Skip to main content

Single-Photon Detectors for Infrared Wavelengths in the Range 1–1.7 μm

  • Chapter
  • First Online:
Advanced Photon Counting

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 15))

Abstract

The ongoing progress of scientific research in areas such as quantum communications, low-light level laser ranging, and material science (to name but a few) has led to increased interest in the detection of single photons in the wavelength range 1–1.7 μm. Several technologies have been used to detect photons with wavelengths in this range – each with different characteristic parameters that affect their suitability for specific applications. This chapter will provide a review of progress in the development of detectors for use in this spectral region and will highlight some notable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Minoli D (2003) Telecommunication technology handbook, 2nd edn. Artech House, Norwood. ISBN 1-58053-528-3

    Google Scholar 

  2. Levine BF, Bethea CG, Campbell JC (1985) Room-temperature 1.3-μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector. Appl Phys Lett 46:333–335. doi:10.1063/1.95622

    Article  CAS  Google Scholar 

  3. Bouwmeester D, Ekert A, Zeilinger A (2000) The physics of quantum information: quantum cryptography, quantum teleportation, quantum computation, 1st edn. Springer, Berlin. ISBN 978-3-642-08607-6

    Book  Google Scholar 

  4. Hiskett PA, Rosenberg D, Peterson CG et al (2006) Long-distance quantum key distribution in optical fibre. New J Phys 8:193–197. doi:10.1088/1367-2630/8/9/193

    Article  Google Scholar 

  5. Clarke PJ, Collins RJ, Hiskett PA et al (2011) Analysis of detector performance in a gigahertz clock rate quantum key distribution system. New J Phys 13:075008. doi:10.1088/1367-2630/13/7/075008

    Article  Google Scholar 

  6. Buller GS, Wallace AM (2007) Ranging and three-dimensional imaging using and point-by-point acquisition. IEEE J Sel Top Quantum Electron 13:1006–1015. doi:10.1109/JSTQE.2007.902850

    Article  CAS  Google Scholar 

  7. Rothman LS, Jacquemart D, Barbe A et al (2005) The HITRAN 2004 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 96:139–204. doi:10.1016/j.jqsrt.2004.10.008

    Article  CAS  Google Scholar 

  8. Voke J (1999) Radiation effects on the eye part 1: infrared radiation effects on ocular tissue. Optom Today 39:22–28

    Google Scholar 

  9. Willson RC (2003) Secular total solar irradiance trend during solar cycles 21–23. Geophys Res Lett 30:1199. doi:10.1029/2002GL016038

    Article  Google Scholar 

  10. Kuenzer C, Dech S (2013) Thermal infrared remote sensing: sensors, methods, applications, 1st edn. Springer, Berlin. ISBN 978-94-007-6638-9

    Book  Google Scholar 

  11. Mallidi S, Larson T, Tam J et al (2009) Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett 9:2825–2831. doi:10.1021/nl802929u

    Article  CAS  Google Scholar 

  12. Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103:1685–1757. doi:10.1021/cr010371d

    Article  CAS  Google Scholar 

  13. Jue T, Masuda K (2013) Application of near infrared spectroscopy in biomedicine, 1st edn. Springer, Berlin. ISBN 978-1-4614-6251-4

    Book  Google Scholar 

  14. Buller GS, Collins RJ (2010) Single-photon generation and detection. Meas Sci Technol 21:012002. doi:10.1088/0957-0233/21/1/012002

    Article  Google Scholar 

  15. Bülter A (2014) Single-photon counting detectors for the visible range between 300 and 1000 nm. In: Kapusta P et al. (eds) Advanced photon counting: applications, methods, instrumentation. Springer series on fluorescence. Springer International Publishing, doi:10.1007/4243_2014_63

    Google Scholar 

  16. Kang Y, Lu HX, Lo Y-H et al (2003) Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection. Appl Phys Lett 83:2955–2957. doi:10.1063/1.1616666

    Article  CAS  Google Scholar 

  17. Jones R (1959) Phenomenological description of the response and detecting ability of radiation detectors. Proc IRE 47:937–938. doi:10.1109/JRPROC.1959.287047

    Google Scholar 

  18. Spinelli A, Davis LM, Dautet H (1996) Actively quenched single-photon avalanche diode for high repetition rate time-gated photon counting. Rev Sci Instrum 67:55–61. doi:10.1063/1.1146551

    Article  CAS  Google Scholar 

  19. Morton GA (1949) Photomultipliers for scintillation counting. RCA Rev 10:525–553

    CAS  Google Scholar 

  20. Hammatsu Data Sheet (2005) Low-light-level measurement of NIR: NIR (near infrared: 1.4 μm/1.7 μm) photomultiplier tubes R5509-43/R5509-73 and exclusive coolers

    Google Scholar 

  21. Greenblatt M (1958) On the measurement of transit time dispersion in multiplier phototubes. IRE Trans Nucl Sci 5:13–16. doi:10.1109/TNS2.1958.4315600

    Article  Google Scholar 

  22. Becker W (2005) Advanced time-correlated single photon counting techniques, 1st edn. Springer, Berlin. ISBN 3-540-62047-1

    Book  Google Scholar 

  23. Akgun U, Ayan AS, Aydin G et al (2008) Afterpulse timing and rate investigation of three different Hamamatsu Photomultiplier Tubes. J Instrum 3, T01001. doi:10.1088/1748-0221/3/01/T01001

    Article  Google Scholar 

  24. Pellegrini S, Warburton RE, Tan LJJ et al (2006) Design and performance of an InGaAs-InP single-photon avalanche diode detector. IEEE J Quantum Electron 42:397–403. doi:10.1109/JQE.2006.871067

    Article  CAS  Google Scholar 

  25. Biard J, Shaunfield WN (1967) A model of the avalanche photodiode. IEEE Trans Electron Dev 14:233–238. doi:10.1109/T-ED.1967.15936

    Article  Google Scholar 

  26. Antypas GA, Moon RL, James LW et al (1972) III-V quaternary alloys. In: Hilsum C (ed) International symposium on gallium arsenide and related compounds. Institute of Physics, pp 48–54

    Google Scholar 

  27. Hiskett PA, Buller GS, Loudon AY et al (2000) Performance and design of InGaAs/InP photodiodes for single-photon counting at 1.55 um. Appl Opt 39:6818–6829. doi:10.1364/AO.39.006818

    Article  CAS  Google Scholar 

  28. Smith JM, Hiskett PA, Buller GS (2001) Picosecond time-resolved photoluminescence at detection wavelengths greater than 1500 nm. Opt Lett 26:731–733. doi:10.1364/OL.26.000731

    Article  CAS  Google Scholar 

  29. Xiao Y, Bhat I, Abedin MN (2005) Performance dependences on multiplication layer thickness for InP/InGaAs avalanche photodiodes based on time domain modeling. Proc SPIE 5881, infrared photoelectron imagers detect devices 5881:58810R–58810R–10. doi:10.1117/12.615057

  30. Restelli A, Bienfang JC, Migdall AL (2012) Time-domain measurements of afterpulsing in InGaAs/InP SPAD gated with sub-nanosecond pulses. J Mod Opt 59:1465–1471. doi:10.1080/09500340.2012.687463

    Article  CAS  Google Scholar 

  31. Ben-Michael R, Itzler MA., Nyman B, Entwistle M (2006) Afterpulsing in InGaAs/InP single photon avalanche photodetectors. In: 2006 digest of the LEOS summer topical meetings IEEE, Quebec City, Quebec, Canada, pp 15–16

    Google Scholar 

  32. Itzler MA, Jiang X, Entwistle M (2012) Power law temporal dependence of InGaAs/InP SPAD afterpulsing. J Mod Opt 59:1472–1480. doi:10.1080/09500340.2012.698659

    Article  CAS  Google Scholar 

  33. Tosi A, Della Frera A, Shehata AB, Scarcella C (2012) Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions. Rev Sci Instrum 83:013104. doi:10.1063/1.3675579

    Article  Google Scholar 

  34. Cova S, Ghioni M, Lacaita A et al (1996) Avalanche photodiodes and quenching circuits for single-photon detection. Appl Opt 35:1956–1976. doi:10.1364/AO.35.001956

    Article  CAS  Google Scholar 

  35. Cova S, Longoni A, Ripamonti G (1982) Active-quenching and gating circuits for single-photon avalanche diodes (SPADS). IEEE Trans Nucl Sci 29:599–601. doi:10.1109/TNS.1982.4335917

    Article  Google Scholar 

  36. Warburton RE, Itzler MA, Buller GS (2009) Improved free-running InGaAs/InP single-photon avalanche diode detectors operating at room temperature. Electron Lett 45:996–997. doi:10.1049/el.2009.1508

    Article  CAS  Google Scholar 

  37. Acerbi F, Tosi A, Zappa F (2013) Dark count rate dependence on bias voltage during gate-OFF in InGaAs/InP single-photon avalanche diodes. IEEE Photonics Technol Lett 25:1832–1834. doi:10.1109/LPT.2013.2277555

    Article  CAS  Google Scholar 

  38. Liu M, Hu C, Campbell JC et al (2008) Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset. IEEE J Quantum Electron 44:430–434. doi:10.1109/JQE.2007.916688

    Article  CAS  Google Scholar 

  39. Warburton RE, Itzler M, Buller GS (2009) Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode. Appl Phys Lett 94:071116. doi:10.1063/1.3079668

    Article  Google Scholar 

  40. Cova S, Longoni A, Anderoni A (1981) Towards picosecond resolution with single-photon avalanche diodes. Rev Sci Instrum 52:408. doi:10.1063/1.1136594

    Article  CAS  Google Scholar 

  41. Acerbi F, Frera A, Della TA, Zappa F (2013) Fast active quenching circuit for reducing avalanche charge and afterpulsing in InGaAs/InP single-photon avalanche diode. IEEE J Quantum Electron 49:563–569. doi:10.1109/JQE.2013.2260726

    Article  CAS  Google Scholar 

  42. Bronzi D, Tisa S, Villa F et al (2013) Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects. IEEE Photonics Technol Lett 25:776–779. doi:10.1109/LPT.2013.2251621

    Article  Google Scholar 

  43. Zhang J, Thew R, Gautier J-D et al (2009) Comprehensive characterization of InGaAs–InP avalanche photodiodes at 1550 nm with an active quenching ASIC. IEEE J Quantum Electron 45:792–799. doi:10.1109/JQE.2009.2013210

    Article  CAS  Google Scholar 

  44. Ribordy G, Gautier JD, Zbinden H, Gisin N (1998) Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters. Appl Opt 37:2272–2277. doi:10.1364/AO.37.002272

    Article  CAS  Google Scholar 

  45. Stucki D, Ribordy G, Stefanov A et al (2001) Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs. J Mod Opt 48:1967–1981, doi:10.1080/09500340108240900

    Article  Google Scholar 

  46. Yuan ZL, Sharpe AW, Dynes JF et al (2010) Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes. Appl Phys Lett 96:071101. doi:10.1063/1.3309698

    Article  Google Scholar 

  47. Tomita A, Nakamura K (2002) Balanced, gated-mode photon detector for quantum-bit discrimination at 1550 nm. Opt Lett 27:1827–1829. doi:10.1364/OL.27.001827

    Article  Google Scholar 

  48. Namekata N, Sasamori S, Inoue S (2006) 800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating. Opt Express 14:10043–10049. doi:10.1364/OE.14.010043

    Article  CAS  Google Scholar 

  49. Walenta N, Lunghi T, Guinnard O et al (2012) Sine gating detector with simple filtering for low-noise infra-red single photon detection at room temperature. J Appl Phys 112:063106. doi:10.1063/1.4749802

    Article  Google Scholar 

  50. Liang Y, Wu E, Chen X et al (2011) Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode. IEEE Photonics Technol Lett 23:887–889. doi:10.1109/LPT.2011.2141982

    Article  Google Scholar 

  51. Ren M, Gu X, Liang Y et al (2011) Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector. Opt Express 19:13497–13502. doi:10.1364/OE.19.013497

    Article  Google Scholar 

  52. Zhang J, Thew R, Barreiro C, Zbinden H (2009) Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes. Appl Phys Lett 95:91103. doi:10.1063/1.3223576

    Article  Google Scholar 

  53. Kardynał BE, Yuan ZL, Shields AJ (2008) An avalanche-photodiode-based photon-number-resolving detector. Nat Photonics 2:425–428. doi:10.1038/nphoton.2008.101

    Article  Google Scholar 

  54. Chen X, Wu E, Xu L et al (2009) Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates. Appl Phys Lett 95:131118. doi:10.1063/1.3242380

    Article  Google Scholar 

  55. Zhao K, You S, Cheng J, Lo Y (2008) Self-quenching and self-recovering InGaAs∕InAlAs single photon avalanche detector. Appl Phys Lett 93:153504. doi:10.1063/1.3000610

    Article  Google Scholar 

  56. Lunghi T, Barreiro C, Guinnard O et al (2012) Free-running single-photon detection based on a negative feedback InGaAs APD. J Mod Opt 59:1481–1488. doi:10.1080/09500340.2012.690050

    Article  CAS  Google Scholar 

  57. Itzler MA, Entwistle M, Owens M, et al. (2010) Geiger-mode avalanche photodiode focal plane arrays for three-dimensional imaging LADAR. In: Strojnik M, Paez G (eds) Proceedings of SPIE. 7808, infrared remote sensing and instrumentation XVIII. SPIE, San Diego, p 78080C

    Google Scholar 

  58. Yuan P, Sudharsanan R, Bai X, et al (2010) 32 × 32 Geiger-mode LADAR cameras. In: Turner MD, Kamerman GW (eds) Proceedings of SPIE 7684, laser radar technology and applications XV. SPIE, Orlando, p 76840C

    Google Scholar 

  59. Korzh B, Walenta N, Houlmann R, Zbinden H (2013) A high-speed multi-protocol quantum key distribution transmitter based on a dual-drive modulator. Opt Express 21:19579–19592. doi:10.1364/OE.21.019579

    Article  Google Scholar 

  60. Lacaita A, Francese PA, Zappa F, Cova S (1994) Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes. Appl Opt 33:6902–6918. doi:10.1364/AO.33.006902

    Article  CAS  Google Scholar 

  61. Luryi S, Pearsall TP, Temkin H, Bean JC (1986) Waveguide infrared photodetectors on a silicon chip. IEEE Electron Device Lett 7:104–107. doi:10.1109/EDL.1986.26309

    Article  Google Scholar 

  62. Lang DV, People R, Bean JC, Sergent AM (1985) Measurement of the band gap of GexSi1−x/Si strained-layer heterostructures. Appl Phys Lett 47:1333. doi:10.1063/1.96271

    Article  CAS  Google Scholar 

  63. Loudon AY, Hiskett PA, Buller GS et al (2002) Enhancement of the infrared detection efficiency of silicon photon-counting avalanche photodiodes by use of silicon germanium absorbing layers. Opt Lett 27:219–221. doi:10.1364/OL.27.000219

    Article  CAS  Google Scholar 

  64. Schneider H, Liu HC (2007) Quantum well infrared photodetectors: physics and applications, 1st edn. Springer, Berlin, Germany. ISBN 978-3-540-36323-1

    Google Scholar 

  65. Shah VA, Dobbie A, Myronov M, Leadley DR (2011) Effect of layer thickness on structural quality of Ge epilayers grown directly on Si(001). Thin Solid Films 519:7911–7917. doi:10.1016/j.tsf.2011.06.022

    Article  CAS  Google Scholar 

  66. Warburton RE, Intermite G, Myronov M et al (2013) Ge-on-Si single-photon avalanche diode detectors: design, modeling, fabrication, and characterization at wavelengths 1310 and 1550 nm. IEEE Trans Electron Dev 60:3807–3813. doi:10.1109/TED.2013.2282712

    Article  CAS  Google Scholar 

  67. Yuan P, Anselm KA, Hu C (1999) A new look at impact ionization-part II: gain and noise in short avalanche photodiodes. IEEE Trans Electron Dev 46:1632–1639. doi:10.1109/16.777151

    Article  CAS  Google Scholar 

  68. Zrenner A (2000) A close look on single quantum dots. J Chem Phys 112:7790. doi:10.1063/1.481384

    Article  CAS  Google Scholar 

  69. Michler P (2009) Single semiconductor quantum dots, 1st edn. Springer, Berlin, Germany. ISBN 978-3-540-87446-1

    Book  Google Scholar 

  70. Blakesley JC, See P, Shields AJ et al (2005) Efficient single photon detection by quantum dot resonant tunneling diodes. Phys Rev Lett 94:67401. doi:10.1103/PhysRevLett.94.067401

    Article  CAS  Google Scholar 

  71. Li HW, Kardynal BE, See P et al (2007) Quantum dot resonant tunneling diode for telecommunication wavelength single photon detection. Appl Phys Lett 91:73513–73516. doi:10.1063/1.2768884

    Article  Google Scholar 

  72. Hees SS, Kardynal BE, See P et al (2006) Effect of InAs dots on noise of quantum dot resonant tunneling single-photon detectors. Appl Phys Lett 89:153510. doi:10.1063/1.2362997

    Article  Google Scholar 

  73. Stranski IN, Krastanow L (1938) Zur theorie der orientierten Ausscheidung von Ionen-kristallen aufeinander. Sitzungsberichte der Akad der Wiss Wien 146:797–804

    CAS  Google Scholar 

  74. Markov I, Stoyanov S (1987) Mechanisms of epitaxial growth. Contemp Phys 28:267–320. doi:10.1080/00107518708219073

    Article  CAS  Google Scholar 

  75. Leonard D, Pond K, Petroff PM (1994) Critical layer thickness for self-assembled InAs islands on GaAs. Phys Rev B 50:11687–11692. doi:10.1103/PhysRevB.50.11687

    Article  CAS  Google Scholar 

  76. Hott R, Kleiner R, Wolf T, Zwicknagl G (2005) Superconducting materials – a topical overview. In: Narlikar AV (ed) Frontiers in supercondinting materials, 1st edn. Springer, Berlin, pp 1–69. doi:10.1007/3-540-27294-1_1. ISBN 978-3-540-24513-1

    Chapter  Google Scholar 

  77. Bennemann KH, Ketterson JB (2008) Superconductivity: conventional and unconventional superconductors, 1st edn. Springer, Berlin. ISBN 978-3-540-73252-5

    Book  Google Scholar 

  78. Onnes HK (1911) Further experiments with liquid helium C On the change of electrical resistance of pure metals at very low temperatures etc IV The resistance of pure mercury at helium temperatures. Commun from Phys Lab Univ Leiden 120B:2–5

    Google Scholar 

  79. Cardwell DA (1991) High-temperature superconducting materials. In: Electronic materials: from silicon to organics, 1st edn. Springer, Berlin, pp 417–430. doi: 10.1007/978-1-4615-3818-9_28, ISBN 978-1-4613-6703-1

  80. Cabrera B, Clarke RM, Colling P et al (1998) Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors. Appl Phys Lett 73:735–737. doi:10.1063/1.121984

    Article  CAS  Google Scholar 

  81. Irwin KD, Nam SW, Cabrera B et al (1995) A quasiparticle-trap-assisted transition‐edge sensor for phonon-mediated particle detection. Rev Sci Instrum 66:5322–5326. doi:10.1063/1.1146105

    Article  CAS  Google Scholar 

  82. Iyomoto N, Bandler SR, Brekosky RP et al (2008) Close-packed arrays of transition-edge x-ray microcalorimeters with high spectral resolution at 5.9 keV. Appl Phys Lett 92:013508

    Article  Google Scholar 

  83. Irwin KD, Hilton GC, Wollman DA, Martinis JM (1996) X-ray detection using a superconducting transition-edge sensor microcalorimeter with electrothermal feedback. Appl Phys Lett 69:1945. doi:10.1063/1.117630

    Article  CAS  Google Scholar 

  84. Lita AE, Miller AJ, Nam SW (2008) Counting near-infrared single-photons with 95 % efficiency. Opt Express 16:3032–3040. doi:10.1364/OE.16.003032

    Article  Google Scholar 

  85. Lita AE, Rosenberg D, Nam S et al (2005) Tuning of tungsten thin film superconducting transition temperature for fabrication of photon number resolving detectors. IEEE Trans Applied Supercond 15:3528–3531. doi:10.1109/TASC.2005.849033

    Article  CAS  Google Scholar 

  86. Natarajan CM, Tanner MG, Hadfield RH (2012) Superconducting nanowire single-photon detectors: physics and applications. Supercond Sci Technol 25:063001. doi:10.1088/0953-2048/25/6/063001

    Article  Google Scholar 

  87. Gol’tsman GN, Okunev O, Chulkova G et al (2001) Picosecond superconducting single-photon optical detector. Appl Phys Lett 79:705–707. doi:10.1063/1.1388868

    Article  Google Scholar 

  88. Kadin AM, Johnson MW (1996) Nonequilibrium photon-induced hotspot: a new mechanism for photodetection in ultrathin metallic films. Appl Phys Lett 69:3938–3940. doi:10.1063/1.117576

    Article  CAS  Google Scholar 

  89. Gol’tsman GN, Semenov AD, Gousev YP et al (1991) Sensitive picosecond NbN detector for radiation from millimetre wavelengths to visible light. Supercond Sci Technol 4:453–456. doi:10.1088/0953-2048/4/9/020

    Article  Google Scholar 

  90. Verevkin A, Zhang J, Sobolewski R et al (2002) Detection efficiency of large-active area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range. Appl Phys Lett 80:4687–4689. doi:10.1063/1.1487924

    Article  CAS  Google Scholar 

  91. Ghamsari BG, Majedi AH (2008) Superconductive traveling-wave photodetectors: fundamentals and optical propagation. IEEE J Quantum Electron 44:667–675. doi:10.1109/JQE.2008.922409

    Article  CAS  Google Scholar 

  92. Il’in KS, Lindgren M, Currie M et al (2000) Picosecond hot-electron energy relaxation in NbN superconducting photodetectors. Appl Phys Lett 76:2752. doi:10.1063/1.126480

    Article  Google Scholar 

  93. Marsili F, Verma VB, Stern JA et al (2013) Detecting single infrared photons with 93 % system efficiency. Nat Photonics 7:210–214. doi:10.1038/nphoton.2013.13

    Article  CAS  Google Scholar 

  94. Gol’tsman G, Minaeva O, Korneev A et al (2007) Middle-infrared to visible-light ultrafast superconducting single-photon detectors. IEEE Trans Appl Supercond 17:246–251. doi:10.1109/TASC.2007.898252

    Article  Google Scholar 

  95. Rosfjord KM, Yang JKW, Dauler EA et al (2006) Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. Opt Express 14:527–534. doi:10.1364/OPEX.14.000527

    Article  Google Scholar 

  96. Tanner MG, Natarajan CM, Pottapenjara VK et al (2010) Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon. Appl Phys Lett 96:221109. doi:10.1063/1.3428960

    Article  Google Scholar 

  97. Marsili F, Najafi F, Dauler E, et al. (2012) Cavity-integrated ultra-narrow superconducting nanowire single-photon detector based on a thick niobium nitride film. Quantum electronics and laser science conference, Optical Society of America, San Jose, p QTu3E. doi:10.1364/QELS.2012.QTu3E.3

    Google Scholar 

  98. McCarthy A, Krichel N, Gemmell N (2013) Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection. Opt Express 21:8904–8915. doi:10.1364/OE.21.008904

    Article  Google Scholar 

  99. Gemmell NR, McCarthy A, Liu B et al (2013) Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector. Opt Express 21:5005–5013. doi:10.1364/OE.21.005005

    Article  CAS  Google Scholar 

  100. Dauler EA, Spellmeyer NW, et al. (2010) High-rate quantum key distribution with high-rate quantum key distribution with superconducting nanowire single photon detectors. Quantum electronics and laser science conference, Optical Society of America, San Jose, p QTHI2. ISBN 978-1-55752-890-2

    Google Scholar 

  101. Dauler EA, Robinson BS, Kerman AJ et al (2007) Multi-element superconducting nanowire single-photon detector. IEEE Trans Appl Supercond 17:279–284. doi:10.1109/TASC.2007.897372

    Article  CAS  Google Scholar 

  102. Smirnov K, Korneev A, Minaeva O et al (2007) Ultrathin NbN film superconducting single-photon detector array. J Phys Conf Ser 61:1081–1085. doi:10.1088/1742-6596/61/1/214

    Article  Google Scholar 

  103. Hull R, Parisi J, Osgood RM Jr et al (2005) Spectroscopic properties of rare earths in optical materials, 1st edn. Springer, Berlin, Germany. ISBN 978-3-540-23886-7

    Book  Google Scholar 

  104. Albota MA, Wong FNC (2004) Efficient single-photon counting at 1.55 μm by means of frequency upconversion. Opt Lett 29:1449–1451. doi:10.1364/OL.29.001449

    Article  Google Scholar 

  105. Shentu G, Pelc J, Wang X (2013) Ultralow noise up-conversion detector and spectrometer for the telecom band. Opt Express 21:1449–1451. doi:10.1364/OE.21.013986

    Google Scholar 

  106. Thew RT, Zbinden H, Gisin N (2008) Tunable upconversion photon detector. Appl Phys Lett 93:71103–71104. doi:10.1063/1.2969067

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Nick Buttenshaw at Hamamatsu Photonics UK Limited for the information contained in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald S. Buller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buller, G.S., Collins, R.J. (2014). Single-Photon Detectors for Infrared Wavelengths in the Range 1–1.7 μm. In: Kapusta, P., Wahl, M., Erdmann, R. (eds) Advanced Photon Counting. Springer Series on Fluorescence, vol 15. Springer, Cham. https://doi.org/10.1007/4243_2014_64

Download citation

Publish with us

Policies and ethics