Skip to main content

Quantitative Fluorescence Studies of Intracellular Sterol Transport and Distribution

  • Chapter
  • First Online:
Fluorescent Methods to Study Biological Membranes

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 13))

Abstract

Unraveling the pathways of intracellular cholesterol transport is of great importance for biomedicine, since disturbed cholesterol trafficking is involved in many metabolic diseases. Most fluorescent probes for cholesterol, however, have physico-chemical properties deviating from the natural sterol. Intrinsically fluorescent sterols like dehydroergosterol (DHE) and the related cholestatrienol (CTL) have great potential for analysis of sterol trafficking due to their close resemblance of ergosterol and cholesterol, respectively. Excitation and emission of both sterols are in the ultraviolet (UV), which, together with high bleaching propensity and low brightness, make fluorescence imaging of DHE and CTL challenging. Here, we present an overview of how UV-sensitive wide field (UV-WF) and multiphoton (MP) microscopy can be applied to image both sterols in living cells and tissues. In addition, we show, for the first time, how applying advanced image denoising can dramatically enhance the signal-to-noise ratio in MP image sequences of DHE. This allowed us to track DHE-containing vesicles and surface protrusions in cells over prolonged time. We also discuss the properties of BODIPY-tagged cholesterol (BChol) compared to DHE and cholesterol and present an overview of fluorescence imaging techniques for analyzing cellular sterol dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ariola FS, Li Z, Cornejo C, Bittman R, Heikal AA (2009) Membrane fluidity and lipid order in ternary giant unilamellar vesicles using a new bodipy-cholesterol derivative. Biophys J 96:2696–2708

    CAS  Google Scholar 

  2. Arthur JR, Heinecke KA, Seyfried TN (2011) Filipin recognizes both GM1 and cholesterol in GM1 gangliosidosis mouse brain. J Lipid Res 52:1345–1351

    CAS  Google Scholar 

  3. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16:1055–1069

    CAS  Google Scholar 

  4. Baumgart T, Hunt G, Farkas ER, Webb WW, Feigenson GW (2007) Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. Biochim Biophys Acta 1768:2182–2194

    CAS  Google Scholar 

  5. Beattie ME, Veatch SL, Stottrup BL, Keller SL (2005) Sterol structure determines miscibility versus melting transitions in lipid vesicles. Biophys J 89:1760–1768

    CAS  Google Scholar 

  6. Beaudouin J, Mora-Bermúdez F, Klee T, Daigle N, Ellenberg J (2006) Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins. Biophys J 90:1878–1894

    CAS  Google Scholar 

  7. Beh CT, McMaster CR, Kozminski KG, Menon AK (2012) A detour for yeast oxysterol-binding proteins. J Biol Chem 287:11481–11488

    CAS  Google Scholar 

  8. Behnke O, Tranum-Jensen J, van Deurs B (1984) Filipin as a cholesterol probe. I. Morphology of filipin-cholesterol interaction in lipid model systems. Eur J Cell Biol 35:189–199

    CAS  Google Scholar 

  9. Behnke O, Tranum-Jensen J, van Deurs B (1984) Filipin as a cholesterol probe. II. Filipin-cholesterol interaction in red blood cell membranes. Eur J Cell Biol 35:200–215

    CAS  Google Scholar 

  10. Bergy ME, Eble TE (1968) The filipin complex. Biochemistry 7:653–659

    CAS  Google Scholar 

  11. Bittman R (1978) Sterol-polyene antibiotic complexation: probe of membrane structure. Lipids 13:686–691

    CAS  Google Scholar 

  12. Bittman R, Chen WC, Blau L (1974) Stopped-flow kinetic and equilibrium studies of filipin III binding to sterols. Biochemistry 13:1374–1379

    CAS  Google Scholar 

  13. Blau L, Bittman R (1978) Cholesterol distribution between the two halves of the lipid bilayer of human erythrocyte ghost membranes. J Biol Chem 253:8366–8388

    CAS  Google Scholar 

  14. Borroni V, Barrantes FJ (2011) Cholesterol modulates the rate and mechanism of acetylcholine receptor internalization. J Biol Chem 286:17122–17132

    CAS  Google Scholar 

  15. Braga J, Desterro JM, Carmo-Fonseca M (2004) Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes. Mol Biol Cell 15:4749–4760

    CAS  Google Scholar 

  16. Brandt S (1999) Datenanalyse. Spektrum Verlag, Heidelberg, Berlin

    Google Scholar 

  17. Bridgman PC, Nakajima Y (1983) Distribution of filipin-sterol complexes on cultured muscle cells: cell-substratum contact areas associated with acetylcholine clusters. J Cell Biol 96:363–372

    CAS  Google Scholar 

  18. Brown AC, Towles KB, Wrenn SP (2007) Measuring raft size as a function of membrane composition in PC-based systems: Part 1–binary systems. Langmuir 23:11180–11187

    CAS  Google Scholar 

  19. Burger K, Gimpl G, Fahrenholz F (2000) Regulation of receptor function by cholesterol. Cell Mol Life Sci 57:1577–1592

    CAS  Google Scholar 

  20. Castanho MA, Coutinho A, Prieto MJ (1992) Absorption and fluorescence spectra of polyene antibiotics in the presence of cholesterol. J Biol Chem 267:204–209

    CAS  Google Scholar 

  21. Cedar O, Ryhage R (1964) The structure of filipin. Acta Chem Scand 18:558–560

    Google Scholar 

  22. Cheruku SR, Xu Z, Dutia R, Lobel P, Storch J (2006) Mechanism of cholesterol transfer from the Niemann-Pick type C2 protein to model membranes supports a role in lysosomal cholesterol transport. J Biol Chem 281:31594–31604

    CAS  Google Scholar 

  23. Coxey RA, Pentchev PG, Campbell G, Blanchette-Mackie EJ (1993) Differential accumulation of cholesterol in Golgi compartments of normal and Niemann-Pick type C fibroblasts incubated with LDL: a cytochemical freeze-fracture study. J Lipid Res 34:1165–1176

    CAS  Google Scholar 

  24. de Saint-Jean M, Delfosse V, Douguet D, Chicanne G, Payrastre B, Bourguet W, Antonny B, Drin G (2011) Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J Cell Biol 195:965–978

    Google Scholar 

  25. Du H, Duanmu M, Witte D, Grabowski GA (1998) Targeted disruption of the mouse lysosomal acid lipase gene: long-term survival with massive cholesteryl ester and triglyceride storage. Hum Mol Genet 7:1347–1354

    CAS  Google Scholar 

  26. Elson EL (2011) Fluorescence correlation spectroscopy: past, present, future. Biophys J 101:2855–2870

    CAS  Google Scholar 

  27. Ewers H, Smith AE, Sbalzarini IF, Lilie H, Koumoutsakos P, Helenius A (2005) Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. Proc Natl Acad Sci USA 102:15110–15115

    CAS  Google Scholar 

  28. Frolov A, Petrescu A, Atshaves BP, So PT, Gratton E, Serrero G, Schroeder F (2000) High density lipoprotein-mediated cholesterol uptake and targeting to lipid droplets in intact L-cell fibroblasts. J Biol Chem 275:12769–12780

    CAS  Google Scholar 

  29. Garvik O, Benediktsen P, Ipsen JH, Simonsen AC, Wüstner D (2008) The fluorescent cholesterol analog dehydroergosterol induces liquid-ordered domains in model membranes. Chem Phys Lipids 159:114–118

    Google Scholar 

  30. Garvik O, Benediktson P, Simonsen AC, Ipsen JH, Wüstner D (2009) The fluorescent cholesterol analog dehydroergosterol induces liquid-ordered domains in model membranes. Chem Physics Lipids 159:114–118

    CAS  Google Scholar 

  31. Ge L, Qi W, Miao HH, Cao J, Qu YX, Li BL, Song BL (2008) The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab 7:508–519

    CAS  Google Scholar 

  32. Georgiev AG, Sullivan DP, Kersting MC, Dittman JS, Beh CT, Menon AK (2011) Osh proteins regulate membrane sterol organization but are not required for sterol movement between the ER and PM. Traffic 12:1341–1355

    CAS  Google Scholar 

  33. Gerstbrein B, Stamatas G, Kollias N, Driscoll M (2005) In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell 4:127–137

    CAS  Google Scholar 

  34. Ghosh RN, Mallet WG, Soe TT, McGraw TE, Maxfield FR (1998) An endocytosed TGN38 chimeric protein is delivered to the TGN after trafficking through the endocytic recycling compartment in CHO cells. J Cell Biol 142:923–936

    CAS  Google Scholar 

  35. Gimpl G (2010) Cholesterol-protein interaction: methods and cholesterol reporter molecules. Subcell Biochem 51:1–45

    CAS  Google Scholar 

  36. Gimpl G, Gehrig-Burger K (2007) Cholesterol reporter molecules. Biosci Rep 27:335–358

    CAS  Google Scholar 

  37. Gonzalez RC, Woods RE (2002) Digital Image Processing. Chapter 11. Prentice Hall, New Jersey, pp 675–683

    Google Scholar 

  38. Greenspan P, Mayer EP, Fowler SD (1985) Nile Red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    CAS  Google Scholar 

  39. Grosheva I, Haka AS, Qin C, Pierini LM, Maxfield FR (2009) Aggregated LDL in contact with macrophages induces local increases in free cholesterol levels that regulate local actin polymerization. Arterioscler Thromb Vasc Biol 29:1615–1621

    CAS  Google Scholar 

  40. Haka AS, Grosheva I, Chiang E, Buxbaum AR, Baird BA, Pierini LM, Maxfield FR (2009) Macrophages create an acidic extracellular hydrolytic compartment to digest aggregated lipoproteins. Mol Biol Cell 20:4932–4940

    CAS  Google Scholar 

  41. Hao M, Bogan JS (2009) Cholesterol regulates glucose-stimulated insulin secretion through phosphatidylinositol 4,5-bisphosphate. J Biol Chem 284:29489–29498

    CAS  Google Scholar 

  42. Hao M, Head WS, Gunawardana SC, Hasty AH, Piston DW (2007) Direct effect of cholesterol on insulin secretion: a novel mechanism for pancreatic beta-cell dysfunction. Diabetes 56:2328–2338

    CAS  Google Scholar 

  43. Hao M, Lin SX, Karylowski OJ, Wüstner D, McGraw TE, Maxfield FR (2002) Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle. J Biol Chem 277:609–617

    CAS  Google Scholar 

  44. Hao M, Mukherjee S, Maxfield FR (2001) Cholesterol depletion induces large scale domain segregation in living cell membranes. Proc Natl Acad Sci USA 98:13072–13077

    CAS  Google Scholar 

  45. Hartwig Petersen N, Færgeman NJ, Yu L, Wüstner D (2008) Kinetic imaging of NPC1L1 and sterol trafficking between plasma membrane and recycling endosomes in hepatoma cells. J Lipid Res 49:2023–2037

    Google Scholar 

  46. Hebert B, Costantino S, Wiseman PW (2005) Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys J 88:3601–3614

    CAS  Google Scholar 

  47. Henriksen J, Rowat AC, Brief E, Hsueh YW, Thewalt JL, Zuckermann MJ, Ipsen JH (2006) Universal behavior of membranes with sterols. Biophys J 90:1639–1649

    CAS  Google Scholar 

  48. Hoekstra M, Van Eck M, Korporaal SJ (2012) Genetic studies in mice and humans reveal new physiological roles for the high-density lipoprotein receptor scavenger receptor class B type I. Curr Opin Lipidol 23:127–132

    CAS  Google Scholar 

  49. Hofsass C, Lindahl E, Edholm O (2003) Molecular dynamics simulations of phospholipid bilayers with cholesterol. Biophys J 84:2192–2206

    CAS  Google Scholar 

  50. Horvat S, McWhir J, Rozman D (2011) Defects in cholesterol synthesis genes in mouse and in humans: lessons for drug development and safer treatments. Drug Metab Rev 43:69–90

    CAS  Google Scholar 

  51. IV Humphries WH, Fay NC, Payne CK (2010) Intracellular degradation of low-density lipoprotein probed with two-color fluorescence microscopy. Integr Biol (Camb) 2:536–544

    CAS  Google Scholar 

  52. Hölttä-Vuori M, Uronen RL, Repakova J, Salonen E, Vattulainen I, Panula P, Li Z, Bittman R, Ikonen E (2008) BODIPY-cholesterol: a new tool to visualize sterol trafficking in living cells and organisms. Traffic 9:1839–1849

    Google Scholar 

  53. Ipsen JH, Karlstrom G, Mouritsen OG, Wennerstrom H, Zuckermann MJ (1987) Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta 905:162–172

    CAS  Google Scholar 

  54. Jensen MO, Mouritsen OG (2004) Lipids do influence protein function-the hydrophobic matching hypothesis revisited. Biochim Biophys Acta 1666:205–226

    CAS  Google Scholar 

  55. Jeon JH, Tejedor V, Burov S, Barkai E, Selhuber-Unkel C, Berg-Sørensen K, Oddershede L, Metzler R (2011) In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys Rev Lett 106:048103

    Google Scholar 

  56. Jia L, Betters JL, Yu L (2011) Niemann-Pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu Rev Physiol 73:239–259

    CAS  Google Scholar 

  57. John K, Kubelt J, Muller P, Wustner D, Herrmann A (2002) Rapid transbilayer movement of the fluorescent sterol dehydroergosterol in lipid membranes. Biophys J 83:1525–1534

    CAS  Google Scholar 

  58. Kolin DL, Wiseman PW (2007) Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem Biophys 49:141–164

    CAS  Google Scholar 

  59. Kolovou G, Anagnostopoulou K, Mikhailidis DP, Cokkinos DV (2008) Apolipoprotein E knockout models. Curr Pharn Des 14:338–351

    CAS  Google Scholar 

  60. Lagane B, Mazères S, Le Grimellec C, Cézanne L, Lopez A (2002) Lateral distribution of cholesterol in membranes probed by means of a pyrene-labelled cholesterol: effects of acyl chain unsaturation. Biophys Chem 95:7–22

    CAS  Google Scholar 

  61. Le Guyader L, Le Roux C, Mazères S, Gaspard-Iloughmane H, Gornitzka H, Millot C, Mingotaud C, Lopez A (2007) Changes of the membrane lipid organization characterized by means of a new cholesterol-pyrene probe. Biophys J 93:4462–4473

    Google Scholar 

  62. Le Lay S, Ferre P, Dugail I (2004) Adipocyte cholesterol balance in obesity. Biochem Soc Trans 32:103–106

    Google Scholar 

  63. Lindahl E, Edholm O (2000) Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations. J Chem Phys 113:3882–3893

    CAS  Google Scholar 

  64. Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol (suppl 7):S7–14

    Google Scholar 

  65. Listenberger LL, Brown DA (2007) Fluorescent detection of lipid droplets and associated proteins. Curr Protoc Cell Biol 24:Unit 24.2

    Google Scholar 

  66. Liu JP, Tang Y, Zhou S, Toh BH, McLean C, Li H (2010) Cholesterol involvement in the pathogenesis of neurodegenerative diseases. Mol Cell Neurosci 43:33–42

    CAS  Google Scholar 

  67. Liu R, Lu P, Chu JW, Sharom FJ (2009) Characterization of fluorescent sterol binding to purified human NPC1. J Biol Chem 284:1840–1852

    CAS  Google Scholar 

  68. Loura LMS, Fedorov A, Prieto M (2001) Exclusion of a cholesterol analog from the cholesterol-rich phase in model membranes. Biochim Biophys Acta 1511:236–243

    CAS  Google Scholar 

  69. Luisier F, Vonesch C, Blu T, Unser M (2009) Fast Haar-wavelet denoising of multidimensional fluorescence microscopy data. Proceedings of the sixth IEEE international symposium on biomedical imaging: From nano to macro, Boston MA, USA, June 28–July 1, pp. 310–313

    Google Scholar 

  70. Luisier F, Vonesch C, Blu T, Unser M (2010) Fast interscale wavelet denoising of Poisson-corrupted images. Signal Processing 90:415–427

    Google Scholar 

  71. Lund FW, Lomholt MA, Solanko LM, Wüstner D (2012) Two-photon time-lapse microscopy of BODIPY-cholesterol reveals anomalous sterol diffusion in Chinese hamster ovary cells (Submitted for publication)

    Google Scholar 

  72. Masters BR, So PTC (2008) Classical and quantum theory of one-photon and multiphoton fluorescence spectroscopy. In: Masters BR, So PTC (eds) Handbook of biomedical nonlinear optical microscopy. Oxford University Press, Oxford, pp 91–152

    Google Scholar 

  73. Matyash V, Geier C, Henske A, Mukherjee S, Hirsh D, Thiele C, Grant B, Maxfield FR, Kurzchalia TV (2001) Distribution and transport of cholesterol in Caenorhabditis elegans. Mol Biol Cell 12:1725–1736

    CAS  Google Scholar 

  74. Maxfield FR, Menon AK (2006) Intracellular sterol transport and distribution. Curr Opin Cell Biol 18:379–385

    CAS  Google Scholar 

  75. Maxfield FR, Wüstner D (2002) Intracellular cholesterol transport. J Clin Invest 110:891–898

    CAS  Google Scholar 

  76. Maxfield FR, Wüstner D (2012) Analysis of cholesterol trafficking with fluorescent probes. Methods Cell Biol 108:367–393

    CAS  Google Scholar 

  77. McGookey DJ, Anderson RW (1983) Morphological characterization of the cholesteryl ester cycle in cultured mouse macrophage foam cells. J Cell Biol 97:1156–1168

    CAS  Google Scholar 

  78. McIntosh AL, Atshaves BP, Huang H, Gallegos AM, Kier AB, Schroeder F (2008) Fluorescence techniques using dehydroergosterol to study cholesterol trafficking. Lipids 43:1185–1208

    CAS  Google Scholar 

  79. McIntosh AL, Gallegos AM, Atshaves BP, Storey SM, Kannoju D, Schroeder F (2003) Fluorescence and multiphoton imaging resolve unique structural forms of sterol in membranes of living cells. J Biol Chem 278:6384–6403

    CAS  Google Scholar 

  80. Mesmin B, Maxfield FR (2009) Intracellular sterol dynamics. Biochim Biophys Acta 1791:636–645

    CAS  Google Scholar 

  81. Mesmin B, Pipalia NH, Lund FW, Ramlall TF, Sokolov A, Eliezer D, Maxfield FR (2011) STARD4 abundance regulates sterol transport and sensing. Mol Biol Cell 22:4004–4015

    CAS  Google Scholar 

  82. Miao L, Nielsen M, Thewalt J, Ipsen JH, Bloom M, Zuckermann M, Mouritsen OG (2002) From lanosterol to cholesterol: structural evolution and differential effects on lipid bilayers. Biophys J 82:1429–1444

    CAS  Google Scholar 

  83. Mondal M, Mesmin B, Mukherjee S, Maxfield FR (2009) Sterols are mainly in the cytoplasmic leaflet of the plasma membrane and the endocytic recycling compartment in CHO cells. Mol Biol Cell 20:581–588

    CAS  Google Scholar 

  84. Mouritsen OG, Zuckermann MJ (2004) What's so special about cholesterol? Lipids 39:1101–1113

    CAS  Google Scholar 

  85. Mueller V, Ringemann C, Honigmann A, Schwarzmann G, Medda R, Leutenegger M, Polyakova S, Belov VN, Hell SW, Eggeling C (2011) STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys J 101:1651–1660

    CAS  Google Scholar 

  86. Mukherjee S, Zha X, Tabas I, Maxfield FR (1998) Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys J 75:1915–1925

    CAS  Google Scholar 

  87. Müller F, Mazza D, Stasevich TJ, McNally JG (2010) FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? Curr Opin Cell Biol 22:403–411

    Google Scholar 

  88. Müller P, Herrmann A (2002) Rapid transbilayer movement of spin-labeled steroids in human erythrocytes and in liposomes. Biophys J 82:1418–1428

    Google Scholar 

  89. Nagao T, Qin C, Grosheva I, Maxfield FR, Pierini LM (2007) Elevated cholesterol levels in the plasma membranes of macrophages inhibit migration by disrupting RhoA regulation. Arterioscler Thromb Vasc Biol 27:1596–1602

    CAS  Google Scholar 

  90. Neufeld EB, Cooney AM, Pitha J, Dawidowicz EA, Dwyer NK, Pentchev PG, Blanchette-Mackie EJ (1996) Intracellular trafficking of cholesterol monitored with a cyclodextrin. J Biol Chem 271:21604–21613

    CAS  Google Scholar 

  91. Norman AW, Demel RA, de Kruyff B, van Deenen LLM (1972) Studies on the biological properties of polyene antibiotics. J Biol Chem 247:1918–1929

    CAS  Google Scholar 

  92. Petersen NO, Höddelius PL, Wiseman PW, Seger O, Magnusson KE (1993) Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys J 65:1135–1146

    CAS  Google Scholar 

  93. Pipalia NH, Hao M, Mukherjee S, Maxfield FR (2006) Sterol, protein, and lipid trafficking in Chinese hamster ovary cells with Niemann-Pick type C1 defect. Traffic 8:130–141

    Google Scholar 

  94. Pipalia NH, Huang A, Ralph H, Rujoi M, Maxfield FR (2006) Automated microscopy screening for compounds that partially revert cholesterol accumulation in Niemann-Pick C cells. J Lipid Res 47:284–301

    CAS  Google Scholar 

  95. Prattes S, Horl G, Hammer A, Blaschitz A, Graier WF, Sattler W, Zechner R, Steyrer E (2000) Intracellular distribution and mobilization of unesterified cholesterol in adipocytes: triglyceride droplets are surrounded by cholesterol-rich ER-like surface layer structures. J Cell Sci 113:2977–2989

    CAS  Google Scholar 

  96. Puri V, Watanabe R, Singh RD, Dominguez M, Brown JC, Wheatley CL, Marks DL, Pagano RE (2001) Clathrin-dependent and -independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J Cell Biol 154:535–547

    CAS  Google Scholar 

  97. Qian H, Sheetz MP, Elson EL (1991) Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J 60:910–921

    CAS  Google Scholar 

  98. Qin C, Nagao T, Grosheva I, Maxfield FR, Pierini LM (2006) Elevated plasma membrane cholesterol content alters macrophage signaling and function. Arterioscler Thromb Vasc Biol 26:372–378

    CAS  Google Scholar 

  99. Rodal SK, Skretting G, Garred O, Vilhardt F, van Deurs B, Sandvig K (1999) Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 10:961–974

    CAS  Google Scholar 

  100. Rychnovsky SD, Richardson TI (1995) Relative and absolute configuration of filipin III. Angew Chem Int Ed Engl 34:1227–1230

    CAS  Google Scholar 

  101. Sage D, Neumann FR, Hediger F, Gasser SM, Unser M (2005) Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans Image Processing 14:1372–1383

    Google Scholar 

  102. Saxton MJ (1983) Lateral diffusion in an archipelago. Biophys J 64:1766–1780

    Google Scholar 

  103. Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399

    CAS  Google Scholar 

  104. Sbalzarini IF, Hayer A, Helenius A, Koumoutsakos P (2006) Simulations of (an)isotropic diffusion on curved biological surfaces. Biophys J 90:878–885

    CAS  Google Scholar 

  105. Sbalzarini IF, Koumoutsakos P (2005) Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151:182–195

    CAS  Google Scholar 

  106. Scheidt HA, Müller P, Herrmann A, Huster D (2003) The potential of fluorescent and spin-labeled steroid analogs to mimic natural cholesterol. J Biol Chem 278:45563–45569

    CAS  Google Scholar 

  107. Schrader M, Bahlmann K, Hell SW (1997) Three-photon-excitation microscopy: theory, experiment, and applications. Optik 104:116–124

    CAS  Google Scholar 

  108. Schroeder F, Barenholz Y, Gratton E, Thompson TE (1987) A fluorescence study of dehydroergosterol in phosphatidylcholine bilayer vesicles. Biochemistry 26:2441–2448

    CAS  Google Scholar 

  109. Schroeder F, Holland JF, Bieber LL (1971) Fluorometric evidence for the binding of cholesterol to the filipin complex. J Antibiot (Tokyo) 24:846–849

    CAS  Google Scholar 

  110. Schroeder F, Nemecz G, Gratton E, Barenholz Y, Thompson TE (1988) Fluorescence properties of cholestatrienol in phosphatidylcholine bilayer vesicles. Biophys Chem 32:57–72

    CAS  Google Scholar 

  111. Schütz GJ, Schindler H, Schmidt T (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73:1073–1080

    Google Scholar 

  112. Severs NJ, Simons HL (1983) Failure of filipin to detect cholesterol-rich domains in smooth muscle plasma membrane. Nature 303:637–638

    CAS  Google Scholar 

  113. Shaw JE, Epand RF, Epand RM, Li Z, Bittman R, Yip CM (2006) Correlated fluorescence-atomic force microscopy of membrane domains: structure of fluorescence probes determines lipid localization. Biophys J 90:2170–2178

    CAS  Google Scholar 

  114. Shrivastava S, Haldar S, Gimpl G, Chattopadhyay A (2009) Orientation and dynamics of a novel fluorescent cholesterol analogue in membranes of varying phase. J Phys Chem B 113:4475–4481

    CAS  Google Scholar 

  115. Steck TL, Ye J, Lange Y (2002) Probing red cell membrane cholesterol movement with cyclodextrin. Biophys J 83:2118–2125

    CAS  Google Scholar 

  116. Steer CJ, Bisher M, Blumenthal R, Steven AC (1984) Detection of membrane cholesterol by filipin in isolated rat liver coated vesicles is dependent upon removal of the clathrin coat. J Cell Biol 99:315–319

    CAS  Google Scholar 

  117. Subtil A, Gaidarov I, Kobylarz K, Lampson MA, Keen JH, McGraw TE (1999) Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Nat Acad Sci U S A 96:6775–6780

    CAS  Google Scholar 

  118. Swedlow JR, Platani M (2002) Live cell imaging using wide-field microscopy and deconvolution. Cell Struct Funct 27:335–341

    Google Scholar 

  119. Tabas I, Rosoff WJ, Boykow GC (1988) Acyl coenzyme A:cholesterol acyl transferase in macrophages utilizes a cellular pool of cholesterol oxidase-accessible cholesterol as substrate. J Biol Chem 263:1266–1272

    CAS  Google Scholar 

  120. Tolić-Nørrelykke IM, Munteanu EL, Thon G, Oddershede L, Berg-Sørensen K (2004) Anomalous diffusion in living yeast cells. Phys Rev Lett 93:078102

    Google Scholar 

  121. Veatch SL, Keller SL (2002) Organization in lipid membranes containing cholesterol. Phys Rev Lett 89:268101

    Google Scholar 

  122. Veatch SL, Polozov IV, Gawrisch K, Keller SL (2004) Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophys J 86:2910–2922

    CAS  Google Scholar 

  123. Vicidomini G, Moneron G, Han KY, Westphal V, Ta H, Reuss M, Engelhardt J, Eggeling C, Hell SW (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8:571–573

    CAS  Google Scholar 

  124. Vist MR, Davis JH (1990) Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2 H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry 29:451–464

    CAS  Google Scholar 

  125. Volpon L, Lancelin J-M (2000) Solution NMR structures of the polyene macrolide antibiotic filipin III. FEBS Lett 478:137–140

    CAS  Google Scholar 

  126. Weiss M (2004) Challenges and artefacts in quantitative photobleaching experiments. Traffic 5:662–671

    CAS  Google Scholar 

  127. Whitfield GB, Brock TD, Ammann A, Gottlieb D, Carter HF (1955) Filipin, an antifungal antibiotic: isolation and properties. J Am Chem Soc 77:4799–4801

    CAS  Google Scholar 

  128. Wiseman PW, Petersen NO (1999) Image correlation spectroscopy: II. Optimization for ultrasensitive detection of preexisting platelet-derived growth factor-beta receptor oligomers on intact cells. Biophys J 76:963–977

    CAS  Google Scholar 

  129. Wiseman PW, Squier JA, Ellisman MH, Wilson KR (2000) Two-photon image correlation spectroscopy and image cross-correlation spectroscopy. J Microsc 200:14–25

    CAS  Google Scholar 

  130. Wolf DE (2007) Fundamentals of fluorescence and fluorescence microscopy. Methods Cell Biol 81:64–91

    Google Scholar 

  131. Wrenn SP, Kaler EW, Lee SP (1999) A fluorescence energy transfer study of lecithin-cholesterol vesicles in the presence of phospholipase C. J Lipid Res 40:1483–1494

    CAS  Google Scholar 

  132. Wüstner D (2007) Fluorescent sterols as tools in membrane biophysics and cell biology. Chem Phys Lipids 146:1–25

    Google Scholar 

  133. Wüstner D (2007) Plasma membrane sterol distribution resembles the surface topography of living cells. Mol Biol Cell 18:211–228

    Google Scholar 

  134. Wüstner D (2008) Free-cholesterol loading does not trigger phase separation of the fluorescent sterol dehydroergosterol in the plasma membrane of macrophages. Chem Phys Lipids 154:129–136

    Google Scholar 

  135. Wüstner D (2009) Intracellular cholesterol transport. In: Ehnholm C (ed) Cellular lipid metabolism. Springer Press, Heidelberg, Germany, pp 157–190

    Google Scholar 

  136. Wüstner D (2012) Following intracellular cholesterol transport by linear and non-linear optical microscopy of intrinsically fluorescent sterols. Curr Pharm Biotechnol 13:303–318

    Google Scholar 

  137. Wüstner D, Brewer JR, Bagatolli LA, Sage D (2011) Potential of ultraviolet widefield imaging and multiphoton microscopy for analysis of dehydroergosterol in cellular membranes. Microsc Res Tech 74:92–108

    Google Scholar 

  138. Wüstner D, Færgeman NJ (2008) Chromatic aberration correction and deconvolution for UV sensitive imaging of fluorescent sterols in cytoplasmic lipid droplets. Cytometry A 73:727–744

    Google Scholar 

  139. Wüstner D, Færgeman NJ (2008) Spatiotemporal analysis of endocytosis and membrane distribution of fluorescent sterols in living cells. Histochem Cell Biol 130:891–908

    Google Scholar 

  140. Wüstner D, Herrmann A, Hao M, Maxfield FR (2002) Rapid nonvesicular transport of sterol between the plasma membrane domains of polarized hepatic cells. J Biol Chem 277:30325–30336

    Google Scholar 

  141. Wüstner D, Landt Larsen A, Færgeman NJ, Brewer JR, Sage D (2010) Selective visualization of fluorescent sterols in Caenorhabditis elegans by bleach-rate based image segmentation. Traffic 11:440–454

    Google Scholar 

  142. Wüstner D, Mondal M, Huang A, Maxfield FR (2004) Different transport routes for high density lipoprotein and its associated free sterol in polarized hepatic cells. J Lipid Res 45:427–437

    Google Scholar 

  143. Wüstner D, Mondal M, Tabas I, Maxfield FR (2005) Direct observation of rapid internalization and intracellular transport of sterol by macrophage foam cells. Traffic 6:396–412

    Google Scholar 

  144. Wüstner D, Sage D (2010) Multicolor bleach-rate imaging enlightens in vivo sterol transport. Commun Integr Biol 3:1–4

    Google Scholar 

  145. Wüstner D, Solanko LM, Sokol E, Lund FW, Garvik O, Li Z, Bittman R, Korte T, Herrmann A (2011) Quantitative assessment of sterol traffic in living cells by dual labeling with dehydroergosterol and BODIPY-cholesterol. Chem Phys Lipids 164:221–235

    Google Scholar 

  146. Xu C, Zipfel WR (2008) Multiphoton excitation of fluorescent probes. In: Masters BR, So PTC (eds) Handbook of biomedical nonlinear optical microscopy. Oxford University Press, Oxford, pp 311–333

    Google Scholar 

  147. Xu XX, Tabas I (1991) Lipoproteins activate acyl-coenzyme A:cholesterol acyltransferase in macrophages only after cellular cholesterol pools are expanded to a critical threshold level. J Biol Chem 266:17040–17048

    CAS  Google Scholar 

  148. Xu Z, Farver W, Kodukula S, Storch J (2008) Regulation of sterol transport between membranes and NPC2. Biochemistry 47:11134–11143

    CAS  Google Scholar 

  149. Yu L, Bharadwaj S, Brown JM, Ma Y, Du W, Davis MA, Michaely P, Liu P, Willingham MC, Rudel LL (2006) Cholesterol-regulated translocation of NPC1L1 to the cell surface facilitates free cholesterol uptake. J Biol Chem 281:6616–6624

    CAS  Google Scholar 

  150. Zhang W, McIntosh AL, Xu H, Wu D, Gruninger T, Atshaves B, Liu JC, Schroeder F (2005) Structural analysis of sterol distributions in the plasma membrane of living cells. Biochemistry 44:2864–2884

    CAS  Google Scholar 

  151. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377

    CAS  Google Scholar 

  152. Zuckermann MJ, Ipsen JH, Miao L, Mouritsen OG, Nielsen M, Polson J, Thewalt J, Vattulainen I, Zhu H (2004) Modeling lipid-sterol bilayers: applications to structural evolution, lateral diffusion, and rafts. Methods Enzymol 383:198–229

    CAS  Google Scholar 

Download references

Acknowledgements

DW acknowledges funding by grants of the Lundbeck Foundation, the Novo Nordisk Foundation, the Danish Research Agency Forskningsstyrelsen, Forskningsrådet for Natur og Univers (FNU) and the Danish Research Agency Forskningsstyrelsen, Forskningsrådet for Sundhed og sygdom (FSS). We are grateful to Florian Luisier (Statistics and Information Sciences Laboratory, Harvard University, Cambridge, USA) and Daniel Sage (Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland) for their helpful comments on image denoising using the PURE-LET approach and on an early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Wüstner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wüstner, D., Lund, F.W., Solanko, L.M. (2012). Quantitative Fluorescence Studies of Intracellular Sterol Transport and Distribution. In: Mély, Y., Duportail, G. (eds) Fluorescent Methods to Study Biological Membranes. Springer Series on Fluorescence, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2012_57

Download citation

Publish with us

Policies and ethics