breast tumors based on oxy- and deoxyhemoglobin concentrations are considered in more detail. The application of time-resolved measurements to monitor breast tumor degeneration by neoadjuvant chemotherapy is discussed. Finally, fluorescence mammography with the contrast agent indocyanine green is considered as a tool to improve differentiation between malignant and benign breast lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jöbsis F (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  Google Scholar 

  2. Ishimaru A (1989) Diffusion of light in turbid material. Appl Optics 28:2210–2215. doi:10.1364/AO.28.002210

    Article  CAS  Google Scholar 

  3. Leff DR, Warren OJ, Enfield LC, Gibson AP, Athanasiou T, Patten DK, Hebden JC, Yang GZ, Darzi A (2008) Diffuse optical imaging of the healthy and diseased breast: a systematic review. Breast Cancer Res Treat 108:9–22. doi:10.1007/s10549-007-9582-z

    Article  Google Scholar 

  4. Lloyd-Fox S, Blasi A, Elwell CE (2010) Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci Biobehav Rev 34:269–284. doi:10.1016/j.neubiorev.2009.07.008

    Article  CAS  Google Scholar 

  5. Ghosh A, Elwell CE, Smith M (2012) Review article: cerebral near-infrared spectroscopy in adults: a work in progress. Anesth Analg 115:1373–1383. doi:10.1213/ANE.0b013e31826dd6a6

    Article  CAS  Google Scholar 

  6. Contini D, Zucchelli L, Spinelli L, Caffini M, Re R, Pifferi A, Cubeddu R, Torricelli A (2012) Review: brain and muscle near infrared spectroscopy/imaging techniques. J Near Infrared Spectrosc 20:15. doi:10.1255/jnirs.977

    Article  CAS  Google Scholar 

  7. Mittnacht AJC (2010) Near infrared spectroscopy in children at high risk of low perfusion. Curr Opin Anaesthesiol 23:342–347. doi:10.1097/ACO.0b013e3283393936

    Article  Google Scholar 

  8. Grosenick D, Wabnitz H, Ebert B (2012) Review: recent advances in contrast-enhanced near infrared diffuse optical imaging of diseases using indocyanine green. J Near Infrared Spectrosc 20:203. doi:10.1255/jnirs.964

    Article  CAS  Google Scholar 

  9. Gibson AP, Hebden JC, Arridge SR (2005) Recent advances in diffuse optical imaging. Phys Med Biol 50:R1–R43. doi:10.1088/0031-9155/50/4/R01

    Article  CAS  Google Scholar 

  10. Durduran T, Choe R, Baker WB, Yodh AG (2010) Diffuse optics for tissue monitoring and tomography. Rep Prog Phys 73:076701. doi:10.1088/0034-4885/73/7/076701

    Article  Google Scholar 

  11. Wahl M (2014) Modern TCSPC electronics: principles and acquisition modes. Springer Ser Fluoresc. doi:10.1007/4243_2014_62

  12. Alerstam E, Svensson T, Andersson-Engels S (2008) Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. J Biomed Opt 13:060504. doi:10.1117/1.3041496

    Article  Google Scholar 

  13. Lauritsen K, Riecke S, Bülter A, Schönau T (2014) Modern pulsed diode laser sources for time-correlated photon counting. Springer Ser Fluoresc. doi:10.1007/4243_2014_76

  14. Prahl SA. Tabulated molar extinction coefficient for hemoglobin in water. http://omlc.ogi.edu/spectra/hemoglobin/summary.html

  15. Kou L, Labrie D, Chylek P (1993) Refractive indices of water and ice in the 0.65- to 2.5 μm spectral range. Appl Optics 32:3531–3540

    Article  CAS  Google Scholar 

  16. Van Veen RLP, Sterenborg HJCM, Pifferi A, Torricelli A, Chikoidze E, Cubeddu R (2005) Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy. J Biomed Opt 10:054004. doi:10.1117/1.2085149

    Article  Google Scholar 

  17. Grosenick D, Moesta KT, Möller M, Mucke J, Wabnitz H, Gebauer B, Stroszczynski C, Wassermann B, Schlag PM, Rinneberg H (2005) Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients. Phys Med Biol 50:2429–2449. doi:10.1088/0031-9155/50/11/001

    Article  Google Scholar 

  18. Taroni P, Torricelli A, Spinelli L, Pifferi A, Arpaia F, Danesini G, Cubeddu R (2005) Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions. Phys Med Biol 50:2469–2488. doi:10.1088/0031-9155/50/11/003

    Article  Google Scholar 

  19. Torricelli A, Contini D, Pifferi A, Caffini M, Re R, Zucchelli L, Spinelli L (2014) Time domain functional NIRS imaging for human brain mapping. Neuroimage 85(Pt 1):28–50. doi:10.1016/j.neuroimage.2013.05.106

    Article  Google Scholar 

  20. Grosenick D, Moesta KT, Wabnitz H, Mucke J, Stroszczynski C, Macdonald R, Schlag PM, Rinneberg H (2003) Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors. Appl Optics 42:3170–3186

    Article  Google Scholar 

  21. Taroni P, Danesini G, Torricelli A, Pifferi A, Spinelli L, Cubeddu R (2004) Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm. J Biomed Opt 9:464–473. doi:10.1117/1.1695561

    Article  Google Scholar 

  22. Enfield LC, Gibson AP, Everdell NL, Delpy DT, Schweiger M, Arridge SR, Richardson C, Keshtgar M, Douek M, Hebden JC (2007) Three-dimensional time-resolved optical mammography of the uncompressed breast. Appl Optics 46:3628–3638

    Article  Google Scholar 

  23. Liebert A, Wabnitz H, Steinbrink J, Obrig H, Möller M, Macdonald R, Villringer A, Rinneberg H (2004) Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons. Appl Optics 43:3037–3047

    Article  Google Scholar 

  24. Zucchelli L, Contini D, Re R, Torricelli A, Spinelli L (2013) Method for the discrimination of superficial and deep absorption variations by time domain fNIRS. Biomed Opt Express 4:2893–2910. doi:10.1364/BOE.4.002893

    Article  Google Scholar 

  25. Mazurenka M, Di Sieno L, Boso G, Contini D, Pifferi A, Mora AD, Tosi A, Wabnitz H, Macdonald R (2013) Non-contact in vivo diffuse optical imaging using a time-gated scanning system. Biomed Opt Express 4:2257–2268. doi:10.1364/BOE.4.002257

    Article  CAS  Google Scholar 

  26. Bülter A (2014) Single-photon counting detectors for the visible range between 300 and 1,000 nm. Springer Ser Fluoresc. doi:10.1007/4243_2014_63

  27. Torricelli A, Quaresima V, Pifferi A, Biscotti G, Spinelli L, Taroni P, Ferrari M, Cubeddu R (2004) Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy. Phys Med Biol 49:685–699. doi:10.1088/0031-9155/49/5/003

    Article  CAS  Google Scholar 

  28. Yamada E, Kusaka T, Arima N, Isobe K, Yamamoto T, Itoh S (2008) Relationship between muscle oxygenation and electromyography activity during sustained isometric contraction. Clin Physiol Funct Imaging 28:216–221. doi:10.1111/j.1475-097X.2008.00798.x

    Article  Google Scholar 

  29. Ferrante S, Contini D, Spinelli L, Pedrocchi A, Torricelli A, Molteni F, Ferrigno G, Cubeddu R (2009) Monitoring muscle metabolic indexes by time-domain near-infrared spectroscopy during knee flex-extension induced by functional electrical stimulation. J Biomed Opt 14:044011. doi:10.1117/1.3183802

    Article  Google Scholar 

  30. Grosenick D, Wabnitz H, Rinneberg H, Moesta KT, Schlag PM (1999) Development of a time-domain optical mammograph and first in vivo applications. Appl Optics 38:2927–2943

    Article  CAS  Google Scholar 

  31. Rinneberg H, Grosenick D, Moesta KT, Wabnitz H, Mucke J, Wübbeler G, Macdonald R, Schlag PM (2008) Detection and characterization of breast tumours by time-domain scanning optical mammography. Opto Electron Rev 16:147–162. doi:10.2478/s11772-008-0004-5

    Article  CAS  Google Scholar 

  32. Taroni P, Pifferi A, Salvagnini E, Spinelli L, Torricelli A, Cubeddu R (2009) Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification. Opt Express 17:15932–15946

    Article  CAS  Google Scholar 

  33. Arridge SR (1995) Photon-measurement density functions. Part I: Analytical forms. Appl Optics 34:7395–7409

    Article  CAS  Google Scholar 

  34. Feng SC, Zeng F-A, Chance B (1995) Photon migration in the presence of a single defect: a perturbation analysis. Appl Optics 34:3826–3837

    Article  CAS  Google Scholar 

  35. Grosenick D, Wabnitz H, Moesta KT, Mucke J, Schlag PM, Rinneberg H (2005) Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas. Phys Med Biol 50:2451–2468. doi:10.1088/0031-9155/50/11/002

    Article  Google Scholar 

  36. Grosenick D, Kummrow A, Macdonald R, Schlag PM, Rinneberg H (2007) Evaluation of higher-order time-domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms. Phys Rev E 76:061908. doi:10.1103/PhysRevE.76.061908

    Article  CAS  Google Scholar 

  37. Grosenick D, Wabnitz H, Moesta KT, Mucke J, Möller M, Stroszczynski C, Stößel J, Wassermann B, Schlag PM, Rinneberg H (2004) Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography. Phys Med Biol 49:1165–1181. doi:10.1088/0031-9155/49/7/006

    Article  Google Scholar 

  38. Schmidt F, Fry M, Hillman EMC (2000) A 32-channel time-resolved instrument for medical optical tomography. Rev Sci Instrum 71:256–265

    Article  CAS  Google Scholar 

  39. Cerussi AE, Hsiang D, Shah N, Mehta R, Durkin A, Butler JA, Tromberg BJ (2007) Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy. Proc Natl Acad Sci U S A 104:4014–4019. doi:10.1073/pnas.0611058104

    Article  CAS  Google Scholar 

  40. Jakubowski DB, Cerussi AE, Bevilacqua F, Shah N, Hsiang D, Butler JA, Tromberg BJ (2004) Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study. J Biomed Opt 9:230–238. doi:10.1117/1.1629681

    Article  Google Scholar 

  41. Choe R, Corlu A, Lee K, Durduran T, Konecky SD, Grosicka-Koptyra M, Arridge SR, Czerniecki BJ, Fraker DL, DeMichele A, Chance B, Rosen MA, Yodh AG (2005) Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI. Med Phys 32:1128–1139

    Article  Google Scholar 

  42. Jiang S, Pogue BW, Carpenter CM, Poplack SP, Wells WA, Kogel CA, Forero JA, Muffly LS, Schwartz GN, Paulsen KD, Kaufman PA (2009) Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes. Radiology 252:551–560

    Article  Google Scholar 

  43. Enfield LC, Cantanhede G, Westbroek D, Douek M, Purushotham AD, Hebden JC, Gibson AP (2011) Monitoring the response to primary medical therapy for breast cancer using three- dimensional time-resolved optical mammography. Technol Cancer Res Treat 10:533–547

    Article  CAS  Google Scholar 

  44. Corlu A, Choe R, Durduran T, Rosen MA, Schweiger M, Arridge SR, Schnall MD, Yodh AG (2007) Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans. Opt Express 15:6696–6716

    Article  Google Scholar 

  45. Hagen A, Grosenick D, Macdonald R, Rinneberg H, Burock S, Warnick P, Poellinger A, Schlag PM (2009) Late-fluorescence mammography assesses tumor capillary permeability and differentiates malignant from benign lesions. Opt Express 17:17016–17033

    Article  CAS  Google Scholar 

  46. Van de Ven S, Wiethoff A, Nielsen T, Brendel B, van der Voort M, Nachabe R, Van der Mark M, Van Beek M, Bakker L, Fels L, Elias S, Luijten P, Mali W (2010) A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients. Mol Imaging Biol 12:343–348. doi:10.1007/s11307-009-0269-1

    Article  Google Scholar 

  47. Poellinger A, Persigehl T, Mahler M, Bahner M, Ponder SL, Diekmann F, Bremer C, Moesta KT, Dye F (2011) Near-infrared imaging of the breast using omocianine as a fluorescent dye: results of a placebo-controlled, clinical, multicenter trial. Invest Radiol 46:697–704. doi:10.1097/RLI.0b013e318229ff25

    CAS  Google Scholar 

  48. Poellinger A, Burock S, Grosenick D, Hagen A, Lüdemann L, Diekmann F, Engelken F, Macdonald R, Rinneberg H, Schlag PM (2011) Breast cancer: early-and late-fluorescence near-infrared imaging with indocyanine green—a preliminary study. Radiology 258:409–416

    Article  Google Scholar 

  49. Grosenick D, Hagen A, Steinkellner O, Poellinger A, Burock S, Schlag PM, Rinneberg H, Macdonald R (2011) A multichannel time-domain scanning fluorescence mammograph: performance assessment and first in vivo results. Rev Sci Instrum 82:024302. doi:10.1063/1.3543820

    Article  Google Scholar 

  50. Yoneya S, Saito T, Komatsu Y, Koyama I, Takahashi K, Duvoll-Young J (1998) Binding properties of indocyanine green in human blood. Invest Ophthalmol Vis Sci 39:1286–1290

    CAS  Google Scholar 

  51. Ntziachristos V, Yodh AG, Schnall M, Chance B (2000) Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci U S A 97:2767–2772. doi:10.1073/pnas.040570597

    Article  CAS  Google Scholar 

  52. Intes X, Ripoll J, Chen Y, Nioka S, Yodh AG (2003) In vivo continuous-wave optical breast imaging enhanced with indocyanine green. Med Phys 30:1039. doi:10.1118/1.1573791

    Article  Google Scholar 

  53. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Grosenick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grosenick, D. (2014). Photon Counting in Diffuse Optical Imaging. In: Kapusta, P., Wahl, M., Erdmann, R. (eds) Advanced Photon Counting. Springer Series on Fluorescence, vol 15. Springer, Cham. https://doi.org/10.1007/4243_2014_74

Download citation

Publish with us

Policies and ethics