Skip to main content

FRET Analysis of Protein-Lipid Interactions

  • Chapter
  • First Online:
Fluorescent Methods to Study Biological Membranes

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 13))

Abstract

Förster resonance energy transfer (FRET) is an old but constantly developing spectroscopic tool possessing enormous potential for studies on structure and dynamics of biological macromolecules and their assemblies. One of the main advantages of FRET technique is the possibility of measuring the nanometer-scale distances between donor and acceptor fluorophores. This chapter highlights some aspects of FRET-based monitoring of intermolecular interactions in membrane systems. Analytical model of energy transfer between membrane-associated donors and acceptors randomly distributed over parallel planes separated by a fixed distance is presented. The factors determining the efficiency of energy transfer are considered with special attention to orientational behavior of the donor emission and acceptor absorption transition dipoles. It is demonstrated that FRET can provide proof for specific orientation of the protein molecule relative to lipid-water interface. The applications of FRET to quantification of protein-lipid binding parameters and membrane position of protein fluorophores are exemplified. It is illustrated how FRET may help in obtaining evidence for protein aggregation in a membrane environment and domain formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7:730–734

    Article  CAS  Google Scholar 

  2. Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    Article  CAS  Google Scholar 

  3. Loura LMS, Prieto M (2011) FRET in membrane biophysics: an overview. Front Physiol. doi:10.3389/fphys.2011.00082

  4. Wu P, Brand L (1994) Resonance energy transfer: methods and applications. Anal Biochem 218:1–13

    Article  CAS  Google Scholar 

  5. Selvin PR (1995) Fluorescence resonance energy transfer. Method Enzymol 246:300–334

    Article  CAS  Google Scholar 

  6. Matko J, Edidin M (1997) Energy transfer methods in detecting molecular clusters on cell surfaces. Method Enzymol 278:444–462

    Article  CAS  Google Scholar 

  7. Wong AP, Groves JT (2002) Molecular topography imaging by intermembrane fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 99:14147–14152

    Article  CAS  Google Scholar 

  8. Hoppe A, Christensen K, Swanson JA (2002) Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys J 83:3652–3664

    Article  CAS  Google Scholar 

  9. Subramanian M, Jutila A, Kinnunen PKJ (1998) Binding and dissociation of cytochrome c to and from membranes containing acidic phospholipids. Biochemistry 37:1394–1402

    Article  CAS  Google Scholar 

  10. Corbalan-Garcia S, Sanchez-Carrillo S, Garcia-Garcia J, Gomez-Fernandez JC (2003) Characterization of the membrane binding mode of the C2 domain of PKCε. Biochemistry 42:11661–11668

    Article  CAS  Google Scholar 

  11. Calleja V, Ameer-Beg SM, Vojnovic B, Woscholski R, Downward J, Larijani B (2003) Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy. Biochem J 372:33–40

    Article  CAS  Google Scholar 

  12. Chigaev A, Buranda T, Dwyer DC, Prossnitz ER, Sklar LA (2003) FRET detection of cellular α4-integrin conformational activation. Biophys J 85:3951–3962

    Article  CAS  Google Scholar 

  13. Yano Y, Takemoto T, Kobayashi S, Yasui H, Sakurai H, Ohashi W, Niwa M, Futaki S, Sugiura Y, Matsuzaki K (2002) Topological stability and self-association of a completely hydrophobic model transmembrane helix in lipid bilayers. Biochemistry 41:3073–3080

    Article  CAS  Google Scholar 

  14. You M, Li E, Wimley WC, Hristova K (2005) Förster resonance energy transfer in liposomes: measurements of transmembrane helix dimerization in the native bilayer environment. Anal Biochem 340:154–164

    Article  CAS  Google Scholar 

  15. Loura LMS, Fernandes F, Prieto M (2010) Membrane microheterogeneity: Förster resonance energy transfer characterization of lateral membrane domains. Eur Biophys J 39:589–607

    Article  CAS  Google Scholar 

  16. Brown AC, Towles KB, Wrenn SP (2007) Measuring raft size as a function of membrane composition in PC-based systems: part I- binary systems. Langmuir 23:11180–11187

    Article  CAS  Google Scholar 

  17. Scholes GD (2003) Long-range resonance energy transfer in molecular systems. Annu Rev Phys Chem 54:57–87

    Article  CAS  Google Scholar 

  18. Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75

    Article  Google Scholar 

  19. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer/Plenum, New York

    Google Scholar 

  20. Valeur B (2001) Molecular fluorescence: principles and applications. Wiley-VCH Verlag GmbH, Weinheim

    Book  Google Scholar 

  21. Fung B, Stryer L (1978) Surface density determination in membranes by fluorescence energy transfer. Biochemistry 17:5241–5248

    Article  CAS  Google Scholar 

  22. Estep T, Thompson T (1979) Energy transfer in lipid bilayers. Biophys J 26:195–208

    Article  CAS  Google Scholar 

  23. Wolber P, Hudson B (1979) An analytic solution to the Förster energy transfer problem in two dimensions. Biophys J 28:197–210

    Article  CAS  Google Scholar 

  24. Dewey T, Hammes G (1980) Calculation of fluorescence resonance energy transfer on surfaces. Biophys J 32:1023–1036

    Article  CAS  Google Scholar 

  25. Snyder B, Freire E (1982) Fluorescence energy transfer in two dimensions. A numeric solution for random and nonrandom distributions. Biophys J 40:137–148

    Article  CAS  Google Scholar 

  26. Doody M, Sklar L, Pownall H, Sparrow J, Gotto A, Smith L (1983) A simplified approach to resonance energy transfer in membranes, lipoproteins and spatially restricted systems. Biophys Chem 17:139–152

    Article  CAS  Google Scholar 

  27. Gutierrez-Merino G, Munkonge F, Mata A, East J, Levinson B, Napier R, Lee A (1987) The position of ATP binding site on the (Ca2+ + Mg2+)-ATPase. Biochim Biophys Acta 897:207–216

    Article  CAS  Google Scholar 

  28. Dale R, Eisinger J, Blumberg W (1979) The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J 26:161–194

    Article  CAS  Google Scholar 

  29. Gorbenko GP (1999) Structure of cytochrome c complexes with phospholipids as revealed by resonance energy transfer. Biochim Biophys Acta 1420:1–13

    Article  CAS  Google Scholar 

  30. Dickerson RE, Takano T, Eisenberg D, Kallai OB, Samson L, Cooper A, Margoliash E (1971) Ferricytochrome c. General features of the horse and bonito proteins at 2.8 Å resolution. J Biol Chem 246:1511–1535

    CAS  Google Scholar 

  31. Nazarov PV, Koehorst RB, Vos WL, Apanasovich VV, Hemminga MA (2006) FRET study of membrane proteins: simulation-based fitting for analysis of membrane protein embedment and association. Biophys J 91:454–466

    Article  CAS  Google Scholar 

  32. Lehto MT, Sharom FJ (2002) Proximity of the protein moiety of a GPI-anchored protein to the membrane surface: a FRET study. Biochemistry 41:8368–8376

    Article  CAS  Google Scholar 

  33. Antollini SS, Soto MA, de Romanelli IB, Gutierrez-Merino C, Sotomayor P (1996) Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. Biophys J 70:1275–1284

    Article  CAS  Google Scholar 

  34. Barrera FN, Poveda JA, Gonzalez-Ros JM, Neira JL (2003) Binding of the C-terminal sterile α motif (SAM) domain of human p73 to lipid membranes. J Biol Chem 278:46878–46885

    Article  CAS  Google Scholar 

  35. Ramachandran R, Tweten RK, Johnson AE (2005) The domains of a cholesterol-dependent cytolysin undergo a major FRET-detected rearrangement during pore formation. Proc Natl Acad Sci U S A 102:7139–7144

    Article  CAS  Google Scholar 

  36. Kleinfeld AM, Lukacovic MF (1985) Energy transfer study of cytochrome b5 using the anthroyloxy fatty acid membrane probes. Biochemistry 24:1883–1890

    Article  CAS  Google Scholar 

  37. Ward RJ, Palmer M, Leonard K, Bhakdi S (1994) Identification of a putative membrane-inserted segment in the α -toxin of Staphylococcus aureus. Biochemistry 33:7411–7484

    Google Scholar 

  38. Liu R, Sharom FJ (1998) Proximity of the nucleotide binding domains of the P-glycoprotein multidrug transporter to the membrane surface: a resonance energy transfer study. Biochemistry 37:6503–6512

    Article  CAS  Google Scholar 

  39. Shaklai N, Yguerabide J, Ranney HM (1977) Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore. Biochemistry 16:5585–5592

    Article  CAS  Google Scholar 

  40. Munkonge F, East JM, Lee AG (1989) Positions of the sites labeled by N-cyclohexyl-N′-(4-dimethylamino-1-naphthyl)carbodiimide on the (Ca2+ + Mg2+)-ATPase. Biochim Biophys Acta 979:113–120

    Article  CAS  Google Scholar 

  41. Johnson DA, Nuss JM (1994) The histrionicotoxin-sensitive ethidium binding site is located outside of the transmembrane domain of the nicotinic acetylcholine receptor: a fluorescence study. Biochemistry 33:9070–9077

    Article  CAS  Google Scholar 

  42. Remmers AE, Neubig RR (1993) Resonance energy transfer between guanine nucleotide binding protein subunits and membrane lipids. Biochemistry 32:2409–2414

    Article  CAS  Google Scholar 

  43. Carraway KL, Koland JG, Cerione RA (1990) Location of the epidermal growth factor binding site on the EGF receptor. A resonance energy transfer study. Biochemistry 29:8741–8747

    Article  CAS  Google Scholar 

  44. Gorbenko GP, Ioffe VM, Molotkovsky JG, Kinnunen PKJ (2008) Resonance energy transfer study of lysozyme-lipid interactions. Biochim Biophys Acta 1778:1213–1221

    Article  CAS  Google Scholar 

  45. Gorbenko GP, Molotkovsky JG, Kinnunen PKJ (2006) Cytochrome c interaction with cardiolipin/phosphatidylcholine model membranes: effect of cardiolipin protonation. Biophys J 90:4093–4103

    Article  CAS  Google Scholar 

  46. Davenport L, Dale R, Bisby R, Cundall R (1985) Transverse location of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene in model lipid bilayer membrane systems by resonance excitation energy transfer. Biochemistry 24:4097–4108

    Article  CAS  Google Scholar 

  47. Dorn IT, Neumaier KR, Tampe R (1998) Molecular recognition of histidine-tagged molecules by metal-chelating lipids monitored by fluorescence energy transfer and correlation spectroscopy. J Am Chem Soc 120:2753–2763

    Article  CAS  Google Scholar 

  48. Wang T, Pentyala S, Rebecchi MJ, Scarlata S (1999) Differential association of the pleckstrin homology domains of phospholipases C-β1, C-β2, and C-δ1 with lipid bilayers and the βγ subunits of heterotrimeric G proteins. Biochemistry 38:1517–1524

    Article  CAS  Google Scholar 

  49. Komander D, Fairservice A, Deak M, Kular GS, Prescott AR, Downes CP, Safrany ST, Alessi DR, van Aalten DMF (2004) Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates. EMBO J 23:3918–3928

    Article  CAS  Google Scholar 

  50. Domanov YA, Gorbenko GP, Molotkovsky JG (2004) Global analysis of steady-state energy transfer measurements in membranes: resolution of structural and binding parameters. J Fluoresc 14:49–55

    Article  CAS  Google Scholar 

  51. Fernandes F, Loura LMS, Koehorst R, Spruijt RB, Hemminga M, Fedorov A, Prieto M (2004) Quantification of protein-lipid selectivity using FRET: application to the M13 major coat protein. Biophys J 87:344–352

    Article  CAS  Google Scholar 

  52. Capeta RC, Poveda JA, Loura LMS (2006) Non-uniform membrane probe distribution in resonance energy transfer: application to protein-lipid selectivity. J Fluoresc 16:161–172

    Article  CAS  Google Scholar 

  53. Picas L, Suarez-Germa C, Montero MT, Vazquez-Ibar JL, Hernandez-Borrell JH, Prieto M, Loura LMS (2010) Lactose permease lipid selectivity using Förster resonance energy transfer. Biochim Biophys Acta 1798:1707–1713

    Article  CAS  Google Scholar 

  54. Loura LMS, Prieto M, Fernandes F (2010) Quantification of protein-lipid selectivity using FRET. Eur Biophys J 39:565–578

    Article  CAS  Google Scholar 

  55. Hillger F, Nettels D, Dorsch S, Schuler B (2007) Detection and analysis of protein aggregation with confocal single molecule fluorescence spectroscopy. J Fluoresc 17:759–765

    Article  CAS  Google Scholar 

  56. Li E, You M, Hristova K (2005) Sodium dodecyl sulfate – polyacrylamide gel electrophoresis and Förster resonance energy transfer suggest weak interactions between fibroblast growth factor receptor 3 (FGFR3) transmembrane domains in the absence of extracellular domains and ligands. Biochemistry 44:352–360

    Article  CAS  Google Scholar 

  57. Floyd DH, Geva A, Bruinsma SP, Overton MC, Blumer KJ, Baranski TJ (2003) C5a receptor oligomerization. II. Fluorescence resonance energy studies of a human G protein-coupled receptor expressed in yeast. J Biol Chem 278:35354–35361

    Article  CAS  Google Scholar 

  58. Agirre A, Barco A, Carrasco L, Nieva JL (2002) Viroporin-mediated membrane permeabilization: pore formation by nonstructural poliovirus 2B protein. J Biol Chem 277:40434–40441

    Article  CAS  Google Scholar 

  59. Moens PDJ, Yee DJ, Remedios CG (1994) Determination of the radial coordinate of Cys-374 in F-actin using fluorescence resonance energy transfer spectroscopy: effect of phalloidin on polymer assembly. Biochemistry 33:13102–13108

    Article  CAS  Google Scholar 

  60. Vanderkooi JM, Ierokomas A, Nakamura H, Martonosi A (1977) Fluorescence energy transfer between Ca2+ transport ATPase molecules in artificial membranes. Biochemistry 16:1262–1267

    Article  CAS  Google Scholar 

  61. John E, Jahnig F (1991) Aggregation state of melittin in lipid vesicle membranes. Biophys J 60:319–328

    Article  CAS  Google Scholar 

  62. Adair BD, Engelman DM (1994) Glycophorin A helical transmembrane domains dimerize in phospholipid bilayers: a resonance energy transfer study. Biochemistry 33:5539–5544

    Article  CAS  Google Scholar 

  63. Milligan DL, Koshland DE (1988) Site-directed cross-linking: establishing the dimeric structure of the aspartate receptor of bacterial chemotaxis. J Biol Chem 263:6268–6275

    CAS  Google Scholar 

  64. Li M, Reddy LG, Bennett R, Silva ND, Jones LR, Thomas DD (1999) A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban. Biophys J 76:2587–2599

    Article  CAS  Google Scholar 

  65. Sparr E, Ash WL, Nazarov PV, Rijkers DT, Hemminga MA, Tieleman DP, Killian JA (2005) Self-association of transmembrane-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch. J Biol Chem 280:39324–39331

    Article  CAS  Google Scholar 

  66. Fernandes F, Loura LMS, Chichon FJ, Carrascosa JL, Fedorov A, Prieto M (2008) Role of helix 0 of the N-BAR domain in membrane curvature generation. Biophys J 94:3065–3073

    Article  CAS  Google Scholar 

  67. Fung JJ, Deup X, Pardo L, Yao XJ, Velez-Ruiz GL, DeVree BT, Sunahara RK, Kobilka BK (2009) Ligand-regulated oligomerization of β2-adrenoceptors in a model lipid bilayer. EMBO J 28:3315–3328

    Article  CAS  Google Scholar 

  68. Rajan SR, Illing ME, Bence NF, Kopito RR (2001) Specificity in intracellular protein aggregation and inclusion body formation. Proc Natl Acad Sci U S A 98:13060–13065

    Article  CAS  Google Scholar 

  69. Mihai C, Chotani M, Elton TS, Agarwal G (2009) Mapping of DDR1 distribution and oligomerization on the cell surface by FRET microscopy. J Mol Biol 385:432–445

    Article  CAS  Google Scholar 

  70. Woehler A, Wlodarczyk J, Ponimaskin EG (2009) Specific oligomerization of the 5-HT1A receptor in the plasma membrane. Glycoconj J 26:749–756

    Article  CAS  Google Scholar 

  71. Liu BF, Song S, Hanson M, Liang JJN (2008) Protein-protein interactions involving congenital cataract T5P gC-crystallin mutant: a confocal fluorescence microscopy study. Exp Eye Res 87:515–520

    Article  CAS  Google Scholar 

  72. Coutinho A, Loura LMS, Fedorov A, Prieto M (2008) Pinched multilamellar structure of aggregates of lysozyme and phosphatidylserine-containing membranes revealed by FRET. Biophys J 95:4726–4736

    Article  CAS  Google Scholar 

  73. Coutinho A, Loura LMS, Prieto M (2011) FRET studies of lipid-protein aggregates related to amyloid-like fibers. J Neurochem 116:696–701

    Article  CAS  Google Scholar 

  74. Kenworthy AK, Petranova N, Edidin M (2000) High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol Biol Cell 11:1645–1655

    CAS  Google Scholar 

  75. Loura LMS, de Almeida RFM, Prieto M (2001) Detection and characterization of membrane microheterogeneity by resonance energy transfer. J Fluoresc 11:197–209

    Article  Google Scholar 

  76. Sperotto MM, Mouritsen OG (1993) Lipid enrichment and selectivity of integral membrane proteins in two-component lipid bilayers. Eur Biophys J 22:323–328

    Article  CAS  Google Scholar 

  77. Mbamala EC, Ben-Shaul A, May S (2005) Domain formation induced by the adsorption of charged proteins on mixed lipid membranes. Biophys J 88:1702–1714

    Article  CAS  Google Scholar 

  78. Loura LMS, de Almeida RFM, Silva LC, Prieto M (2009) FRET analysis of domain formation and properties in complex membrane systems. Biochim Biophys Acta 1788:209–224

    Article  CAS  Google Scholar 

  79. Gorbenko GP, Trusova VM, Molotkovsky JG, Kinnunen PKJ (2009) Cytochrome c induces lipid demixing in weakly charged phosphatidylcholine/phosphatidyl-glycerol model membranes as evidenced by resonance energy transfer. Biochim Biophys Acta 1788:1358–1365

    Article  CAS  Google Scholar 

  80. Berney C, Danuser G (2003) FRET or no FRET: a quantitative comparison. Biophys J 84:3992–4010

    Article  CAS  Google Scholar 

  81. Corry B, Jayatilaka D, Rigby P (2005) A flexible approach to the calculation of resonance energy transfer efficiency between multiple donors and acceptors in complex geometries. Biophys J 89:3822–3836

    Article  CAS  Google Scholar 

Download references

Acknowledgments

GG gratefully acknowledges a visiting scientist award by the Sigrid Juselius Foundation. This work was supported by the grants from European Social Fund (project number 2009/0205/1DP/1.1.1.2.0/09/APIA/VIAA/152) and Fundamental Research State Fund of Ukraine (project number F.41.4/014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paavo K. J. Kinnunen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gorbenko, G., Kinnunen, P.K.J. (2012). FRET Analysis of Protein-Lipid Interactions. In: Mély, Y., Duportail, G. (eds) Fluorescent Methods to Study Biological Membranes. Springer Series on Fluorescence, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2012_45

Download citation

Publish with us

Policies and ethics