Skip to main content

Counting Molecules: Toward Quantitative Imaging

  • Chapter
  • First Online:
Far-Field Optical Nanoscopy

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 14))

Abstract

In this chapter, we describe how single-molecule fluorescence can be used to analyze protein–protein interactions by enabling the direct visualization of protein complexes and the number and species of their constituent subunits. The prerequisites for this visualization are a low protein density, facilitating the discrimination of individual fluorescent complexes, and high labeling efficiency and specificity to allow for quantitative measurements of protein interactions. We describe three experimental realizations of quantitative imaging techniques made possible by the single-molecule approach: counting the photobleaching steps of fluorescent complexes, the analysis of a histogram of measured spot intensities, and the colocalization of fluorescent tags of multiple colors. Applications of this approach range from the determination of a protein’s oligomerization state to the analysis of the subunit content of large protein assemblies containing multiple subunit types. We describe the minimal setup required for these experiments and present several examples of this approach applied to current biological questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fletcher DA, Mullins D (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492

    Article  CAS  Google Scholar 

  2. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    Article  CAS  Google Scholar 

  3. Rux JJ, Burnett RM (1998) Spherical viruses. Curr Opin Struct Biol 8:142–149

    Article  CAS  Google Scholar 

  4. Strauss JH, Strauss EG (2001) Virus evolution: how does an enveloped virus make a regular structure? Cell 105:5–8

    Article  CAS  Google Scholar 

  5. Cooper E, Couturier S, Ballivet M (1991) Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature 350:235–238

    Article  CAS  Google Scholar 

  6. MacKinnon R (1991) Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350:232–235

    Article  CAS  Google Scholar 

  7. Nicke A, Baumert HG, Rettinger J, Eichele A, Lambrecht G, Mutschler E, Schmalzing G (1998) P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. EMBO J 17:3016–3028

    Article  CAS  Google Scholar 

  8. Stauffer KA, Kumar NM, Gilula NB, Unwin N (1991) Isolation and purification of gap junction channels. J Cell Biol 115:141–150

    Article  CAS  Google Scholar 

  9. Laube B, Kuhse J, Betz H (1998) Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci 18:2954–2961

    CAS  Google Scholar 

  10. Bianchet M, Ysern X, Hullihen J, Pedersen PL, Amzel LM (1991) Mitochondrial ATP synthase – a quaternary structure of the F1 moiety at 3.6 Å determined by X-ray-diffraction analysis. J Biol Chem 266:21197–21201

    CAS  Google Scholar 

  11. Stahlberg H, Muller DJ, Suda K, Fotiadis D, Engel A, Meier T, Matthey U, Dimroth P (2001) Bacterial Na+-ATP synthase has an undecameric rotor. EMBO Rep 2:229–233

    Article  CAS  Google Scholar 

  12. Sowa Y, Berry RM (2008) Bacterial flagellar motor. Q Rev Biophys 41:103–132

    Article  CAS  Google Scholar 

  13. Patel SS, Picha KM (2000) Structure and function of hexameric helicases. Annu Rev Biochem 69:651–697

    Article  CAS  Google Scholar 

  14. Rao VB, Feiss M (2008) The bacteriophage DNA packaging motor. Annu Rev Genet 42:647–681

    Article  CAS  Google Scholar 

  15. Chapman ER (2002) Synaptotagmin: a Ca2+ sensor that triggers exocytosis? Nat Rev Mol Cell Biol 3:498–508

    Article  CAS  Google Scholar 

  16. Johnson A, O'Donnell M (2005) Cellular DNA replicases: Components and dynamics at the replication fork. Annu Rev Biochem 74:283–315

    Article  CAS  Google Scholar 

  17. Suntharalingam M, Wente SR (2003) Peering through the pore: nuclear pore complex structure, assembly, and function. Dev Cell 4:775–789

    Article  CAS  Google Scholar 

  18. Hoeflich KP, Ikura M (2002) Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108:739–742

    Article  CAS  Google Scholar 

  19. Nakajo K, Ulbrich MH, Kubo Y, Isacoff EY (2010) Stoichiometry of the KCNQ1-KCNE1 ion channel complex. Proc Natl Acad Sci USA 107:18862–18867

    Article  CAS  Google Scholar 

  20. Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74:3597–3619

    Article  CAS  Google Scholar 

  21. Jain A, Liu RJ, Ramani B, Arauz E, Ishitsuka Y, Ragunathan K, Park J, Chen J, Xiang YK, Ha T (2011) Probing cellular protein complexes using single-molecule pull-down. Nature 473:484–488

    Article  CAS  Google Scholar 

  22. Jiang Y, Douglas NR, Conley NR, Miller EJ, Frydman J, Moerner WE (2011) Sensing cooperativity in ATP hydrolysis for single multisubunit enzymes in solution. Proc Natl Acad Sci USA 108:16962–16967

    Article  CAS  Google Scholar 

  23. Das SK, Darshi M, Cheley S, Wallace MI, Bayley H (2007) Membrane protein stoichiometry determined from the step-wise photobleaching of dye-labelled subunits. ChemBioChem 8:994–999

    Article  CAS  Google Scholar 

  24. Ulbrich MH, Isacoff EY (2007) Subunit counting in membrane-bound proteins. Nat Methods 4:319–321

    CAS  Google Scholar 

  25. Watkins LP, Yang H (2005) Detection of intensity change points in time-resolved single-molecule measurements. J Phys Chem B 109:617–628

    Article  CAS  Google Scholar 

  26. Chung SH, Kennedy RA (1991) Forward-backward nonlinear filtering technique for extracting small biological signals from noise. J Neurosci Methods 40:71–86

    Article  CAS  Google Scholar 

  27. Haggie PM, Verkman AS (2008) Monomeric CFTR in plasma membranes in live cells revealed by single molecule fluorescence imaging. J Biol Chem 283:23510–23513

    Article  CAS  Google Scholar 

  28. Ji W, Xu PY, Li ZZ, Lu JZ, Liu L, Zhan Y, Chen Y, Hille B, Xu T, Chen LY (2008) Functional stoichiometry of the unitary calcium-release-activated calcium channel. Proc Natl Acad Sci USA 105:13668–13673

    Article  CAS  Google Scholar 

  29. Kohout SC, Ulbrich MH, Bell SC, Isacoff EY (2008) Subunit organization and functional transitions in Ci-VSP. Nat Struct Mol Biol 15:106–108

    Article  CAS  Google Scholar 

  30. Penna A, Demuro A, Yeromin AV, Zhang SYL, Safrina O, Parker I, Cahalan MD (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456:116–120

    Article  CAS  Google Scholar 

  31. Plant LD, Dementieva IS, Kollewe A, Olikara S, Marks JD, Goldstein SAN (2010) One SUMO is sufficient to silence the dimeric potassium channel K2P1. Proc Natl Acad Sci USA 107:10743–10748

    Article  CAS  Google Scholar 

  32. Tombola F, Ulbrich MH, Isacoff EY (2008) The voltage-gated proton channel Hv1 has two pores, each controlled by one voltage sensor. Neuron 58:546–556

    Article  CAS  Google Scholar 

  33. Yu Y, Ulbrich MH, Li MH, Buraei Z, Chen XZ, Ong ACM, Tong L, Isacoff EY, Yang J (2009) Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci USA 106:11558–11563

    Article  CAS  Google Scholar 

  34. Zhang W, Jiang YX, Wang Q, Ma XY, Xiao ZY, Zuo W, Fang XH, Chen G (2009) Single-molecule imaging reveals transforming growth factor-β-induced type II receptor dimerization. Proc Natl Acad Sci USA 106:15679–15683

    Article  CAS  Google Scholar 

  35. Madl J, Weghuber J, Fritsch R, Derler I, Fahrner M, Frischauf I, Lackner B, Romanin C, Schütz GJ (2010) Resting state Orai1 diffuses as homotetramer in the plasma membrane of live mammalian cells. J Biol Chem 285:41135–41142

    Article  CAS  Google Scholar 

  36. Reyes-Lamothe R, Sherratt DJ, Leake MC (2010) Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 328:498–501

    Article  CAS  Google Scholar 

  37. Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443:355–358

    Article  CAS  Google Scholar 

  38. Ulbrich MH, Isacoff EY (2008) Rules of engagement for NMDA receptor subunits. Proc Natl Acad Sci USA 105:14163–14168

    Article  CAS  Google Scholar 

  39. Moertelmaier M, Brameshuber M, Linimeier M, SchĂĽtz GJ, Stockinger H (2005) Thinning out clusters while conserving stoichiometry of labeling. Appl Phys Lett 87:263903

    Article  Google Scholar 

  40. Ruprecht V, Brameshuber M, Schütz GJ (2010) Two-color single molecule tracking combined with photobleaching for the detection of rare molecular interactions in fluid biomembranes. Soft Matter 6:568–581

    Article  CAS  Google Scholar 

  41. Chen I, Howarth M, Lin WY, Ting AY (2005) Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat Methods 2:99–104

    Article  CAS  Google Scholar 

  42. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89

    Article  CAS  Google Scholar 

  43. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohane RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382

    Article  CAS  Google Scholar 

  44. Pantoja R, Rodriguez EA, Dibas MI, Dougherty DA, Lester HA (2009) Single-molecule imaging of a fluorescent unnatural amino acid incorporated into nicotinic receptors. Biophys J 96:226–237

    Article  CAS  Google Scholar 

  45. Szent-Gyorgyi C, Schmidt BA, Creeger Y, Fisher GW, Zakel KL, Adler S, Fitzpatrick JAJ, Woolford CA, Yan Q, Vasilev KV, Berget PB, Bruchez MP, Jarvik JW, Waggoner A (2008) Fluorogen-activating single-chain antibodies for imaging cell surface proteins. Nat Biotechnol 26:235–240

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian H. Ulbrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ulbrich, M.H. (2011). Counting Molecules: Toward Quantitative Imaging. In: Tinnefeld, P., Eggeling, C., Hell, S. (eds) Far-Field Optical Nanoscopy. Springer Series on Fluorescence, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2011_36

Download citation

Publish with us

Policies and ethics