Skip to main content

STED-FCS Nanoscopy of Membrane Dynamics

  • Chapter
  • First Online:
Fluorescent Methods to Study Biological Membranes

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 13))

Abstract

Lipid-lipid and lipid-protein interactions such as the formation of lipid nanodomains (often denoted “rafts”) are considered to play a functional part in a whole range of membrane-associated processes. However, their direct and noninvasive observation in living cells is impeded by the resolution limit of >200 nm of a conventional far-field optical microscope. With the superior spatial resolution of STED nanoscopy, it is now possible to directly resolve nanoscale membrane organization. While direct imaging of membrane heterogeneities turns challenging due to their fast dynamics, the combination of STED nanoscopy with tools such as fluorescence correlation spectroscopy (FCS) allows the disclosure of complex nanoscopic dynamical processes. By performing FCS measurements in observation spots tuned to a diameter of down to 30 nm, new details of molecular membrane dynamics have been obtained: Unlike fluorescent phosphoglycerolipids, fluorescent sphingolipids are transiently (~10 ms) trapped on the nanoscale in often cholesterol- and cytoskeleton-assisted molecular complexes. These interactions are distinct for different lipids and may play an important role in cellular functionality. Comparison of the trapping characteristics to the organization of the different fluorescent lipid analogs in model membranes reveals details of the role of lipid “rafts”. This chapter reviews how STED-FCS may shed new light on the role of lipid-protein interactions and nanodomains for membrane bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singer S, Nicolson GL (1972) Science 175:720–731

    Article  CAS  Google Scholar 

  2. Simons K, Ikonen E (1997) Nature 387:569–572

    Article  CAS  Google Scholar 

  3. Jacobson K, Mouritsen OG, Anderson GW (2007) Nat Cell Biol 9:7–14

    Article  CAS  Google Scholar 

  4. Lingwood D, Simons K (2010) Science 327:46–50

    Article  CAS  Google Scholar 

  5. Simons K, Gerl MJ (2010) Nat Rev Mol Cell Biol 11:688–699

    Article  CAS  Google Scholar 

  6. van Meer G, Voelker DR, Feigenson GW (2008) Nat Rev Mol Cell Biol 9:112–124

    Article  Google Scholar 

  7. Brügger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Kräusslich HG (2006) Proc Natl Acad Sci USA 103:2641–2646

    Article  Google Scholar 

  8. Shevchenko A, Simons K (2010) Nat Rev Mol Cell Biol 11:593–598

    Article  CAS  Google Scholar 

  9. Bhushan A, McNamee MG (1993) Biophys J 64:716–723

    Article  CAS  Google Scholar 

  10. Mantipragada SB, Horvath LI, Arias HR, Schwarzmann G, Sandhoff K, Barrantes FJ, Marsh D (2003) Biochemistry 42:9167–9175

    Article  CAS  Google Scholar 

  11. Fantini J (2003) Cell Mol Life Sci 60:1027–1032

    CAS  Google Scholar 

  12. Coskun Ü, Grzybek M, Drechsler D, Simons K (2011) Proc Natl Acad Sci 108:9044–9048

    Article  CAS  Google Scholar 

  13. Contreras F-X, Ernst AM, Haberkant P, Björkholm P, Lindahl E, Gönen B, Tischer C, Elofsson A, von Heijne G, Thiele C, Pepperkok R, Wieland F, Brügger B (2012) Nature 481:525–529

    Article  CAS  Google Scholar 

  14. Joly E (2004) BMC Cell Biol 5:3

    Article  Google Scholar 

  15. Bremer EG, Schlessinger J, Hakomori S (1986) J Biol Chem 261:2434–2440

    CAS  Google Scholar 

  16. Kawashima N, Yoon S-J, Itoh K, Nakayama K (2009) J Biol Chem 284:6147–6155

    Article  CAS  Google Scholar 

  17. Zech T, Ejsing CS, Gaus K, de Wet B, Shevchenko A, Simons K, Harder T (2009) EMBO J 28:466–476

    Article  CAS  Google Scholar 

  18. Chan R, Uchil PD, Jin J, Shui G, Ott DE, Mothes W, Wenk MR (2008) J Virol 82:11228–11238

    Article  CAS  Google Scholar 

  19. Waheed AA, Freed EO (2009) Virus Res 143:162–176

    Article  CAS  Google Scholar 

  20. Tsai B, Gilbert JM, Stehle T, Lencer W, Benjamin TL, Rapaport TA (2003) EMBO J 22:4346–4355

    Article  CAS  Google Scholar 

  21. Chinnapen DJF, Chinnapen H, Saslowsky D, Lencer W (2007) FEMS Microbiol Lett 266:129–137

    Article  CAS  Google Scholar 

  22. Römer W, Berland L, Chambon V, Gaus K, Windschiegl B, Tenza D, Aly MRE, Fraisier V, Florent JC, Perrais D, Lamaze C, Raposo G, Steinem C, Sens P, Bassereau P, Johannes L (2007) Nature 450:670–675

    Article  Google Scholar 

  23. Hebbar S, Lee E, Manna M, Steinert S, Kumar GS, Wenk M, Wohland T, Kraut R (2008) J Lipid Res 49:1077–1089

    Article  CAS  Google Scholar 

  24. Ewers H, Römer W, Smith AE, Bacia K, Dmitrieff S, Chai W, Mancini R, Kartenbeck J, Chambon V, Berland L, Oppenheim A, Schwarzmann G, Feizi T, Schwille P, Sens P, Helenius A, Johannes L (2009) Nat Cell Biol 12:11–18

    Article  Google Scholar 

  25. Wernick NLB, Chinnapen DJF, Cho JA, Lencer W (2010) Toxins 2:310–325

    Article  CAS  Google Scholar 

  26. Bacia K, Scherfeld D, Kahya N, Schwille P (2004) Biophys J 87:1034–1043

    Article  CAS  Google Scholar 

  27. Bagatolli LA (2006) Biochim Biophys Acta 1758:1541–1556

    Article  CAS  Google Scholar 

  28. Baumgart T, Hunt G, Farkas ER, Webb WW, Feigenson GW (2007) Biochim Biophys Acta 1768:2182–2194

    Article  CAS  Google Scholar 

  29. Marsh D (2009) Biochim Biophys Acta 1788:2114–2123

    Article  CAS  Google Scholar 

  30. Brown DA, London E (2000) J Biol Chem 275:17221–17224

    Article  CAS  Google Scholar 

  31. Hao MM, Mukherjee S, Maxfield FR (2001) Proc Natl Acad Sci 98:13072–13077

    Article  CAS  Google Scholar 

  32. Pike LJ (2006) J Lipid Res 47:1597–1598

    Article  CAS  Google Scholar 

  33. Wüstner D, Solanko L, Sokol E, Garvik O, Li Z, Bittman R, Korte T, Herrmann A (2011) Chem Phys Lipids 164:221–235

    Article  Google Scholar 

  34. Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Annu Rev Biophys 34:351–378

    Article  CAS  Google Scholar 

  35. Goswami D, Gowrishankar K, Bilgrami S, Ghosh S, Raghupathy R, Chadda R, Vishwakarma R, Rao M, Mayor S (2008) Cell 135:1085–1097

    Article  CAS  Google Scholar 

  36. Chichili GR, Rodgers W (2009) Cell Mol Life Sci 66:2319–2328

    Article  CAS  Google Scholar 

  37. Kusumi A, Shirai YM, Koyama-Honda I, Suzuki KGN, Fujiwara TK (2010) FEBS Lett 584:1814–1823

    Article  CAS  Google Scholar 

  38. Machta BB, Papanikolaou S, Sethna JP, Veatch SL (2011) Biophys J 100:1668–1677

    Article  CAS  Google Scholar 

  39. Andrews NL, Lidke KA, Pfeiffer JR, Burns AR, Wilson BS, Oliver JM, Lidke DS (2008) Nat Cell Biol 10:955–963

    Article  CAS  Google Scholar 

  40. Jaqaman K, Kuwata H, Touret N, Collins R, Trimble WS, Danuser G, Grinstein S (2011) Cell 146:593–606

    Article  CAS  Google Scholar 

  41. Mondal M, Mesmin B, Mukherjee S, Maxfield FR (2009) Mol Biol Cell 20:581–588

    Article  CAS  Google Scholar 

  42. Anderson RGW, Jacobson K (2002) Science 296:1821–1825

    Article  CAS  Google Scholar 

  43. Parton RG (2003) Nat Rev Mol Cell Biol 4

    Google Scholar 

  44. Cheng Z-J, Singh RD, Marks DL, Pagano RE (2006) Mol Membr Biol 23:101–110

    Article  CAS  Google Scholar 

  45. Reynwar BJ, Illya G, Harmandaris VA, Müller MM, Kremer K, Deserno M (2007) Nature 447:461–464

    Article  CAS  Google Scholar 

  46. Hatzakis NS, Bhatia VK, Larsen J, Madsen KL, Bolinger PY, Kunding AH, Castillo J, Gether U, Hedegård P, Stamou D (2009) Nat Chem Biol 5:835–841

    Article  CAS  Google Scholar 

  47. Wawrezinieck L, Rigneault H, Marguet D, Lenne PF (2005) Biophys J 89:4029–4042

    Article  CAS  Google Scholar 

  48. Saxton MJ (2005) Biophys J 89:3678–3679

    Article  CAS  Google Scholar 

  49. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) J Cell Biol 157:1071–1081

    Article  CAS  Google Scholar 

  50. Baumgart T, Caparo BR, Zhu C, Das SL (2011) Annu Rev Phys Chem 62:483–506

    Article  CAS  Google Scholar 

  51. Niemela PS, Miettinen MS, Monticelli L, Hammaren H, Bjelkmar P, Murtola T, Lindahl E, Vattulainen I (2010) J Am Chem Soc 132:7574–7575

    Article  CAS  Google Scholar 

  52. Tanaka KAK, Suzuki KGN, Shirai YM, Shibutani ST, Miyahara MSH, Tsuboi H, Yahara M, Yoshimura A, Mayor S, Fujiwara TK, Kusumi A (2010) Nat Methods 7

    Google Scholar 

  53. Pawley JB (2006) Handbook of biological confocal microscopy. Springer, New York

    Book  Google Scholar 

  54. Munro S (2003) Cell 115:377–388

    Article  CAS  Google Scholar 

  55. Lommerse PHM, Spaink HP, Schmidt T (2004) Biochim Biophys Acta 1664:119–131

    Article  CAS  Google Scholar 

  56. Hancock JF (2006) Nat Rev Mol Cell Biol 7:457–462

    Article  Google Scholar 

  57. Shaw AS (2006) Nat Immunol 7:1139–1142

    Article  CAS  Google Scholar 

  58. Groves JT, Parthasarathy R, Forstner MB (2008) Annu Rev Biomed Eng 10:311–338

    Article  CAS  Google Scholar 

  59. Pike LJ (2009) J Lipid Res 50:S323–S328

    Google Scholar 

  60. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Nature 457:1159–U121

    Article  CAS  Google Scholar 

  61. Parasassi T, Krasnowska EK, Bagatolli L, Gratton E (1998) J Fluoresc 8:365–373

    Article  CAS  Google Scholar 

  62. Kucherak OA, Oncul S, Darwich Z, Yushchenko DA, Arntz Y, Didier P, Mely Y, Klymchenko AS (2010) J Am Chem Soc 132:4907–4916

    Article  CAS  Google Scholar 

  63. Lagerholm BC, Weinreb GE, Jacobson K, Thompson NL (2005) Annu Rev Phys Chem 56:309–336

    Article  CAS  Google Scholar 

  64. Schutz GJ, Schindler H, Schmidt T (1997) Biophys J 73:1073–1080

    Article  CAS  Google Scholar 

  65. Nishimura SY, Vrljic M, Klein LO, McConnell HM, Moerner WE (2006) Biophys J 90:927–938

    Article  CAS  Google Scholar 

  66. Sahl SJ, Leutenegger M, Hilbert M, Hell SW, Eggeling C (2010) Proc Natl Acad Sci 107:6829–6834

    Article  CAS  Google Scholar 

  67. Wieser S, Moertelmaier M, Fuertbauer E, Stockinger H, Schutz G (2007) Biophys J 92:3719–3728

    Article  CAS  Google Scholar 

  68. Thompson RE, Larson DR, Webb WW (2002) Biophys J 82:2775–2783

    Article  CAS  Google Scholar 

  69. Clausen M, Lagerholm BC (2011) Curr Protein Pept Sci 12:699–713

    Article  CAS  Google Scholar 

  70. Yechiel E, Edidin M (1987) J Cell Biol 105:755–760

    Article  CAS  Google Scholar 

  71. Feder TJ, Brust-Mascher I, Slattery JP, Baird BA, Webb WW (1996) Biophys J 70:2767–2773

    Article  CAS  Google Scholar 

  72. Magde D, Webb WW, Elson E (1972) Phys Rev Lett 29:705–708

    Article  CAS  Google Scholar 

  73. Fahey PF, Koppel DE, Barak LS, Wolf DE, Elson EL, Webb WW (1977) Science 195:305–306

    Article  CAS  Google Scholar 

  74. Schwille P, Korlach J, Webb WW (1999) Cytometry 36:176–182

    Article  CAS  Google Scholar 

  75. Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J (2008) Nat Methods 5:155–157

    Article  CAS  Google Scholar 

  76. Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Nat Cell Biol 5:S7–S14

    Google Scholar 

  77. Widengren J, Rigler R (1990) Ultrasensitive detection of single molecules using fluorescence correlation spectroscopy. In: Klinge B, Owman C (eds) Bioscience. Lund University Press, Lund, pp 180–183

    Google Scholar 

  78. Abbe E (1873) Archiv für Mikroskopische Anatomie 9:413–468

    Article  Google Scholar 

  79. Humpolickova J, Gielen E, Benda A, Fagulova V, Vercammen J, vandeVen M, Hof M, Ameloot M, Engelborghs Y (2006) Biophys J 91:L23–L25

    Article  CAS  Google Scholar 

  80. He HT, Marguet D (2011) Annu Rev Phys Chem 62:417–436

    Article  CAS  Google Scholar 

  81. Lenne PF, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, Guo XJ, Rigneault H, He HT, Marguet D (2006) EMBO J 25:3245–3256

    Article  CAS  Google Scholar 

  82. Kastrup L, Blom H, Eggeling C, Hell SW (2005) Phys Rev Lett 94:178104

    Article  Google Scholar 

  83. Ringemann C, Harke B, Middendorff CV, Medda R, Honigmann A, Wagner R, Leutenegger M, Schoenle A, Hell S, Eggeling C (2009) New J Phys 11:103054

    Article  Google Scholar 

  84. Hell SW, Wichmann J (1994) Opt Lett 19:780–782

    Article  CAS  Google Scholar 

  85. Hell SW (2007) Science 316:1153–1158

    Article  CAS  Google Scholar 

  86. Hell SW, Jakobs S, Kastrup L (2003) Appl Phys A 77:859–860

    Article  CAS  Google Scholar 

  87. Hell SW (2004) Phys Lett A 326:140–145

    Article  CAS  Google Scholar 

  88. Hell SW (2009) Nat Methods 6:24–32

    Article  CAS  Google Scholar 

  89. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Proc Natl Acad Sci 97:8206–8210

    Article  CAS  Google Scholar 

  90. Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, Lurmann R, Jahn R, Eggeling C, Hell SW (2006) Proc Natl Acad Sci 103:11440–11445

    Article  CAS  Google Scholar 

  91. Willig KI, Harke B, Medda R, Hell SW (2007) Nat Methods 4:915–918

    Article  CAS  Google Scholar 

  92. Vicidomini G, Moneron G, Han KY, Westphal V, Ta H, Reuss M, Engelhardt H, Eggeling C, Hell SW (2011) Nat Methods 8:571–573

    Article  CAS  Google Scholar 

  93. Mueller V, Ringemann C, Honigmann A, Schwarzmann G, Medda R, Leutenegger M, Polyakova S, Belov VN, Hell SW, Eggeling C (2011) Biophys J 101:1651–1660

    Article  CAS  Google Scholar 

  94. Michelman-Ribeiro A, Mazza D, Rosales T, Stasevich TJ, Boukari H, Rishi V, Vinson C, Knutson JR, McNally JG (2009) Biophys J 97:337–346

    Article  CAS  Google Scholar 

  95. Honigmann A, Walter C, Erdmann F, Eggeling C, Wagner R (2010) Biophys J 98:2886–2894

    Article  CAS  Google Scholar 

  96. Sezgin E, Levental I, Grzybek M, Schwarzmann G, Mueller V, Honigmann A, Belov VN, Eggeling C, Coskun Ü, Simons K, Schwille P (2012) Biochim Biophys Acta 1818:1777–1784

    Article  CAS  Google Scholar 

  97. Baumgart T, Hammond AT, Sengupta P, Hess ST, Holowka DA, Baird BA, Webb WW (2007) Proc Natl Acad Sci 104:3165–3170

    Article  CAS  Google Scholar 

  98. Lingwood D, Ries J, Schwille P, Simons K (2008) Proc Natl Acad Sci 105:10005–10010

    Article  CAS  Google Scholar 

  99. Kaiser H-J, Lingwood D, Levental I, Sampaio JL, Kalvodova L, Simons K (2009) Proc Natl Acad Sci 106:16645–16650

    Article  CAS  Google Scholar 

  100. Eggeling C, Brand L, Ullmann D, Jaeger S (2003) Drug Discov Today 8:632–641

    Article  CAS  Google Scholar 

  101. Sieber JJ, Willig KI, Kutzner C, Gerding-Reimers C, Harke B, Donnert G, Rammner B, Eggeling C, Hell SW, Grubmuller H, Lang T (2007) Science 317:1072–1076

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work could not have been realized without the work of the people from the department of NanoBiophotonics: Christian Ringemann, Veronika Mueller, Alf Honigmann, Rebecca Medda, Vladimir Belov, Svetlana Polyakova, Birka Llaken, Class von Middendorf und Andreas Schönle, especially by the extraordinary support and interaction with Stefan Hell, as well as by the lipid syntheses and discussions with Günter Schwarzmann (University Bonn). Further fruitful discussions with Herve Rigneault (Marseille), the Simons group (MPI Dresden), and the Schwille group (Bioquant Dresden) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Eggeling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eggeling, C. (2012). STED-FCS Nanoscopy of Membrane Dynamics. In: Mély, Y., Duportail, G. (eds) Fluorescent Methods to Study Biological Membranes. Springer Series on Fluorescence, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2012_50

Download citation

Publish with us

Policies and ethics