Skip to main content

Application of Quantitative Fluorescence Microscopic Approaches to Monitor Organization and Dynamics of the Serotonin1A Receptor

  • Chapter
  • First Online:

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 13))

Abstract

G protein-coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across membranes and represent major targets in the development of novel drug candidates in all clinical areas. Recent advances in understanding of the nonrandom distribution of GPCRs, G proteins, and effector molecules have given rise to new challenges and complexities in cellular signaling by GPCRs. In this article, we provide specific examples on the application of quantitative fluorescence microscopic approaches to monitor organization and dynamics of the serotonin1A receptor (a GPCR) in live cells. This assumes broader relevance due to the emerging theme that GPCR function depends on its organization and dynamics. We envisage that with progress in understanding of receptor organization and dynamics, our knowledge of GPCR function would improve considerably, thereby enabling to design better therapeutic strategies to combat diseases related to malfunctioning of GPCRs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Bodipy-FL PC:

2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine

CD:

Cytochalasin D

DRM:

Detergent-resistant membrane

EYFP:

Enhanced yellow fluorescent protein

F-actin:

Filamentous actin

FCS:

Fluorescence correlation spectroscopy

FPR:

N-formyl peptide receptor

FRET:

Fluorescence resonance energy transfer

G-actin:

Globular actin

GFP:

Green fluorescent protein

GPCR:

G protein-coupled receptor

Jas:

Jasplakinolide

LatA:

Latrunculin A

MβCD:

Methyl-β-cyclodextrin

p-MPPI:

4-(2′-Methoxy)-phenyl-1-[2′-(N-2′′-pyridinyl)-p-iodobenzamido]ethyl-piperazine

zFCS:

Z-Scanning FCS

References

  1. Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R, Brabet I, Roux T, Bazin H, Bourrier E, Lamarque L, Breton C, Rives ML, Newman A, Javitch J, Trinquet E, Manning M, Pin JP, Mouillac B, Durroux T (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 6:587–594

    Article  CAS  Google Scholar 

  2. Banerjee P, Joo JB, Buse JT, Dawson G (1995) Differential solubilization of lipids along with membrane proteins by different classes of detergents. Chem Phys Lipids 77:65–78

    Article  CAS  Google Scholar 

  3. Benda A, Benes M, Marecek V, Lhotsky A, Hermens WT, Hof M (2003) How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir 19:4120–4126

    Article  CAS  Google Scholar 

  4. Blier P, Ward NM (2003) Is there a role for 5-HT1A agonists in the treatment of depression? Biol Psychiatry 53:193–203

    Article  CAS  Google Scholar 

  5. Broder CC, Dimitrov DS (1996) HIV and the 7-transmembrane domain receptors. Pathobiology 64:171–179

    Article  CAS  Google Scholar 

  6. Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  CAS  Google Scholar 

  7. Calvert PD, Govardovskii VI, Krasnoperova N, Anderson RE, Lem J, Makino CL (2001) Membrane protein diffusion sets the speed of rod phototransduction. Nature 411:90–94

    Article  CAS  Google Scholar 

  8. Chamberlain LH (2004) Detergents as tools for the purification and classification of lipid rafts. FEBS Lett 559:1–5

    Article  CAS  Google Scholar 

  9. dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83:433–473

    Google Scholar 

  10. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schönle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1163

    Article  CAS  Google Scholar 

  11. Ganguly S, Chattopadhyay A (2010) Cholesterol depletion mimics the effect of cytoskeletal destabilization on membrane dynamics of the serotonin1A receptor: a zFCS study. Biophys J 99:1397–1407

    Article  CAS  Google Scholar 

  12. Ganguly S, Clayton AHA, Chattopadhyay A (2011) Organization of higher-order oligomers of the serotonin1A receptor explored utilizing homo-FRET in live cells. Biophys J 100:361–368

    Article  CAS  Google Scholar 

  13. Ganguly S, Paila YD, Chattopadhyay A (2011) Metabolic depletion of sphingolipids enhances the mobility of the human serotonin1A receptor. Biochem Biophys Res Commun 411:180–184

    Article  CAS  Google Scholar 

  14. Ganguly S, Pucadyil TJ, Chattopadhyay A (2008) Actin cytoskeleton-dependent dynamics of the human serotonin1A receptor correlates with receptor signaling. Biophys J 95:451–463

    Article  CAS  Google Scholar 

  15. Ganguly S, Saxena R, Chattopadhyay A (2011) Reorganization of the actin cytoskeleton upon G-protein coupled receptor signaling. Biochim Biophys Acta 1808:1921–1929

    Article  CAS  Google Scholar 

  16. Ganguly S, Singh P, Manoharlal R, Prasad R, Chattopadhyay A (2009) Differential dynamics of membrane proteins in yeast. Biochem Biophys Res Commun 387:661–665

    Article  CAS  Google Scholar 

  17. Gardier AM (2009) Mutant mouse models and antidepressant drug research: focus on serotonin and brain-derived neurotrophic factor. Behav Pharmacol 20:18–32

    Article  CAS  Google Scholar 

  18. Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21:90–113

    Article  CAS  Google Scholar 

  19. Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    Article  CAS  Google Scholar 

  20. González-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, López-Giménez JF, Zhou M, Okawa Y, Callodo LF, Milligan G, Gingrich JA, Filizola M, Meana JJ, Sealfon SC (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452:93–97

    Article  Google Scholar 

  21. Griebel G (1999) 5-HT1A receptor blockers as potential drug candidates for the treatment of anxiety disorders. Drug News Perspect 12:484–490

    Article  CAS  Google Scholar 

  22. Haldar S, Chattopadhyay A (2009) The green journey. J Fluoresc 19:1–2

    Article  Google Scholar 

  23. Haldar S, Chattopadhyay A (2009) Green fluorescent protein: a molecular lantern that illuminates the cellular interior. J Biosci 34:169–172

    Article  CAS  Google Scholar 

  24. Harding PJ, Attrill H, Boehringer J, Ross S, Wadhams GH, Smith E, Armitage JP, Watts A (2009) Constitutive dimerization of the G-protein coupled receptor, neurotensin receptor 1, reconstituted into phospholipid bilayers. Biophys J 96:964–973

    Article  CAS  Google Scholar 

  25. Harrison T, Samuel BU, Akompong T, Hamm H, Mohandas N, Lomasney JW, Haldar K (2003) Erythrocyte G protein-coupled receptor signaling in malarial infection. Science 301:1734–1736

    Article  CAS  Google Scholar 

  26. Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169

    Article  CAS  Google Scholar 

  27. He H-T, Marguet D (2011) Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy. Annu Rev Phys Chem 62:417–436

    Article  CAS  Google Scholar 

  28. Heerklotz H (2002) Triton promotes domain formation in lipid raft mixtures. Biophys J 83:2693–2701

    Article  CAS  Google Scholar 

  29. Heilker R, Wolff M, Tautermann CS, Bieler M (2009) G-protein coupled receptor-focused drug discovery using a target class platform approach. Drug Discov Today 14:231–240

    Article  CAS  Google Scholar 

  30. Hess ST, Huang S, Heikal AA, Webb WW (2002) Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41:697–705

    Article  CAS  Google Scholar 

  31. Hooper NM (1999) Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae. Mol Membr Biol 16:145–156

    Article  CAS  Google Scholar 

  32. Howe AK (2004) Regulation of actin-based cell migration by cAMP/PKA. Biochim Biophys Acta 1692:159–174

    Article  CAS  Google Scholar 

  33. Huang C, Hepler JR, Chen LT, Gilman AG, Anderson RG, Mumby SM (1997) Organization of G proteins and adenylyl cyclase at the plasma membrane. Mol Biol Cell 8:2365–2378

    CAS  Google Scholar 

  34. Hui KL, Wang C, Grooman B, Wayt J, Upadhyaya A (2012) Membrane dynamics correlate with formation of signaling clusters during cell spreading. Biophys J 102:1524–1533

    Article  CAS  Google Scholar 

  35. Humpolícková J, Gielen E, Benda A, Fagulova V, Vercammen J, vandeVen M, Hof M, Ameloot M, Engelborghs Y (2006) Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys J 91:L23–L25

    Article  Google Scholar 

  36. Hur E-M, Kim KT (2002) G protein-coupled receptor signalling and cross-talk: achieving rapidity and specificity. Cell Signal 14:397–405

    Article  CAS  Google Scholar 

  37. Jacobson K, Mouritsen OG, Anderson RGW (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    Article  CAS  Google Scholar 

  38. Jafurulla M, Pucadyil TJ, Chattopadhyay A (2008) Effect of sphingomylinase treatment on ligand binding activity of human serotonin1A receptors. Biochim Biophys Acta 1778:2022–2025

    Article  CAS  Google Scholar 

  39. James JR, Oliveira MI, Carmo AM, Iaboni A, Davis SJ (2006) A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Methods 3:1001–1006

    Article  CAS  Google Scholar 

  40. Janmey PA (1998) The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev 78:763–781

    CAS  Google Scholar 

  41. Jans DA, Peters R, Jans P, Fahrenholz F (1991) Vasopressin V2 receptor mobile fraction and ligand-dependent adenylate cyclase activity are directly correlated in LLC-PK1 renal epithelial cells. J Cell Biol 114:53–60

    Article  CAS  Google Scholar 

  42. Kalipatnapu S, Chattopadhyay A (2004) A GFP fluorescence based approach to determine detergent insolubility of the human serotonin1A receptor. FEBS Lett 576:455–460

    Article  CAS  Google Scholar 

  43. Kalipatnapu S, Chattopadhyay A (2005) Membrane organization of the human serotonin1A receptor monitored by detergent insolubility using GFP fluorescence. Mol Membr Biol 22:539–547

    Article  CAS  Google Scholar 

  44. Kalipatnapu S, Chattopadhyay A (2007) Membrane organization and function of the serotonin1A receptor. Cell Mol Neurobiol 27:1097–1116

    Article  CAS  Google Scholar 

  45. Kalipatnapu S, Chattopadhyay A (2007) Membrane organization of the serotonin1A receptor monitored by a detergent-free approach. Cell Mol Neurobiol 27:463–474

    Article  CAS  Google Scholar 

  46. Kalipatnapu S, Pucadyil TJ, Chattopadhyay A (2007) Membrane organization and dynamics of the serotonin1A receptor monitored using fluorescence microscopic approaches. In: Chattopadhyay A (ed) Serotonin receptors in neurobiology, new frontiers in neuroscience series. CRC Press, Boca Raton, pp 41–60

    Google Scholar 

  47. Karnovsky MJ, Kleinfeld AM, Hoover RL, Klausner RD (1982) The concept of lipid domains in membranes. J Cell Biol 94:1–6

    Article  CAS  Google Scholar 

  48. Kasai RS, Suzuki KGN, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, Kusumi A (2011) Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol 192:463–480

    Article  CAS  Google Scholar 

  49. Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378

    Article  CAS  Google Scholar 

  50. Lajoie P, Goetz JG, Dennis JW, Nabi IR (2009) Lattices, rafts and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol 185:381–385

    Article  CAS  Google Scholar 

  51. Lenne P-F, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, Guo X-J, Rigneault H, He H-T, Marguet D (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25:3245–3256

    Article  CAS  Google Scholar 

  52. Lidke DS, Nagy P, Barisas BG, Heintzmann R, Post JN, Lidke KA, Clayton AH, Arndt-Jovin DJ, Jovin TM (2003) Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). Biochem Soc Trans 31:1020–1027

    Article  CAS  Google Scholar 

  53. Lin SH, Civelli O (2004) Orphan G protein-coupled receptors: targets for new therapeutic interventions. Ann Med 36:204–214

    Article  CAS  Google Scholar 

  54. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  Google Scholar 

  55. Lohse MJ (2010) Dimerization in GPCR mobility and signaling. Curr Opin Pharmacol 10:53–58

    Article  CAS  Google Scholar 

  56. Lohse MJ, Nikolaev VO, Hein P, Hoffmann C, Vilardaga J-P, Bünemann M (2008) Optical techniques to analyze real-time activation and signaling of G-protein-coupled receptors. Trends Pharmacol Sci 29:159–165

    Article  CAS  Google Scholar 

  57. Meyer BH, Segura JM, Martinez KL, Hovius R, George N, Johnsson K, Vogel H (2006) FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc Natl Acad Sci USA 103:2138–2143

    Article  CAS  Google Scholar 

  58. Milligan G (2007) G protein-coupled receptor dimerisation: molecular basis and relevance to function. Biochim Biophys Acta 1768:825–835

    Article  CAS  Google Scholar 

  59. Mukherjee S, Maxfield FR (2004) Membrane domains. Annu Rev Cell Dev Biol 20:839–866

    Article  CAS  Google Scholar 

  60. Müller CP, Carey RJ, Huston JP, De Souza Silva MA (2007) Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors. Prog Neurobiol 81:133–178

    Article  Google Scholar 

  61. Neubig RR (1994) Membrane organization in G-protein mechanisms. FASEB J 8:939–946

    CAS  Google Scholar 

  62. Oldham WM, Hamm HE (2006) Structural basis of function in heterotrimeric G proteins. Q Rev Biophys 39:117–166

    Article  CAS  Google Scholar 

  63. Ostrom RS, Insel PA (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br J Pharmacol 143:235–245

    Article  CAS  Google Scholar 

  64. Paila YD, Chattopadhyay A (2010) Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell Biochem 51:439–466

    Article  CAS  Google Scholar 

  65. Paila YD, Ganguly S, Chattopadhyay A (2010) Metabolic depletion of sphingolipids impairs ligand binding and signaling of human serotonin1A receptors. Biochemistry 49:2389–2397

    Article  CAS  Google Scholar 

  66. Paila YD, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2011) Oligomerization of the serotonin1A receptor in live cells: a time-resolved fluorescence anisotropy approach. J Phys Chem B 115:11439–11447

    Article  CAS  Google Scholar 

  67. Paila YD, Murty MRVS, Vairamani M, Chattopadhyay A (2008) Signaling by the human serotonin1A receptor is impaired in cellular model of Smith-Lemli-Opitz Syndrome. Biochim Biophys Acta 1778:1508–1516

    Article  CAS  Google Scholar 

  68. Perez DM (2003) The evolutionarily triumphant G-protein-coupled receptor. Mol Pharmacol 63:1202–1205

    Article  CAS  Google Scholar 

  69. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    Article  CAS  Google Scholar 

  70. Pucadyil TJ, Chattopadhyay A (2004) Cholesterol modulates ligand binding and G-protein coupling to serotonin1A receptors from bovine hippocampus. Biochim Biophys Acta 1663:188–200

    Article  CAS  Google Scholar 

  71. Pucadyil TJ, Chattopadhyay A (2006) Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res 45:295–333

    Article  CAS  Google Scholar 

  72. Pucadyil TJ, Chattopadhyay A (2007) Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin1A receptor in the plasma membrane of living cells. Biochim Biophys Acta 1768:655–668

    Article  CAS  Google Scholar 

  73. Pucadyil TJ, Chattopadhyay A (2007) Cholesterol: a potential therapeutic target in Leishmania infection? Trends Parasitol 23:49–53

    Article  CAS  Google Scholar 

  74. Pucadyil TJ, Kalipatnapu S, Chattopadhyay A (2005) Membrane organization and dynamics of the G-protein-coupled serotonin1A receptor monitored using fluorescence-based approaches. J Fluoresc 15:785–796

    Article  CAS  Google Scholar 

  75. Pucadyil TJ, Kalipatnapu S, Chattopadhyay A (2005) The serotonin1A receptor: A representative member of the serotonin receptor family. Cell Mol Neurobiol 25:553–580

    Article  CAS  Google Scholar 

  76. Pucadyil TJ, Kalipatnapu S, Harikumar KG, Rangaraj N, Karnik SS, Chattopadhyay A (2004) G-protein-dependent cell surface dynamics of the human serotonin1A receptor tagged to yellow fluorescent protein. Biochemistry 43:15852–15862

    Article  CAS  Google Scholar 

  77. Raymond JR, Mukhin YV, Gettys TW, Garnovskaya MN (1999) The recombinant 5-HT1A receptor: G protein coupling and signalling pathways. Br J Pharmacol 127:1751–1764

    Article  CAS  Google Scholar 

  78. Renner U, Glebov K, Lang T, Papusheva E, Balakrishnan S, Keller B, Richter DW, Jahn R, Ponimaskin E (2007) Localization of the mouse 5-hydroxytryptamine1A receptor in lipid microdomains depends on its palmitoylation and is involved in receptor-mediated signaling. Mol Pharmacol 72:502–513

    Article  CAS  Google Scholar 

  79. Riethmüller J, Riehle A, Grassmé H, Gulbins E (2006) Membrane rafts in host-pathogen interactions. Biochim Biophys Acta 1758:2139–2147

    Article  Google Scholar 

  80. Rosenbaum DM, Rasmussen SGF, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    Article  CAS  Google Scholar 

  81. Runnels LW, Scarlata SF (1995) Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys J 69:1569–1583

    Article  CAS  Google Scholar 

  82. Sahu S, Saxena R, Chattopadhyay A (2012) Cholesterol depletion modulates detergent resistant fraction of human serotonin1A receptors. Mol Membr Biol (in press)

    Google Scholar 

  83. Saxena R, Chattopadhyay A (2011) Membrane organization and dynamics of the serotonin1A receptor in live cells. J Neurochem 116:726–733

    Article  CAS  Google Scholar 

  84. Schlyer S, Horuk R (2006) I want a new drug: G-protein-coupled receptors in drug development. Drug Discov Today 11:481–493

    Article  CAS  Google Scholar 

  85. Schroeder RJ, Ahmed SN, Zhu Y, London E, Brown DA (1998) Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J Biol Chem 273:1150–1157

    Article  CAS  Google Scholar 

  86. Shanti K, Chattopadhyay A (2000) A new paradigm in the functioning of G-protein-coupled receptors. Curr Sci 79:402–403

    CAS  Google Scholar 

  87. Shrivastava S, Pucadyil TJ, Paila YD, Ganguly S, Chattopadhyay A (2010) Chronic cholesterol depletion using statin impairs the function and dynamics of human serotonin1A receptors. Biochemistry 49:5426–5435

    Article  CAS  Google Scholar 

  88. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  Google Scholar 

  89. Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202

    Article  CAS  Google Scholar 

  90. Singh P, Chattopadhyay A (2012) Removal of sphingomyelin headgroup inhibits the ligand binding function of hippocampal serotonin1A receptors. Biochem Biophys Res Commun 419:321–325

    Article  CAS  Google Scholar 

  91. Terrillon S, Bouvier M (2004) Roles of G-protein-coupled receptor dimerization. EMBO Rep 5:30–34

    Article  CAS  Google Scholar 

  92. Tramier M, Piolot T, Gautier I, Mignotte V, Coppey J, Kemnitz K, Durieux C, Coppey-Moisan M (2003) Homo-FRET versus hetero-FRET to probe homodimers in living cells. Methods Enzymol 360:580–597

    Article  CAS  Google Scholar 

  93. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  Google Scholar 

  94. Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394:798–801

    Article  CAS  Google Scholar 

  95. Wawrezinieck L, Rigneault H, Marguet D, Lenne P-F (2005) Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J 89:4029–4042

    Article  CAS  Google Scholar 

  96. Woehler A, Wlodarczyk J, Ponimaskin EG (2009) Specific oligomerization of the 5-HT1A receptor in the plasma membrane. Glycoconj J 26:749–756

    Article  CAS  Google Scholar 

  97. Yeow EKL, Clayton AHA (2007) Enumeration of oligomerization states of membrane proteins in living cells by homo-FRET spectroscopy and microscopy: theory and application. Biophys J 92:3098–3104

    Article  CAS  Google Scholar 

  98. Zhang Y, DeVries ME, Skolnick J (2006) Structure modeling of all identified G protein-coupled receptors in the human genome. PLoS Comput Biol 2:88–99

    Article  CAS  Google Scholar 

  99. Zhou FC, Patel TD, Swartz D, Xu Y, Kelley MR (1999) Production and characterization of an anti-serotonin 1A receptor antibody which detects functional 5-HT1A binding sites. Brain Res Mol Brain Res 69:186–201

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work in A.C.’s laboratory was supported by the Council of Scientific and Industrial Research and Department of Science and Technology, Govt. of India. We thank Sourav Ganguly for help in making Fig. 2. A.C. is an adjunct professor at the Special Centre for Molecular Medicine of Jawaharlal Nehru University (New Delhi, India) and Indian Institute of Science Education and Research (Mohali, India) and an honorary professor of the Jawaharlal Nehru Centre for Advanced Scientific Research (Bangalore, India). A.C. gratefully acknowledges J.C. Bose Fellowship (Department of Science and Technology, Govt. of India). Some of the work described in this article was carried out by former members of A.C.’s research group whose contributions are gratefully acknowledged. We thank members of our laboratory for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jafurulla, M., Chattopadhyay, A. (2012). Application of Quantitative Fluorescence Microscopic Approaches to Monitor Organization and Dynamics of the Serotonin1A Receptor. In: Mély, Y., Duportail, G. (eds) Fluorescent Methods to Study Biological Membranes. Springer Series on Fluorescence, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2012_58

Download citation

Publish with us

Policies and ethics