Skip to main content

New Fluorescent Strategies Shine Light on the Evolving Concept of GPCR Oligomerization

  • Chapter
  • First Online:
  • 1780 Accesses

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 13))

Abstract

GPCR oligomerization has been a matter of intense research these last years. FRET and BRET methods have paved the way to a generalized concept of potential GPCR oligomerization in artificial systems (transfected cell lines). More recently, the use of fluorescent ligands compatible with time-resolved FRET studies has opened the possibility of GPCR oligomerization study in their native context and brought evidence of their existence. Furthermore, recent applications of original fluorescence techniques are unveiling new information on the dynamics that govern these complexes and are changing the way we see GPCR oligomeric structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACP:

Acyl carrier protein

BiFC:

Bimolecular fluorescence complementation

BRET:

Bioluminescence resonance energy transfer

CFP:

Cyan fluorescent protein

co-IP:

Co-immunoprecipitation

FCS:

Fluorescence correlation spectroscopy

FP:

Fluorescent protein

FRET:

Fluorescence resonance energy transfer

GABA:

γ-Aminobutyric acid

GFP:

Green fluorescent protein

GPCR:

G-protein-coupled receptor

hAGT:

O6-Alkylguanine-DNA alkyltransferase

HTS:

High-throughput screening

pbFRET:

Photobleaching FRET

RET:

Resonance energy transfer

Rluc:

Renilla luciferase

RTK:

Receptor tyrosine kinase

smFRET:

Single-molecule FRET

SPT:

Single-particle tracking

TIRF:

Total internal reflection fluorescence

TR-FRET:

Time-resolved FRET

YFP:

Yellow fluorescent protein

References

  1. Marianayagam NJ, Sunde M, Matthews JM (2004) The power of two: protein dimerization in biology. Trends Biochem Sci 29(11):618–625

    CAS  Google Scholar 

  2. MacKinnon R (2003) Potassium channels. FEBS Lett 555(1):62–65

    CAS  Google Scholar 

  3. Li E, Hristova K (2010) Receptor tyrosine kinase transmembrane domains: function, dimer structure and dimerization energetics. Cell Adh Migr 4(2):249–254

    Google Scholar 

  4. Mattera R, Pitts BJ, Entman ML, Birnbaumer L (1985) Guanine nucleotide regulation of a mammalian myocardial muscarinic receptor system. Evidence for homo- and heterotropic cooperativity in ligand binding analyzed by computer-assisted curve fitting J Biol Chem 260(12):7410–7421

    CAS  Google Scholar 

  5. Wreggett KA, Wells JW (1995) Cooperativity manifest in the binding properties of purified cardiac muscarinic receptors. J Biol Chem 270(38):22488–22499

    CAS  Google Scholar 

  6. Armstrong D, Strange PG (2001) Dopamine D2 receptor dimer formation: evidence from ligand binding. J Biol Chem 276(25):22621–22629

    CAS  Google Scholar 

  7. Rios CD, Jordan BA, Gomes I, Devi LA (2001) G-protein-coupled receptor dimerization: modulation of receptor function. Pharmacol Ther 92(2–3):71–87

    CAS  Google Scholar 

  8. Albizu L, Balestre MN, Breton C, Pin JP, Manning M, Mouillac B, Barberis C, Durroux T (2006) Probing the existence of G protein-coupled receptor dimers by positive and negative ligand-dependent cooperative binding. Mol Pharmacol 70(5):1783–1791

    CAS  Google Scholar 

  9. Springael JY, Le Minh PN, Urizar E, Costagliola S, Vassart G, Parmentier M (2006) Allosteric modulation of binding properties between units of chemokine receptor homo- and hetero-oligomers. Mol Pharmacol 69(5):1652–1661

    CAS  Google Scholar 

  10. Birdsall NJ (2010) Class A GPCR heterodimers: evidence from binding studies. Trends Pharmacol Sci 31(11):499–508

    CAS  Google Scholar 

  11. Pin JP, Galvez T, Prezeau L (2003) Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther 98(3):325–354

    CAS  Google Scholar 

  12. Chabre M, Deterre P, Antonny B (2009) The apparent cooperativity of some GPCRs does not necessarily imply dimerization. Trends Pharmacol Sci 30(4):182–187

    CAS  Google Scholar 

  13. Skrabanek L, Murcia M, Bouvier M, Devi L, George SR, Lohse MJ, Milligan G, Neubig R, Palczewski K, Parmentier M, Pin JP, Vriend G, Javitch JA, Campagne F, Filizola M (2007) Requirements and ontology for a G protein-coupled receptor oligomerization knowledge base. BMC Bioinformatics 8:177

    Google Scholar 

  14. Khelashvili G, Dorff K, Shan J, Camacho-Artacho M, Skrabanek L, Vroling B, Bouvier M, Devi LA, George SR, Javitch JA, Lohse MJ, Milligan G, Neubig RR, Palczewski K, Parmentier M, Pin JP, Vriend G, Campagne F, Filizola M (2010) GPCR-OKB: the G protein coupled receptor oligomer knowledge base. Bioinformatics 26(14):1804–1805

    CAS  Google Scholar 

  15. Galvez T, Parmentier ML, Joly C, Malitschek B, Kaupmann K, Kuhn R, Bittiger H, Froestl W, Bettler B, Pin JP (1999) Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J Biol Chem 274(19):13362–13369

    CAS  Google Scholar 

  16. Galvez T, Prezeau L, Milioti G, Franek M, Joly C, Froestl W, Bettler B, Bertrand HO, Blahos J, Pin JP (2000) Mapping the agonist-binding site of GABAB type 1 subunit sheds light on the activation process of GABAB receptors. J Biol Chem 275(52):41166–41174

    CAS  Google Scholar 

  17. Duthey B, Caudron S, Perroy J, Bettler B, Fagni L, Pin JP, Prezeau L (2002) A single subunit (GB2) is required for G-protein activation by the heterodimeric GABA(B) receptor. J Biol Chem 277(5):3236–3241

    CAS  Google Scholar 

  18. Durroux T (2005) Principles: a model for the allosteric interactions between ligand binding sites within a dimeric GPCR. Trends Pharmacol Sci 26(7):376–384

    CAS  Google Scholar 

  19. Han Y, Moreira IS, Urizar E, Weinstein H, Javitch JA (2009) Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat Chem Biol 5(9):688–695

    CAS  Google Scholar 

  20. Rovira X, Pin JP, Giraldo J (2010) The asymmetric/symmetric activation of GPCR dimers as a possible mechanistic rationale for multiple signalling pathways. Trends Pharmacol Sci 31(1):15–21

    CAS  Google Scholar 

  21. White JF, Grodnitzky J, Louis JM, Trinh LB, Shiloach J, Gutierrez J, Northup JK, Grisshammer R (2007) Dimerization of the class A G protein-coupled neurotensin receptor NTS1 alters G protein interaction. Proc Natl Acad Sci USA 104(29):12199–12204

    CAS  Google Scholar 

  22. Arcemisbehere L, Sen T, Boudier L, Balestre MN, Gaibelet G, Detouillon E, Orcel H, Mendre C, Rahmeh R, Granier S, Vives C, Fieschi F, Damian M, Durroux T, Baneres JL, Mouillac B (2010) Leukotriene BLT2 receptor monomers activate the G(i2) GTP-binding protein more efficiently than dimers. J Biol Chem 285(9):6337–6347

    CAS  Google Scholar 

  23. Comps-Agrar L, Kniazeff J, Norskov-Lauritsen L, Maurel D, Gassmann M, Gregor N, Prezeau L, Bettler B, Durroux T, Trinquet E, Pin JP (2011) The oligomeric state sets GABA(B) receptor signalling efficacy. EMBO J 30(12):2336–2349

    CAS  Google Scholar 

  24. Pellissier LP, Barthet G, Gaven F, Cassier E, Trinquet E, Pin J-P, Marin P, Dumuis A, Bockaert J, Baneres J-L, Claeysen S (2011) G protein activation by serotonin type 4 receptor dimers: evidence that turning on two protomers is more efficient. J Biol Chem 286(12):9985–9997

    CAS  Google Scholar 

  25. Fribourg M, Moreno JL, Holloway T, Provasi D, Baki L, Mahajan R, Park G, Adney SK, Hatcher C, Eltit JM, Ruta JD, Albizu L, Li Z, Umali A, Shim J, Fabiato A, MacKerell AD Jr, Brezina V, Sealfon SC, Filizola M, Gonzalez-Maeso J, Logothetis DE (2011) Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 147(5):1011–1023

    CAS  Google Scholar 

  26. Forster T (1946) Energiewanderung Und Fluoreszenz. Naturwissenschaften 33(6):166–175

    CAS  Google Scholar 

  27. Clegg RM (1995) Fluorescence resonance energy transfer. Curr Opin Biotechnol 6(1):103–110

    CAS  Google Scholar 

  28. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  29. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    CAS  Google Scholar 

  30. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2):229–233

    CAS  Google Scholar 

  31. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17(10):969–973

    CAS  Google Scholar 

  32. Wiedenmann J, Oswald F, Nienhaus GU (2009) Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges. IUBMB Life 61(11):1029–1042

    CAS  Google Scholar 

  33. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588):1873–1877

    CAS  Google Scholar 

  34. Chudakov DM, Verkhusha VV, Staroverov DB, Souslova EA, Lukyanov S, Lukyanov KA (2004) Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol 22(11):1435–1439

    CAS  Google Scholar 

  35. Matsuda T, Miyawaki A, Nagai T (2008) Direct measurement of protein dynamics inside cells using a rationally designed photoconvertible protein. Nat Methods 5(4):339–345

    CAS  Google Scholar 

  36. Maurel D, Banala S, Laroche T, Johnsson K (2010) Photoactivatable and photoconvertible fluorescent probes for protein labeling. ACS Chem Biol 5(5):507–516

    CAS  Google Scholar 

  37. Miyawaki A (2011) Proteins on the move: insights gained from fluorescent protein technologies. Nat Rev Mol Cell Biol 12(10):656–668

    CAS  Google Scholar 

  38. Vilardaga JP, Bunemann M, Krasel C, Castro M, Lohse MJ (2003) Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nat Biotechnol 21(7):807–812

    CAS  Google Scholar 

  39. Valentin G, Verheggen C, Piolot T, Neel H, Coppey-Moisan M, Bertrand E (2005) Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments. Nat Methods 2(11):801

    CAS  Google Scholar 

  40. Miyawaki A, Tsien RY (2000) Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol 327:472–500

    CAS  Google Scholar 

  41. Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296(5569):913–916

    CAS  Google Scholar 

  42. Gaibelet G, Planchenault T, Mazeres S, Dumas F, Arenzana-Seisdedos F, Lopez A, Lagane B, Bachelerie F (2006) CD4 and CCR5 constitutively interact at the plasma membrane of living cells: a confocal fluorescence resonance energy transfer-based approach. J Biol Chem 281(49):37921–37929

    CAS  Google Scholar 

  43. Hollins B, Kuravi S, Digby GJ, Lambert NA (2009) The c-terminus of GRK3 indicates rapid dissociation of G protein heterotrimers. Cell Signal 21(6):1015–1021

    CAS  Google Scholar 

  44. Berney C, Danuser G (2003) FRET or no FRET: a quantitative comparison. Biophys J 84(6):3992–4010

    CAS  Google Scholar 

  45. Sun Y, Periasamy A (2010) Additional correction for energy transfer efficiency calculation in filter-based Forster resonance energy transfer microscopy for more accurate results. J Biomed Opt 15(2):020513

    Google Scholar 

  46. Zheng J, Trudeau MC, Zagotta WN (2002) Rod cyclic nucleotide-gated channels have a stoichiometry of three CNGA1 subunits and one CNGB1 subunit. Neuron 36(5):891–896

    CAS  Google Scholar 

  47. Vogel SS, Thaler C, Koushik SV (2006) Fanciful FRET. Sci STKE 2006 (331):re2 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2006/331/re2

  48. Dinant C, van Royen ME, Vermeulen W, Houtsmuller AB (2008) Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. J Microsc 231(Pt 1):97–104

    CAS  Google Scholar 

  49. Ayoub MA, Pfleger KD (2010) Recent advances in bioluminescence resonance energy transfer technologies to study GPCR heteromerization. Curr Opin Pharmacol 10(1):44–52

    CAS  Google Scholar 

  50. Achour L, Kamal M, Jockers R, Marullo S (2011) Using Quantitative BRET to Assess G Protein-Coupled Receptor Homo- and Heterodimerization. Methods Mol Biol 756:183–200

    CAS  Google Scholar 

  51. Pfleger KD, Eidne KA (2006) Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3(3):165–174

    CAS  Google Scholar 

  52. Pfleger KD, Seeber RM, Eidne KA (2006) Bioluminescence resonance energy transfer (BRET) for the real-time detection of protein-protein interactions. Nat Protoc 1(1):337–345

    CAS  Google Scholar 

  53. Kocan M, See HB, Seeber RM, Eidne KA, Pfleger KD (2008) Demonstration of improvements to the bioluminescence resonance energy transfer (BRET) technology for the monitoring of G protein-coupled receptors in live cells. J Biomol Screen 13(9):888–898

    CAS  Google Scholar 

  54. Kocan M, Pfleger KD (2011) Study of GPCR-protein interactions by BRET. Methods Mol Biol 746:357–371

    CAS  Google Scholar 

  55. Breton B, Sauvageau E, Zhou J, Bonin H, Le Gouill C, Bouvier M (2010) Multiplexing of multicolor bioluminescence resonance energy transfer. Biophys J 99(12):4037–4046

    CAS  Google Scholar 

  56. De A, Ray P, Loening AM, Gambhir SS (2009) BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein-protein interactions from single live cells and living animals. FASEB J 23(8):2702–2709

    CAS  Google Scholar 

  57. Ayoub MA, Couturier C, Lucas-Meunier E, Angers S, Fossier P, Bouvier M, Jockers R (2002) Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J Biol Chem 277(24):21522–21528

    CAS  Google Scholar 

  58. Terrillon S, Durroux T, Mouillac B, Breit A, Ayoub MA, Taulan M, Jockers R, Barberis C, Bouvier M (2003) Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. Mol Endocrinol 17(4):677–691

    CAS  Google Scholar 

  59. Angers S, Salahpour A, Bouvier M (2002) Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 42:409–435

    CAS  Google Scholar 

  60. James JR, Oliveira MI, Carmo AM, Iaboni A, Davis SJ (2006) A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Methods 3(12):1001–1006

    CAS  Google Scholar 

  61. Bouvier M, Heveker N, Jockers R, Marullo S, Milligan G (2007) BRET analysis of GPCR oligomerization: newer does not mean better. Nat Methods 4(1):3–4; author reply 4

    Google Scholar 

  62. Hu CD, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9(4):789–798

    CAS  Google Scholar 

  63. Hu CD, Grinberg AV, Kerppola TK (2006) Visualization of protein interactions in living cells using bimolecular fluorescence complementation (BiFC) analysis. Curr Protoc Cell Biol Chapter 21:Unit 21. 23

    Google Scholar 

  64. Kerppola TK (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc 1(3):1278–1286

    Google Scholar 

  65. Kerppola TK (2006) Complementary methods for studies of protein interactions in living cells. Nat Methods 3(12):969–971

    CAS  Google Scholar 

  66. Kerppola TK (2006) Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol 7(6):449–456

    CAS  Google Scholar 

  67. Vidi PA, Ejendal KF, Przybyla JA, Watts VJ (2011) Fluorescent protein complementation assays: new tools to study G protein-coupled receptor oligomerization and GPCR-mediated signaling. Mol Cell Endocrinol 331(2):185–193

    CAS  Google Scholar 

  68. Vidi PA, Chen J, Irudayaraj JM, Watts VJ (2008) Adenosine A(2A) receptors assemble into higher-order oligomers at the plasma membrane. FEBS Lett 582(29):3985–3990

    CAS  Google Scholar 

  69. Guo W, Urizar E, Kralikova M, Mobarec JC, Shi L, Filizola M, Javitch JA (2008) Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J 27(17):2293–2304

    CAS  Google Scholar 

  70. Urizar E, Yano H, Kolster R, Gales C, Lambert N, Javitch JA (2011) CODA-RET reveals functional selectivity as a result of GPCR heteromerization. Nat Chem Biol 7(9):624–630

    CAS  Google Scholar 

  71. Heroux M, Hogue M, Lemieux S, Bouvier M (2007) Functional calcitonin gene-related peptide receptors are formed by the asymmetric assembly of a calcitonin receptor-like receptor homo-oligomer and a monomer of receptor activity-modifying protein-1. J Biol Chem 282(43):31610–31620

    CAS  Google Scholar 

  72. Pietraszewska-Bogiel A, Gadella TW (2011) FRET microscopy: from principle to routine technology in cell biology. J Microsc 241(2):111–118

    CAS  Google Scholar 

  73. Tadross MR, Park SA, Veeramani B, Yue DT (2009) Robust approaches to quantitative ratiometric FRET imaging of CFP/YFP fluorophores under confocal microscopy. J Microsc 233(1):192–204

    CAS  Google Scholar 

  74. Coulon V, Audet M, Homburger V, Bockaert J, Fagni L, Bouvier M, Perroy J (2008) Subcellular imaging of dynamic protein interactions by bioluminescence resonance energy transfer. Biophys J 94(3):1001–1009

    CAS  Google Scholar 

  75. Perroy J (2010) Subcellular dynamic imaging of protein-protein interactions in live cells by bioluminescence resonance energy transfer. Methods Mol Biol 591:325–333

    CAS  Google Scholar 

  76. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3(12):906–918

    CAS  Google Scholar 

  77. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775

    CAS  Google Scholar 

  78. Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317(5845):1749–1753

    CAS  Google Scholar 

  79. Tzeng YK, Faklaris O, Chang BM, Kuo Y, Hsu JH, Chang HC (2011) Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angewandte Chemie 50(10):2262–2265

    CAS  Google Scholar 

  80. Mathis G (1995) Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clin Chem 41(9):1391–1397

    CAS  Google Scholar 

  81. Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7(9):730–734

    CAS  Google Scholar 

  82. Selvin PR (2002) Principles and biophysical applications of lanthanide-based probes. Annu Rev Biophys Biomol Struct 31:275–302

    CAS  Google Scholar 

  83. Pin JP, Maurel D, Comps-Agrar L, Monnier C, Rives ML, Doumazane E, Rondard P, Durroux T, Prezeau L, Trinquet E (2010) Time-resolved FRET approaches to study GPCR complexes. In: Siehler S, Milligan G (eds) G protein-coupled receptors: structure signaling and physiology. Cambridge University Press, Cambridge, pp 67–89

    Google Scholar 

  84. Pradidarcheep W, Labruyere WT, Dabhoiwala NF, Lamers WH (2008) Lack of specificity of commercially available antisera: better specifications needed. J Histochem Cytochem 56(12):1099–1111

    CAS  Google Scholar 

  85. Beermann S, Seifert R, Neumann D (2012) Commercially available antibodies against human and murine histamine H(4)-receptor lack specificity. Naunyn Schmiedebergs Arch Pharmacol 385(2):125–135

    CAS  Google Scholar 

  86. Bodei S, Arrighi N, Spano P, Sigala S (2009) Should we be cautious on the use of commercially available antibodies to dopamine receptors? Naunyn Schmiedebergs Arch Pharmacol 379(4):413–415

    CAS  Google Scholar 

  87. Jensen BC, Swigart PM, Simpson PC (2009) Ten commercial antibodies for alpha-1-adrenergic receptor subtypes are nonspecific. Naunyn Schmiedebergs Arch Pharmacol 379(4):409–412

    CAS  Google Scholar 

  88. Michel MC, Wieland T, Tsujimoto G (2009) How reliable are G-protein-coupled receptor antibodies? Naunyn Schmiedebergs Arch Pharmacol 379(4):385–388

    CAS  Google Scholar 

  89. Pradidarcheep W, Stallen J, Labruyere WT, Dabhoiwala NF, Michel MC, Lamers WH (2009) Lack of specificity of commercially available antisera against muscarinergic and adrenergic receptors. Naunyn Schmiedebergs Arch Pharmacol 379(4):397–402

    CAS  Google Scholar 

  90. Rocheville M, Lange DC, Kumar U, Sasi R, Patel RC, Patel YC (2000) Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J Biol Chem 275(11):7862–7869

    CAS  Google Scholar 

  91. McVey M, Ramsay D, Kellett E, Rees S, Wilson S, Pope AJ, Milligan G (2001) Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta-opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J Biol Chem 276(17):14092–14099

    CAS  Google Scholar 

  92. Maurel D, Kniazeff J, Mathis G, Trinquet E, Pin JP, Ansanay H (2004) Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. Anal Biochem 329(2):253–262

    CAS  Google Scholar 

  93. Urizar E, Montanelli L, Loy T, Bonomi M, Swillens S, Gales C, Bouvier M, Smits G, Vassart G, Costagliola S (2005) Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. EMBO J 24(11):1954–1964

    CAS  Google Scholar 

  94. O'Hare HM, Johnsson K, Gautier A (2007) Chemical probes shed light on protein function. Curr Opin Struct Biol 17(4):488–494

    Google Scholar 

  95. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21(1):86–89

    CAS  Google Scholar 

  96. George N, Pick H, Vogel H, Johnsson N, Johnsson K (2004) Specific labeling of cell surface proteins with chemically diverse compounds. J Am Chem Soc 126(29):8896–8897

    CAS  Google Scholar 

  97. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281(5374):269–272

    CAS  Google Scholar 

  98. Gautier A, Juillerat A, Heinis C, Correa IR Jr, Kindermann M, Beaufils F, Johnsson K (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15(2):128–136

    CAS  Google Scholar 

  99. Los GV, Wood K (2007) The HaloTag: a novel technology for cell imaging and protein analysis. Methods Mol Biol 356:195–208

    CAS  Google Scholar 

  100. Maurel D, Comps-Agrar L, Brock C, Rives ML, Bourrier E, Ayoub MA, Bazin H, Tinel N, Durroux T, Prezeau L, Trinquet E, Pin JP (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5(6):561–567

    CAS  Google Scholar 

  101. Comps-Agrar L, Kniazeff J, Brock C, Trinquet E, Pin JP (2012) Stability of GABAB receptor oligomers revealed by dual TR-FRET and drug-induced cell surface targeting. FASEB J 26(8):3430–3439

    Google Scholar 

  102. Doumazane E, Scholler P, Zwier JM, Eric T, Rondard P, Pin JP (2011) A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J 25(1):66–77

    CAS  Google Scholar 

  103. Monnier C, Tu H, Bourrier E, Vol C, Lamarque L, Trinquet E, Pin JP, Rondard P (2011) Trans-activation between 7TM domains: implication in heterodimeric GABA(B) receptor activation. EMBO J 30(1):32–42

    CAS  Google Scholar 

  104. Hoffmann C, Gaietta G, Bunemann M, Adams SR, Oberdorff-Maass S, Behr B, Vilardaga JP, Tsien RY, Ellisman MH, Lohse MJ (2005) A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nat Methods 2(3):171–176

    CAS  Google Scholar 

  105. Ambrosio M, Lohse MJ (2010) Microscopy: GPCR dimers moving closer. Nat Chem Biol 6(8):570–571

    CAS  Google Scholar 

  106. Scherrer G, Tryoen-Toth P, Filliol D, Matifas A, Laustriat D, Cao YQ, Basbaum AI, Dierich A, Vonesh JL, Gaveriaux-Ruff C, Kieffer BL (2006) Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proc Natl Acad Sci USA 103(25):9691–9696

    CAS  Google Scholar 

  107. Zwier JM, Roux T, Cottet M, Durroux T, Douzon S, Bdioui S, Gregor N, Bourrier E, Oueslati N, Nicolas L, Tinel N, Boisseau C, Yverneau P, Charrier-Savournin F, Fink M, Trinquet E (2010) A fluorescent ligand-binding alternative using Tag-lite(R) technology. J Biomol Screen 15(10):1248–1259

    CAS  Google Scholar 

  108. Briddon SJ, Kellam B, Hill SJ (2011) Design and use of fluorescent ligands to study ligand-receptor interactions in single living cells. Methods Mol Biol 746:211–236

    CAS  Google Scholar 

  109. Cottet M, Faklaris O, Zwier JM, Trinquet E, Pin J-P, Durroux T (2011) Original fluorescent ligand-based assays open new perspectives in G-protein coupled receptor drug screening. Pharmaceuticals 4(1):202–214

    CAS  Google Scholar 

  110. Lodowski DT, Palczewski K (2011) Chapter 1 The impact of G protein-coupled receptor (GPCR) structures on understanding signal transduction. In: Giraldo J, Pin JP (eds) G protein-coupled receptors: from structure to function. The Royal Society of Chemistry, Cambridge, UK, pp 1–27

    Google Scholar 

  111. Durroux T, Peter M, Turcatti G, Chollet A, Balestre MN, Barberis C, Seyer R (1999) Fluorescent pseudo-peptide linear vasopressin antagonists: design, synthesis, and applications. J Med Chem 42(7):1312–1319

    CAS  Google Scholar 

  112. Terrillon S, Cheng LL, Stoev S, Mouillac B, Barberis C, Manning M, Durroux T (2002) Synthesis and characterization of fluorescent antagonists and agonists for human oxytocin and vasopressin V(1)(a) receptors. J Med Chem 45(12):2579–2588

    CAS  Google Scholar 

  113. Mouillac B, Manning M, Durroux T (2008) Fluorescent agonists and antagonists for vasopressin/oxytocin G protein-coupled receptors: usefulness in ligand screening assays and receptor studies. Mini Rev Med Chem 8(10):996–1005

    CAS  Google Scholar 

  114. Kuder K, Kiec-Kononowicz K (2008) Fluorescent GPCR ligands as new tools in pharmacology. Curr Med Chem 15(21):2132–2143

    CAS  Google Scholar 

  115. Daly CJ, Ross RA, Whyte J, Henstridge CM, Irving AJ, McGrath JC (2010) Fluorescent ligand binding reveals heterogeneous distribution of adrenoceptors and 'cannabinoid-like' receptors in small arteries. Br J Pharmacol 159(4):787–796

    CAS  Google Scholar 

  116. Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R, Brabet I, Roux T, Bazin H, Bourrier E, Lamarque L, Breton C, Rives ML, Newman A, Javitch J, Trinquet E, Manning M, Pin JP, Mouillac B, Durroux T (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 6(8):587–594

    CAS  Google Scholar 

  117. Franco R, Casado V, Mallol J, Ferre S, Fuxe K, Cortes A, Ciruela F, Lluis C, Canela EI (2005) Dimer-based model for heptaspanning membrane receptors. Trends Biochem Sci 30(7):360–366

    CAS  Google Scholar 

  118. Kern A, Albarran-Zeckler R, Walsh HE, Smith RG (2012) Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron 73(2):317–332

    CAS  Google Scholar 

  119. Rajapakse HE, Gahlaut N, Mohandessi S, Yu D, Turner JR, Miller LW (2010) Time-resolved luminescence resonance energy transfer imaging of protein-protein interactions in living cells. Proc Natl Acad Sci USA 107(31):13582–13587

    CAS  Google Scholar 

  120. Rajapakse HE, Miller LW (2012) Time-resolved luminescence resonance energy transfer imaging of protein-protein interactions in living cells. Methods Enzymol 505:329–345

    CAS  Google Scholar 

  121. Grecco HE, Verveer PJ (2011) FRET in cell biology: still shining in the age of super-resolution? Chemphyschem: Eur J Chem Physics Phys Chem 12(3):484–490

    CAS  Google Scholar 

  122. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190(2):165–175

    CAS  Google Scholar 

  123. Josan JS, Morse DL, Xu L, Trissal M, Baggett B, Davis P, Vagner J, Gillies RJ, Hruby VJ (2009) Solid-phase synthetic strategy and bioevaluation of a labeled delta-opioid receptor ligand Dmt-Tic-Lys for in vivo imaging. Org Lett 11(12):2479–2482

    CAS  Google Scholar 

  124. Dorsch S, Klotz KN, Engelhardt S, Lohse MJ, Bunemann M (2009) Analysis of receptor oligomerization by FRAP microscopy. Nat Methods 6(3):225–230

    CAS  Google Scholar 

  125. Rybin VO, Xu X, Lisanti MP, Steinberg SF (2000) Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem 275(52):41447–41457

    CAS  Google Scholar 

  126. Fallahi-Sichani M, Linderman JJ (2009) Lipid raft-mediated regulation of G-protein coupled receptor signaling by ligands which influence receptor dimerization: a computational study. PLoS ONE 4(8):e6604

    Google Scholar 

  127. Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JE, Lazareno S, Molloy JE, Birdsall NJ (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci USA 107(6):2693–2698

    CAS  Google Scholar 

  128. Kasai RS, Suzuki KGN, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, Kusumi A (2011) Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol 192(3):463–480

    CAS  Google Scholar 

  129. Lambert NA (2010) GPCR dimers fall apart. Sci Signal 3 (115):pe12

    Google Scholar 

  130. Mortensen KI, Churchman LS, Spudich JA, Flyvbjerg H (2010) Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 7(5):377–381

    CAS  Google Scholar 

  131. Jones SA, Shim SH, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8(6):499–508

    CAS  Google Scholar 

  132. Hess ST, Gould TJ, Gudheti MV, Maas SA, Mills KD, Zimmerberg J (2007) Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc Natl Acad Sci U S A 104(44):17370–17375

    CAS  Google Scholar 

  133. Pellett PA, Sun X, Gould TJ, Rothman JE, Xu MQ, Correa IR Jr, Bewersdorf J (2011) Two-color STED microscopy in living cells. Biomed Opt Express 2(8):2364–2371

    Google Scholar 

  134. Mayor S, Rao M (2004) Rafts: scale-dependent, active lipid organization at the cell surface. Traffic 5(4):231–240

    CAS  Google Scholar 

  135. Zhao Y, Terry D, Shi L, Weinstein H, Blanchard SC, Javitch JA (2010) Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature 465(7295):188–193

    CAS  Google Scholar 

  136. Sakon JJ, Weninger KR (2010) Detecting the conformation of individual proteins in live cells. Nat Methods 7(3):203–205

    CAS  Google Scholar 

  137. Ilien B, Glasser N, Clamme JP, Didier P, Piemont E, Chinnappan R, Daval SB, Galzi JL, Mely Y (2009) Pirenzepine promotes the dimerization of muscarinic M1 receptors through a three-step binding process. J Biol Chem 284(29):19533–19543

    CAS  Google Scholar 

  138. Zeng FY, Wess J (1999) Identification and molecular characterization of m3 muscarinic receptor dimers. J Biol Chem 274(27):19487–19497

    CAS  Google Scholar 

  139. Goin JC, Nathanson NM (2006) Quantitative analysis of muscarinic acetylcholine receptor homo- and heterodimerization in live cells: regulation of receptor down-regulation by heterodimerization. J Biol Chem 281(9):5416–5425

    CAS  Google Scholar 

  140. Grant M, Collier B, Kumar U (2004) Agonist-dependent dissociation of human somatostatin receptor 2 dimers: a role in receptor trafficking. J Biol Chem 279(35):36179–36183

    CAS  Google Scholar 

  141. Ross JA, Digman MA, Wang L, Gratton E, Albanesi JP, Jameson DM (2011) Oligomerization state of dynamin 2 in cell membranes using TIRF and number and brightness analysis. Biophys J 100(3):L15–17

    CAS  Google Scholar 

  142. Digman MA, Dalal R, Horwitz AF, Gratton E (2008) Mapping the number of molecules and brightness in the laser scanning microscope. Biophys J 94(6):2320–2332

    CAS  Google Scholar 

  143. Sergeev M, Costantino S, Wiseman PW (2006) Measurement of monomer-oligomer distributions via fluorescence moment image analysis. Biophys J 91(10):3884–3896

    CAS  Google Scholar 

  144. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330(6007):1066–1071

    CAS  Google Scholar 

  145. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485(7398):321–326

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Cottet or Thierry Durroux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cottet, M., Faklaris, O., Trinquet, E., Pin, JP., Durroux, T. (2012). New Fluorescent Strategies Shine Light on the Evolving Concept of GPCR Oligomerization. In: Mély, Y., Duportail, G. (eds) Fluorescent Methods to Study Biological Membranes. Springer Series on Fluorescence, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2012_54

Download citation

Publish with us

Policies and ethics