Skip to main content

Imaging Molecular Order in Cell Membranes by Polarization-Resolved Fluorescence Microscopy

  • Chapter
  • First Online:
Fluorescent Methods to Study Biological Membranes

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 13))

Abstract

The use of light polarization properties in the analysis of fluorescence images has driven a large amount of research toward the measurement of orientational behavior of molecules in cells, in particular in their membranes. This field has been recently revisited to enlarge the possibilities of polarization-resolved fluorescence microscopy. We show that this technique allows retrieving a wealth of information on the constraints that hinder rotational mobility of lipid probes and proteins in membranes, bringing thus new insights on inter-proteins and lipid-protein interactions, on membrane morphology at the sub-diffraction length scale and on local membrane physical properties such as viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheresh D, Leng J, Klemke R (1999) Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells. J Cell Biol 146:1107–1116

    Article  CAS  Google Scholar 

  2. Anantharam A, Onoa B et al (2010) Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM. J Cell Biol 188:415–428

    Article  CAS  Google Scholar 

  3. Benninger RKP, Vanherberghen B, Onfelt B (2009) Live cell linear dichroism im-aging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses. Biophys J 96:L13–L15

    Article  CAS  Google Scholar 

  4. Fooksman DR, Grönvall GK et al (2006) Clustering class I MHC modulates sensitivity of T cell recognition. J Immunol 176:6673–6680

    CAS  Google Scholar 

  5. Pentcheva T, Edidin M (2001) Clustering of peptide-loaded MHC class I molecules for endoplasmic reticulum export imaged by fluorescence resonance energy transfer. J Immunol 166:6625–6632

    CAS  Google Scholar 

  6. Borejdo J, Burlacu S (1993) Measuring orientation of actin filaments within a cell: orientation of actin in intestinal microvilli. Biophys J 65:300–309

    Article  CAS  Google Scholar 

  7. Brack AS, Brandmeier BD et al (2004) Bifunctional rhodamine probes of Myosin regulatory light chain orientation in relaxed skeletal muscle fibers. Biophys J 86:2329–2341

    Article  CAS  Google Scholar 

  8. Vrabioiu AM, Mitchison TJ (2006) Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature 443:466–469

    Article  CAS  Google Scholar 

  9. Weber G (1953) Rotational Brownian motion and polarization of the fluorescence of solutions. Adv Protein Chem 8:415–459

    Article  CAS  Google Scholar 

  10. Cantor CR, Schimmel PR (1980) Biophysical chemistry, part 2: techniques for the study of biological structure and function. W. H. Freeman, San Francisco

    Google Scholar 

  11. Chan FTS, Kaminski CF, Kaminski Schierle GS (2011) HomoFRET fluorescence anisotropy imaging as a tool to study molecular self-assembly in live cells. Chem Phys Chem 12:500–509

    Article  CAS  Google Scholar 

  12. Schlessinger J, Koppel DE et al (1976) Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc Natl Acad Sci USA 73:2409–2413

    Article  CAS  Google Scholar 

  13. Schwille P, Haupts U et al (1999) Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J 77:2251–2265

    Article  CAS  Google Scholar 

  14. Schütz GJ, Kada G et al (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19:892–901

    Article  Google Scholar 

  15. Oida T, Sako Y, Kusumi A (1993) Fluorescence lifetime imaging microscopy (flimscopy). Methodology development and application to studies of endosome fusion in single cells. Biophys J 64:676–685

    Article  CAS  Google Scholar 

  16. Manders EEM, Verbeek FJ, Aten JA (1993) Measurement of co-localisation of objects in dual-colour confocal images. J Microsc 169:375–382

    Article  Google Scholar 

  17. Gould TJ, Gunewardene MS, Gudheti MV, Verkhusha VV, Yin SR, Gosse JA, Hess ST (2008) Nanoscale imaging of molecular positions and anisotropies. Nat Methods 5:1027–1030

    Article  CAS  Google Scholar 

  18. Lazar J, Bondar A, Timr S, Firestein SJ (2011) Two-photon polarization microscopy reveals protein structure and function. Nat Methods 8:684–690

    Article  CAS  Google Scholar 

  19. Kress A, Ferrand P, Rigneault H, Trombik T, He HT, Marguet D, Brasselet S (2011) Probing MHC class I protein and lipid order in cell membranes by fluorescence polarisation-resolved imaging. Biophys J 101:468–476

    Article  CAS  Google Scholar 

  20. Marguet D, Spiliotis ET et al (1999) Lateral diffusion of GFP-tagged H2Ld molecules and of GFP-TAP1 reports on the assembly and retention of these molecules in the endoplasmic reticulum. Immunity 11:231–240

    Article  CAS  Google Scholar 

  21. Rocheleau JV, Edidin M, Piston DW (2003) Intrasequence GFP in class I MHC molecules, a rigid probe for fluorescence anisotropy measurements of the membrane environment. Biophys J 84:4078–4086

    Article  CAS  Google Scholar 

  22. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272

    Article  CAS  Google Scholar 

  23. Spille JH, Zürn A, Hoffmann C, Lohse MJ, Harms GS (2011) Rotational diffusion of the α2a adrenergic receptor revealed by FlAsH labeling in living cells. Biophys J 100:1139–1148

    Article  CAS  Google Scholar 

  24. Axelrod D (1979) Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys J 26:557–573

    Article  CAS  Google Scholar 

  25. Florine-Casteel K (1990) Phospholipid order in gel- and fluid-phase cell-size liposomes measured by digitized video fluorescence polarization microscopy. Biophys J 57:1199–1215

    Article  CAS  Google Scholar 

  26. Benninger RKP, Onfelt B et al (2005) Fluorescence imaging of two-photon linear dichroism: cholesterol depletion disrupts molecular orientation in cell membranes. Biophys J 88:609–622

    Article  CAS  Google Scholar 

  27. Haluska CK, Schröder AP et al (2008) Combining fluorescence life-time and polarization microscopy to discriminate phase separated domains in giant unilamellar vesicles. Biophys J 95:5737–5747

    Article  CAS  Google Scholar 

  28. Brasselet S (2011) Polarization resolved nonlinear microscopy: application to structural molecular and biological imaging. Adv Opt Photonics 3:205–271

    Article  Google Scholar 

  29. Ikonen E (2001) Roles of lipid rafts in membrane transport. Curr Opin Cell Biol 13:470–477

    Article  CAS  Google Scholar 

  30. McConnell HM, Vrljic M (2003) Liquid-liquid immiscibility in membranes. Annu Rev Biophys Biomol 32:469–492. 24

    Google Scholar 

  31. Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388. 26

    Google Scholar 

  32. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  Google Scholar 

  33. Veatch SL, Keller SL (2002) Organization in lipid membranes containing cholesterol. Phys Rev Lett 89:268101

    Article  Google Scholar 

  34. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Springer, New York

    Google Scholar 

  35. Perrin F (1926) La fluorescence des solutions. Polarisation. Vie moyenne des molécules dans l’état excité. J de Phys 7:390–401

    Google Scholar 

  36. Dix JA, Verkman AS (1990) Mapping of fluorescence anisotropy in living cells by ratio imaging. Biophys J 57:231–240

    Article  CAS  Google Scholar 

  37. Bader AN, Hofman EG, Voortman J, van Bergen en Henegouwen PMP, Gerritsen HC (2009) Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution. Biophys J 97:2613–2622

    Article  CAS  Google Scholar 

  38. Foster TH, Pearson BD, Mitra S, Bigelow CE (2005) Fluorescence anisotropy imaging reveals localization of meso-tetrahydroxyphenyl chlorin in the nuclear envelope. Photochem Photobiol 81:1544–1547

    Article  CAS  Google Scholar 

  39. Clegg RM (1996) Fluorescence resonance energy transfer. In: Fluorescence imaging spectroscopy and microscopy, vol 137, 13th edn, Chemical analysis. Wiley, New York

    Google Scholar 

  40. Patterson GH, Piston DW, Barisas BG (2000) Förster distances between green fluorescent protein pairs. Anal Biochem 284:438–440

    Article  CAS  Google Scholar 

  41. Blackman SM, Piston DW, Beth AH (1998) Oligomeric state of human erythrocyte band 3 measured by fluorescence resonance energy homotransfer. Biophys J 75:1117–1130

    Article  CAS  Google Scholar 

  42. Gautier I, Tramier M et al (2001) Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins. Biophys J 80:3000–3008

    Article  CAS  Google Scholar 

  43. Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394:798–801

    Article  CAS  Google Scholar 

  44. Gasecka A, Han T-J et al (2009) Quantitative imaging of molecular order in lipid membranes using two-photon fluorescence polarimetry. Biophys J 97:2854–2862

    Article  CAS  Google Scholar 

  45. Dale RE, Hopkins SC et al (1999) Model-independent analysis of the orientation of fluorescent probes with restricted mobility in muscle fibers. Biophys J 76:1606–1618

    Article  CAS  Google Scholar 

  46. Kinosita K, Kawato S, Ikegami A (1977) A theory of fluorescence polarization decay in membranes. Biophys J 20:289–305

    Article  CAS  Google Scholar 

  47. Blackman SM, Cobb CE et al (1996) The orientation of eosin-5-maleimide on human erythrocyte band 3 measured by fluorescence polarization microscopy. Biophys J 71:194–208

    Article  CAS  Google Scholar 

  48. Mattheyses AL, Kampmann M et al (2010) Fluorescence anisotropy reveals order and disorder of protein domains in the nuclear pore complex. Biophys J 99:1706–1717

    Article  CAS  Google Scholar 

  49. Barda-Saad M, Braiman A et al (2005) Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton. Nat Immunol 6:80–89

    Article  CAS  Google Scholar 

  50. Bunnell SC, Kapoor V et al (2001) Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity 14:315–329

    Article  CAS  Google Scholar 

  51. Edidin M, Kuo SC, Sheetz MP (1991) Lateral movements of membrane glyco-proteins restricted by dynamic cytoplasmic barriers. Science 254:1379–1382

    Article  CAS  Google Scholar 

  52. Edidin M, Zuniga MC, Sheetz MP (1994) Truncation mutants define and locate cytoplasmic barriers to lateral mobility of membrane glycoproteins. Proc Natl Acad Sci USA 91:3378–3382

    Article  CAS  Google Scholar 

  53. Treanor B, Depoil D et al (2010) The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity 32:187–199

    Article  CAS  Google Scholar 

  54. Schauer K, Duong T et al (2010) Probabilistic density maps to study global endomembrane organization. Nat Methods 7:560–566

    Article  CAS  Google Scholar 

  55. Kress A, Wang X, Ranchon H, Ferrand P, Brasselet S (2012) Revealing molecular orientation and order in cell membranes of arbitrary shape (submitted)

    Google Scholar 

  56. Brasselet S, LeFloc’h V, Treussart F, Roch J, Zyss J (2004) In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy. Phys Rev Lett 92:207401

    Article  Google Scholar 

  57. LeFloc’h V (2003) Monitoring of orientation in molecular ensembles by polarization sensitive nonlinear microscopy. J Phys Chem B 107:12403–12410

    Article  Google Scholar 

  58. Schön P, Munhoz F et al (2008) Polarization distortion effects in polarimetric two-photon microscopy. Opt Express 16:20891–20901

    Article  Google Scholar 

  59. Richards B, Wolf E (1959) Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc Roy Soc Lond A 253:358–379

    Article  Google Scholar 

  60. Schön P, Behrndt M, Ait-Belkacem D, Rigneault H, Brasselet S (2010) Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging. Phys Rev A 81:013809

    Article  Google Scholar 

  61. Moyano F, Biasutti MA, Silber JJ, Correa NM (2006) New insights on the behavior of Prodan in homogeneous media and in large unilamellar vesicles. J Phys Chem B 110:11838–11846

    Article  CAS  Google Scholar 

  62. Muller JM, Harryvan DH, Verhagen JCD, van Faassen EE, van Ginkel G (1996) The orientation of the transition dipole moments of TMADPH embedded in a poly(vinyl alcohol) film. Chem Phys 211:413–420

    Article  CAS  Google Scholar 

  63. Baumgart T, Hess ST, Webb WW (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425:821–824

    Article  CAS  Google Scholar 

  64. Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428

    Article  CAS  Google Scholar 

  65. Samsonov AV, Mihalyov I, Cohen FS (2001) Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. Biophys J 81:1486–1500

    Article  CAS  Google Scholar 

  66. Scherfeld D, Kahya N, Schwille P (2003) Lipid dynamics and domain formation in model membranes composed of ternary mixtures of unsaturated and saturated phosphatidylcholines and cholesterol. Biophys J 85:3758–3768

    Article  CAS  Google Scholar 

  67. Bagatolli LA, Gratton E (1999) Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. Biophys J 77:2090–2101

    Article  CAS  Google Scholar 

  68. Baumgart T, Hunt G, Farkas ER, Webb WW, Feigenson GW (2007) Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. Biochim Biophys Acta 1768:2182–2194

    Article  CAS  Google Scholar 

  69. Kim HM, Choo H-J, Jung S-Y, Ko Y-G, Park W-H (2007) A two-photon fluorescent probe for lipid raft imaging: C-laurdan. Chembiochem 8:553–559

    Article  CAS  Google Scholar 

  70. Gidwani A, Holowka D, Baird B (2001) Fluorescence anisotropy measurements of lipid order in plasma membranes and lipid rafts from RBL-2 H3 mast cells. Biochemistry 40:12422–12429

    Article  CAS  Google Scholar 

  71. Farkas ER, Webb WW (2010) Multiphoton polarization imaging of steady-state molecular order in ternary lipid vesicles for the purpose of lipid phase assignment. J Phys Chem B 114:15512–15522

    Article  CAS  Google Scholar 

  72. van Rheenen J, Jalink K (2002) Agonist-induced PIP(2) hydrolysis inhibits cortical actin dynamics: regulation at a global but not at a micrometer scale. Mol Biol Cell 13:3257–3267

    Article  Google Scholar 

  73. Chong PLG, Wong PTT (1993) Interactions of Laurdan with phosphatidylcholine liposomes: a high pressure FTIR study. Biochim Biophys Acta 1149:260–266

    Article  CAS  Google Scholar 

  74. Adler J, Shevchuk AI et al (2010) Plasma membrane topography and interpretation of single-particle tracks. Nat Methods 7:170–171

    Article  CAS  Google Scholar 

  75. Sund SE, Swanson JA, Axelrod D (1999) Cell membrane orientation visualized by polarized total internal reflection fluorescence. Biophys J 77:2266–2283

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Rigneault, P. Réfrégier, and J. Duboisset (Institut Fresnel, Marseille, France), as well as D. Marguet, H.T. He, and T. Trombik (Centre d’Immunologie de Marseille Luminy, Marseille, France), for helpful discussions and advices. The Institut Fresnel work mentioned in this chapter was supported by CNRS, Agence Nationale de la Recherche, the region Provence Alpes Côte d’Azur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Brasselet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brasselet, S., Ferrand, P., Kress, A., Wang, X., Ranchon, H., Gasecka, A. (2012). Imaging Molecular Order in Cell Membranes by Polarization-Resolved Fluorescence Microscopy. In: Mély, Y., Duportail, G. (eds) Fluorescent Methods to Study Biological Membranes. Springer Series on Fluorescence, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2012_51

Download citation

Publish with us

Policies and ethics