Skip to main content

Action Potentials in Heart Cells

  • Chapter
  • First Online:
Fluorescent Proteins II

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 12))

Abstract

Action potentials are a basic and fast communication mode within or in between neuronal and muscular cells in the human body. The rhythmic initiation and structured propagation of action potentials in the heart are most essential for a vital organism. The use of genetically encoded biosensors based on fluorescent proteins allows a non-invasive biocompatible way to read-out action potentials in cardiac myocytes. This comprises the physiological situation as well as pathophysiological models of the diseased heart. Although the approaches to design such biosensors date back to the time when the first fluorescent protein-based FRET sensors were constructed, it took 15 years until first reliable sensors became available. In this chapter, it is shown in cardiac myocytes how fluorescent protein-based action potential measurements can be used in pharmacological screening applications as well as in basic biomedical research. Potentials and limitations will be discussed and perspectives of possible future developments will be provided.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Viero C, Kraushaar U, Ruppenthal S, Kaestner L, Lipp P (2008) A primary culture system for sustained expression of a calcium sensor in preserved adult rat ventricular myocytes. Cell Calcium 43:59–71

    Article  CAS  Google Scholar 

  2. (1991) The Sicilian gambit. A new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms. Task Force of the working group on Arrhythmias of the European Society of Cardiology. Circulation 84:1831–1851

    Google Scholar 

  3. Matteucci C (1842) Sur un phenomene physiologique produit par les muscles en contraction. Ann Chim Phys 6:339–341

    Google Scholar 

  4. Bois-Reymond (ed) (1848) Untersuchungen über Thierische Elektricität. Verlag von G. Reimer, Berlin

    Google Scholar 

  5. Hv H (1867) Handbuch der physiologischen Optik. Leopold Voss, Leipzig

    Google Scholar 

  6. Cole KS (1979) Mostly membranes (Kenneth S. Cole). Annu Rev Physiol 41:1–24

    Article  CAS  Google Scholar 

  7. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  CAS  Google Scholar 

  8. Sigworth FJ (1986) The patch clamp is more useful than anyone had expected. Fed Proc 45:2673–2677

    CAS  Google Scholar 

  9. Kaestner L, Lipp P (2007) Towards imaging the dynamics of protein signalling. In: Shorte SL, Frischknecht F (eds) Imaging cellular and molecular biological functions. Springer, Berlin, pp 289–312

    Chapter  Google Scholar 

  10. ICH. (2005) S7B nonclinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals. FDA & EMEA, pp 1–10

    Google Scholar 

  11. Arrigoni C, Crivori P (2007) Assessment of QT liabilities in drug development. Cell Biol Toxicol 23:1–13

    Article  CAS  Google Scholar 

  12. Lipp P, Kaestner L (2006) Image based high content screening – a view from basic science. In: Hüser J (ed) High-throughput screening in drug discovery. Wiley VCH, Weinheim, pp 129–149

    Chapter  Google Scholar 

  13. Kaestner L, Scholz A, Hammer K, Vecerdea A, Ruppenthal S, Lipp P (2009) Isolation and genetic manipulation of adult cardiac myocytes for confocal imaging. J Vis Exp 31

    Google Scholar 

  14. Hammer K, Ruppenthal S, Viero C, Scholz A, Edelmann L, Kaestner L, Lipp P (2010) Remodelling of Ca(2+) handling organelles in adult rat ventricular myocytes during long term culture. J Mol Cell Cardiol 49:427–437

    Article  CAS  Google Scholar 

  15. Hardy ME, Pollard CE, Small BG, Bridgland-Taylor M, Woods AJ, Valentin JP, Abi-Gerges N (2009) Validation of a voltage-sensitive dye (di-4-ANEPPS)-based method for assessing drug-induced delayed repolarisation in beagle dog left ventricular midmyocardial myocytes. J Pharmacol Toxicol Meth 60:94–106

    Article  CAS  Google Scholar 

  16. Bullen A, Saggau P (1999) High-speed, random-access fluorescence microscopy: II fast quantitative measurements with voltage-sensitive dyes. Biophys J 76:2272–2287

    Article  CAS  Google Scholar 

  17. Bu G, Adams H, Berbari EJ, Rubart M (2009) Uniform action potential repolarization within the sarcolemma of in situ ventricular cardiomyocytes. Biophys J 96:2532–2546

    Article  CAS  Google Scholar 

  18. Coates C, Fowler B, Holst G (2009) Scientific CMOS technology - a high-performance imaging breakthrough. In: FI Andor Technology PLC, PCO AG (ed) www.scmos.com. Andor Technology PLC, Fairchild imaging, PCO AG, Belfast, Milpitas, Kehlheim, pp 1–14

  19. Sims PJ, Waggoner AS, Wang CH, Hoffman JF (1974) Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13:3315–3330

    Article  CAS  Google Scholar 

  20. Haugland RP (2002) Handbook of fluorescent probes and research products. Molecular Probes, Eugene

    Google Scholar 

  21. Huser J, Lipp P, Niggli E (1996) Confocal microscopic detection of potential-sensitive dyes used to reveal loss of voltage control during patch-clamp experiments. Pflugers Arch 433:194–199

    Article  CAS  Google Scholar 

  22. Lipp P, Huser J, Pott L, Niggli E (1996) Spatially non-uniform Ca2+ signals induced by the reduction of transverse tubules in citrate-loaded guinea-pig ventricular myocytes in culture. J Physiol 497(Pt 3):589–597

    CAS  Google Scholar 

  23. Dibb KM, Clarke JD, Horn MA, Richards MA, Graham HK, Eisner DA, Trafford AW (2009) Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure. Circ Heart Fail 2:482–489

    Article  Google Scholar 

  24. Sill B, Hammer PE, Cowan DB (2009) Optical mapping of Langendorff-perfused rat hearts. J Vis Exp. doi:10.3791/1138

    Google Scholar 

  25. Loew LM (1996) Potentiometric dyes: imaging electrical activity of cell membranes. Pure Appl Chem 68:1405–1409

    Article  CAS  Google Scholar 

  26. Bedlack RS Jr, Wei M, Loew LM (1992) Localized membrane depolarizations and localized calcium influx during electric field-guided neurite growth. Neuron 9:393–403

    Article  CAS  Google Scholar 

  27. Gross E, Bedlack RS Jr, Loew LM (1994) Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys J 67:208–216

    Article  CAS  Google Scholar 

  28. Hardy ME, Lawrence CL, Standen NB, Rodrigo GC (2006) Can optical recordings of membrane potential be used to screen for drug-induced action potential prolongation in single cardiac myocytes? J Pharmacol Toxicol Meth 54:173–182

    Article  CAS  Google Scholar 

  29. Kaestner L, Tian Q, Lipp P (2011) Cardiac Safety Screens: Molecular, cellular and optical advancements. In: Lin C P, Ntziachistos V (eds) SPIE biomedical optics III, vol. 8089, SPIE, Munich, in press

    Google Scholar 

  30. Kuhn B, Fromherz P, Denk W (2004) High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge. Biophys J 87:631–639

    Article  CAS  Google Scholar 

  31. Fromherz P, Hubener G, Kuhn B, Hinner MJ (2008) ANNINE-6plus, a voltage-sensitive dye with good solubility, strong membrane binding and high sensitivity. Eur Biophys J 37:509–514

    Article  CAS  Google Scholar 

  32. Hinner MJ, Hbener G, Fromherz P (2004) Enzyme-induced staining of biomembranes with voltage-sensitive fluorescent dyes. J Phys Chem B 108:2445–2453

    Article  CAS  Google Scholar 

  33. Hinner MJ, Hubener G, Fromherz P (2006) Genetic targeting of individual cells with a voltage-sensitive dye through enzymatic activation of membrane binding. Chembiochem 7:495–505

    Article  CAS  Google Scholar 

  34. Chanda B, Blunck R, Faria LC, Schweizer FE, Mody I, Bezanilla F (2005) A hybrid approach to measuring electrical activity in genetically specified neurons. Nat Neurosci 8:1619–1626

    Article  CAS  Google Scholar 

  35. DiFranco M, Capote J, Quinonez M, Vergara JL (2007) Voltage-dependent dynamic FRET signals from the transverse tubules in mammalian skeletal muscle fibers. J Gen Physiol 130:581–600

    Article  CAS  Google Scholar 

  36. Sjulson L, Miesenbock G (2008) Rational optimization and imaging in vivo of a genetically encoded optical voltage reporter. J Neurosci 28:5582–5593

    Article  CAS  Google Scholar 

  37. Siegel MS, Isacoff EY (1997) A genetically encoded optical probe of membrane voltage. Neuron 19:735–741

    Article  CAS  Google Scholar 

  38. Guerrero G, Siegel MS, Roska B, Loots E, Isacoff EY (2002) Tuning FlaSh: redesign of the dynamics, voltage range, and color of the genetically encoded optical sensor of membrane potential. Biophys J 83:3607–3618

    Article  CAS  Google Scholar 

  39. Sakai R, Repunte-Canonigo V, Raj CD, Knopfel T (2001) Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci 13:2314–2318

    Article  CAS  Google Scholar 

  40. Knopfel T, Tomita K, Shimazaki R, Sakai R (2003) Optical recordings of membrane potential using genetically targeted voltage-sensitive fluorescent proteins. Methods 30:42–48

    Article  CAS  Google Scholar 

  41. Ataka K, Pieribone VA (2002) A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophys J 82:509–516

    Article  CAS  Google Scholar 

  42. Baker BJ, Mutoh H, Dimitrov D, Akemann W, Perron A, Iwamoto Y, Jin L, Cohen LB, Isacoff EY, Pieribone VA, Hughes T, Knopfel T (2008) Genetically encoded fluorescent sensors of membrane potential. Brain Cell Biol 36:53–67

    Article  CAS  Google Scholar 

  43. Baker BJ, Lee H, Pieribone VA, Cohen LB, Isacoff EY, Knopfel T, Kosmidis EK (2007) Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells. J Neurosci Meth 161:32–38

    Article  CAS  Google Scholar 

  44. Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435:1239–1243

    Article  CAS  Google Scholar 

  45. Ramsey IS, Moran MM, Chong JA, Clapham DE (2006) A voltage-gated proton-selective channel lacking the pore domain. Nature 440:1213–1216

    Article  CAS  Google Scholar 

  46. Dimitrov D, He Y, Mutoh H, Baker BJ, Cohen L, Akemann W, Knopfel T (2007) Engineering and characterization of an enhanced fluorescent protein voltage sensor. PLoS ONE 2:e440

    Article  Google Scholar 

  47. Tsutsui H, Karasawa S, Okamura Y, Miyawaki A (2008) Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat Methods 5:683–685

    Article  CAS  Google Scholar 

  48. Lundby A, Akemann W, Knopfel T (2010) Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP. Eur Biophys J 39:1625–1635

    Article  CAS  Google Scholar 

  49. Akemann W, Mutoh H, Perron A, Rossier J, Knopfel T (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7:643–649

    Article  CAS  Google Scholar 

  50. Mutoh H, Perron A, Dimitrov D, Iwamoto Y, Akemann W, Chudakov DM, Knopfel T (2009) Spectrally-resolved response properties of the three most advanced FRET based fluorescent protein voltage probes. PLoS ONE 4:e4555

    Article  Google Scholar 

  51. Gautam SG, Perron A, Mutoh H, Knopfel T (2009) Exploration of fluorescent protein voltage probes based on circularly permuted fluorescent proteins. Front Neuroeng 2:14

    Article  CAS  Google Scholar 

  52. Perron A, Mutoh H, Launey T, Knopfel T (2009) Red-shifted voltage-sensitive fluorescent proteins. Chem Biol 16:1268–1277

    Article  CAS  Google Scholar 

  53. Villalba-Galea CA, Sandtner W, Dimitrov D, Mutoh H, Knopfel T, Bezanilla F (2009) Charge movement of a voltage-sensitive fluorescent protein. Biophys J 96:L19–L21

    Article  CAS  Google Scholar 

  54. Lundby A, Mutoh H, Dimitrov D, Akemann W, Knopfel T (2008) Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS ONE 3:e2514

    Article  Google Scholar 

  55. Perron A, Mutoh H, Akemann W, Gautam SG, Dimitrov D, Iwamoto Y, Knopfel T (2009) Second and third generation voltage-sensitive fluorescent proteins for monitoring membrane potential. Front Mol Neurosci 2:5

    Article  Google Scholar 

  56. Lundstrom K (2003) Semliki forest virus vectors for gene therapy. Expert Opin Biol Ther 3:771–777

    Article  CAS  Google Scholar 

  57. Delenda C (2004) Lentiviral vectors: optimization of packaging, transduction and gene expression. J Gene Med 6(Suppl 1):S125–S138

    Article  CAS  Google Scholar 

  58. Russell WC (2000) Update on adenovirus and its vectors. J Gen Virol 81:2573–2604

    CAS  Google Scholar 

  59. Kaestner L, Ruppenthal S, Schwarz S, Scholz A, Lipp P (2009) Concepts for optical high content screens of excitable primary isolated cells for molecular imaging. In: Licha K, Lin CP (eds) SPIE biomedical optics, vol 7370. SPIE, Munich, pp 737–745

    Google Scholar 

  60. Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K, Doran R, Lee J, Plan P, Wilson J, Xin HB, Sanbe A, Gulick J, Mathai J, Robbins J, Salama G, Nakai J, Kotlikoff MI (2006) Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci USA 103:4753–4758

    Article  CAS  Google Scholar 

  61. Christensen G, Minamisawa S, Gruber PJ, Wang Y, Chien KR (2000) High-efficiency, long-term cardiac expression of foreign genes in living mouse embryos and neonates. Circulation 101:178–184

    CAS  Google Scholar 

  62. Buning H, Perabo L, Coutelle O, Quadt-Humme S, Hallek M (2008) Recent developments in adeno-associated virus vector technology. J Gene Med 10:717–733

    Article  Google Scholar 

  63. Schultz BR, Chamberlain JS (2008) Recombinant adeno-associated virus transduction and integration. Mol Ther 16:1189–1199

    Article  CAS  Google Scholar 

  64. Du L, Kido M, Lee DV, Rabinowitz JE, Samulski RJ, Jamieson SW, Weitzman MD, Thistlethwaite PA (2004) Differential myocardial gene delivery by recombinant serotype-specific adeno-associated viral vectors. Mol Ther 10:604–608

    Article  CAS  Google Scholar 

  65. Schirmer JM, Miyagi N, Rao VP, Ricci D, Federspiel MJ, Kotin RM, Russell SJ, McGregor CG (2007) Recombinant adeno-associated virus vector for gene transfer to the transplanted rat heart. Transpl Int 20:550–557

    Article  CAS  Google Scholar 

  66. Karasawa S, Araki T, Nagai T, Mizuno H, Miyawaki A (2004) Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem J 381:307–312

    Article  CAS  Google Scholar 

  67. Wlodarczyk J, Woehler A, Kobe F, Ponimaskin E, Zeug A, Neher E (2008) Analysis of FRET signals in the presence of free donors and acceptors. Biophys J 94:986–1000

    Article  CAS  Google Scholar 

  68. Kaestner L, Lipp P (2009) Fluoreszenzproteine “fühlen” wo sie sind. BIOforum 32:17–18

    CAS  Google Scholar 

  69. Valeur B (2002) Molecular fluorescence. Wiley-VCH, Winheim

    Google Scholar 

  70. Tsutsui H, Higashijima S, Miyawaki A, Okamura Y (2010) Visualizing voltage dynamics in zebrafish heart. J Physiol 588:2017–2021

    Article  CAS  Google Scholar 

  71. Asselberghs I, Flors C, Ferrighi L, Botek E, Champagne B, Mizuno H, Ando R, Miyawaki A, Hofkens J, Van der Auweraer M, Clays K (2008) Second-harmonic generation in GFP-like proteins. J Am Chem Soc 130:15713–15719

    Article  CAS  Google Scholar 

  72. De Meulenaere E, Asselberghs I, de Wergifosse M, Botek E, Spaepen S, Champagne B, Vanderleyden J, Clays K (2009) Second-order nonlinear optical properties of fluorescent proteins for second-harmonic imaging. Journal of Materials Chemistry, 19:7514–7519

    Google Scholar 

  73. Bublitz G, King B, Boxer S (1998) Electronic structure of the chromophore in green fluorescent protein. J Am Chem Soc 120:9370

    Article  CAS  Google Scholar 

  74. Rosell FI, Boxer SG (2003) Polarized absorption spectra of green fluorescent protein single crystals: transition dipole moment directions. Biochemistry 42:177–183

    Article  CAS  Google Scholar 

  75. Shi X, Basran J, Seward HE, Childs W, Bagshaw CR, Boxer SG (2007) Anomalous negative fluorescence anisotropy in yellow fluorescent protein (YFP 10C): quantitative analysis of FRET in YFP dimers. Biochemistry 46:14403–14417

    Article  CAS  Google Scholar 

  76. Khatchatouriants A, Lewis A, Rothman Z, Loew L, Treinin M (2000) GFP is a selective non-linear optical sensor of electrophysiological processes in Caenorhabditis elegans. Biophys J 79:2345–2352

    Article  CAS  Google Scholar 

  77. Topell S, Hennecke J, Glockshuber R (1999) Circularly permuted variants of the green fluorescent protein. FEBS Lett 457:283–289

    Article  CAS  Google Scholar 

  78. Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci USA 96:11241–11246

    Article  CAS  Google Scholar 

  79. Kaestner L, Lipp P (2007) Non-linear and ultra high-speed imaging for explorations of the murine and human heart. In: Popp J, von Bally G (eds) Optics in life science, vol 6633. SPIE, Munich, pp 66330K-1–66330K-10

    Google Scholar 

  80. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  Google Scholar 

  81. Tasaki I, Watanabe A, Sandlin R, Carnay L (1968) Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. Proc Natl Acad Sci USA 61:883–888

    Article  CAS  Google Scholar 

  82. Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182

    Article  CAS  Google Scholar 

  83. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  CAS  Google Scholar 

  84. Zimmer M (2005) Glowing genes: a revolution in biotechnology. Prometheus Books, Amherst

    Google Scholar 

  85. Fluhler E, Burnham VG, Loew LM (1985) Spectra, membrane binding, and potentiometric responses of new charge shift probes. Biochemistry 24:5749–5755

    Article  CAS  Google Scholar 

  86. Salzberg BM, Grinvald A, Cohen LB, Davila HV, Ross WN (1977) Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. J Neurophysiol 40:1281–1291

    CAS  Google Scholar 

  87. Grinvald A, Salzberg BM, Cohen LB (1977) Simultaneous recording from several neurones in an invertebrate central nervous system. Nature 268:140–142

    Article  CAS  Google Scholar 

  88. Salzberg BM, Davila HV, Cohen LB (1973) Optical recording of impulses in individual neurones of an invertebrate central nervous system. Nature 246:508–509

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Kaestner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaestner, L., Tian, Q., Lipp, P. (2011). Action Potentials in Heart Cells. In: Jung, G. (eds) Fluorescent Proteins II. Springer Series on Fluorescence, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2011_28

Download citation

Publish with us

Policies and ethics