Skip to main content

Photoconversion of the Green Fluorescent Protein and Related Proteins

  • Chapter
  • First Online:
Fluorescent Proteins I

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 11))

Abstract

This review focuses on the mechanistic details of photochromic reactions of the green fluorescent protein (GFP) and also of its mutant derivatives and related fluorescent proteins. A number of distinct photochromic processes have so far been identified that have entirely different photochemical and chemical basis, which will be reviewed. In addition to bright fluorescence, the GFP from the jellyfish Aequorea victoria undergoes photochromic transformation with blue or UV illumination. The associated change in electronic absorption provides a spectroscopic contrast that can be used in fluorescence microscopy application to tag and track the movement of populations that are photoconverted. Key to the successful use of photoconversion for such microscopy experiments is in fact the relatively low quantum yield of the irreversible process. In the wild-type GFP, photoconversion is triggered by light-induced electron transfer from the buried anionic carboxylate of Glu222 to the optically excited protonated chromophore. An unstable carboxylate radical subsequently cleaves off a CO2 molecule in a “Kolbe” type reaction that has been trapped in a partially oriented site near the chromophore-binding site at 100K, as observed by low-temperature X-ray crystallography and cryo-infrared crystallography. Structural intermediates in the subsequent relaxation pathway involve motion of CO2, amino acids and H-bonded waters both in the chromophore vicinity and at longer range. This review provides an overview of the molecular characterisation using structural and spectroscopy methods of this photoconversion reaction of GFP. In addition, the mechanisms of photochromic reactions of mutants of GFP and related fluorescent proteins will be summarised and discussed. These include the cistrans isomerisation and protonation changes in Dronpa, asFP595 and IrisFP and related proteins, light-induced maturation in aceGFPL, and photoinduced beta-elimination and backbone cleavage that leads to “green-to-red” photoconversion in EosFP, Kaede, IrisFP and KikGR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    CAS  Google Scholar 

  2. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    CAS  Google Scholar 

  3. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    CAS  Google Scholar 

  4. Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    CAS  Google Scholar 

  5. Brejc K, Sixma TK, Kitts PA, Kain SR, Tsien RY, Ormo M, Remington SJ (1997) Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci USA 94:2306–2311

    CAS  Google Scholar 

  6. Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251

    CAS  Google Scholar 

  7. Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448–455

    CAS  Google Scholar 

  8. Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373:663–664

    CAS  Google Scholar 

  9. Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA 91:12501–12504

    CAS  Google Scholar 

  10. Nobelprize.org. (2008) The Nobel Prize in Chemistry 2008 – Press Release. “for the discovery and development of the green fluorescent protein, GFP”. Nobelprize.org, http://nobelprize.org/nobel_prizes/chemistry/laureates/2008/press.html.

  11. Morise H, Shimomura O, Johnson FH, Winant J (1974) Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 13:2656–2662

    CAS  Google Scholar 

  12. Perozzo MA, Ward KB, Thompson RB, Ward WW (1988) X-ray diffraction and time-resolved fluorescence analyses of Aequorea green fluorescent protein crystals. J Biol Chem 263:7713–7716

    CAS  Google Scholar 

  13. Scharnagl C, Raupp-Kossmann R, Fischer SF (1999) Molecular basis for pH sensitivity and proton transfer in green fluorescent protein: protonation and conformational substates from electrostatic calculations. Biophys J 77:1839–1857

    CAS  Google Scholar 

  14. Bokman SH, Ward WW (1981) Renaturation of Aequorea gree-fluorescent protein. Biochem Biophys Res Commun 101:1372–1380

    CAS  Google Scholar 

  15. Ward WW, Cody CW, Hart RC, Cormier MJ (1980) Spectrophotometric identity of the energy transfer chromophores in Renilla and Aequorea green-fluorescent proteins. Photochem Photobiol 31:611–615

    CAS  Google Scholar 

  16. Chattoraj M, King BA, Bublitz GU, Boxer SG (1996) Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci USA 93:8362–8367

    CAS  Google Scholar 

  17. Förster T (1949) Fluorezenzspektrum und Wasserstoffionenkonzentration. Naturwiss 36:186

    Google Scholar 

  18. Förster T (1950) Die pH-abhangigkeit der fluoreszenz von naphthalinderivaten. Z Electrochem 54:531

    Google Scholar 

  19. van Thor JJ, Gensch T, Hellingwerf KJ, Johnson LN (2002) Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222. Nat Struct Biol 9:37–41

    Google Scholar 

  20. van Thor JJ, Pierik AJ, Nugteren-Roodzant I, Xie A, Hellingwerf KJ (1998) Characterization of the photoconversion of green fluorescent protein with FTIR spectroscopy. Biochemistry 37:16915–16921

    Google Scholar 

  21. Lill MA, Helms V (2002) Proton shuttle in green fluorescent protein studied by dynamic simulations. Proc Natl Acad Sci USA 99:2778–2781

    CAS  Google Scholar 

  22. van Thor JJ (2009) Photoreactions and dynamics of the green fluorescent protein. Chem Soc Rev 38:2935–2950

    Google Scholar 

  23. Vendrell O, Gelabert R, Moreno M, Lluch JM (2008) Operation of the proton wire in green fluorescent protein. A quantum dynamics simulation. J Phys Chem B 112:5500–5511

    CAS  Google Scholar 

  24. Palm GJ, Zdanov A, Gaitanaris GA, Stauber R, Pavlakis GN, Wlodawer A (1997) The structural basis for spectral variations in green fluorescent protein. Nat Struct Biol 4:361–365

    CAS  Google Scholar 

  25. Stoner-Ma D, Jaye AA, Matousek P, Towrie M, Meech SR, Tonge PJ (2005) Observation of excited-state proton transfer in green fluorescent protein using ultrafast vibrational spectroscopy. J Am Chem Soc 127:2864–2865

    CAS  Google Scholar 

  26. van Thor JJ, Georgiev GY, Towrie M, Sage JT (2005) Ultrafast and low barrier motions in the photoreactions of the green fluorescent protein. J Biol Chem 280:33652–33659

    Google Scholar 

  27. van Thor JJ, Ronayne KL, Towrie M, Sage JT (2008) Balance between ultrafast parallel reactions in the green fluorescent protein has a structural origin. Biophys J 95:1902–1912

    Google Scholar 

  28. van Thor JJ, Zanetti G, Ronayne KL, Towrie M (2005) Structural events in the photocycle of green fluorescent protein. J Phys Chem B 109:16099–16108

    Google Scholar 

  29. Stoner-Ma D, Melief EH, Nappa J, Ronayne KL, Tonge PJ, Meech SR (2006) Proton relay reaction in green fluorescent protein (GFP): polarization-resolved ultrafast vibrational spectroscopy of isotopically edited GFP. J Phys Chem B 110:22009–22018

    CAS  Google Scholar 

  30. Youvan DC, Michel-Beyerle ME (1996) Structure and fluorescence mechanism of GFP. Nat Biotechnol 14:1219–1220

    CAS  Google Scholar 

  31. Henderson JN, Osborn MF, Koon N, Gepshtein R, Huppert D, Remington SJ (2009) Excited state proton transfer in the red fluorescent protein mKeima. J Am Chem Soc 131(37):13212–13213

    CAS  Google Scholar 

  32. Piatkevich KD, Malashkevich VN, Almo SC, Verkhusha VV (2010) Engineering ESPT pathways based on structural analysis of LSSmKate red fluorescent proteins with large stokes shift. J Am Chem Soc 132:10762–10770

    CAS  Google Scholar 

  33. Lippincott-Schwartz J, Manley S (2009) Putting super-resolution fluorescence microscopy to work. Nat Methods 6:21–23

    CAS  Google Scholar 

  34. Lippincott-Schwartz J, Patterson GH (2008) Fluorescent proteins for photoactivation experiments. Methods Cell Biol 85:45–61

    CAS  Google Scholar 

  35. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    CAS  Google Scholar 

  36. van Thor JJ, Sage JT (2006) Charge transfer in green fluorescent protein. Photochem Photobiol Sci 5:597–602

    Google Scholar 

  37. Bell AF, Stoner-Ma D, Wachter RM, Tonge PJ (2003) Light-driven decarboxylation of wild-type green fluorescent protein. J Am Chem Soc 125:6919–6926

    CAS  Google Scholar 

  38. Schneider M, Barozzi S, Testa I, Faretta M, Diaspro A (2005) Two-photon activation and excitation properties of PA-GFP in the 720-920-nm region. Biophys J 89:1346–1352

    CAS  Google Scholar 

  39. Langhojer F, Dimler F, Jung G, Brixner T (2009) Ultrafast photoconversion of the green fluorescent protein studied by accumulative femtosecond spectroscopy. Biophys J 96:2763–2770

    CAS  Google Scholar 

  40. Habuchi S, Cotlet M, Gensch T, Bednarz T, Haber-Pohlmeier S, Rozenski J, Dirix G, Michiels J, Vanderleyden J, Heberle J, De Schryver FC, Hofkens J (2005) Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed. J Am Chem Soc 127:8977–8984

    CAS  Google Scholar 

  41. He X, Bell AF, Tonge P (2002) Isotopic labeling and normal-mode analysis of a model green fluorescent protein chromophore. J Phys Chem B 106:6056–6066

    CAS  Google Scholar 

  42. Bublitz GU, Boxer SG (1997) Stark spectroscopy: applications in chemistry, biology, and materials science. Annu Rev Phys Chem 48:213–242

    CAS  Google Scholar 

  43. Anderson JM, Kocji JK (1970) Manganese(III) complexes in oxidative decarboxylation of acids. J Am Chem Soc 92:2450–2460

    CAS  Google Scholar 

  44. Kolbe H (1849) Untersuchungen über die Elektrolyse organischer Verbindungen. Ann Chem Pharm 69:257–294

    Google Scholar 

  45. Cao W, Ye X, Sjodin T, Christian JF, Demidov AA, Berezhna S, Wang W, Barrick D, Sage JT, Champion PM (2004) Investigations of photolysis and rebinding kinetics in myoglobin using proximal ligand replacements. Biochemistry 43:11109–11117

    CAS  Google Scholar 

  46. Ye X, Yu A, Georgiev GY, Gruia F, Ionascu D, Cao W, Sage JT, Champion PM (2005) CO rebinding to protoheme: investigations of the proximal and distal contributions to the geminate rebinding barrier. J Am Chem Soc 127:5854–5861

    CAS  Google Scholar 

  47. Zeng W, Silvernail NJ, Wharton DC, Georgiev GY, Leu BM, Scheidt WR, Zhao J, Sturhahn W, Alp EE, Sage JT (2005) Direct probe of iron vibrations elucidates NO activation of heme proteins. J Am Chem Soc 127:11200–11201

    CAS  Google Scholar 

  48. Lossau H, Kummer A, Heinecke R, Pollinger-Dammer F, Kompa C, Bieser G, Jonsson T, Silva CM, Yang MM, Youvan DC, Michel-Beyerle ME (1996) Time-resolved spectroscopy of wild-type and mutant green fluorescent proteins reveals excited state deprotonation consistent with fluorophore-protein interactions. Chem Phys 213:1–16

    CAS  Google Scholar 

  49. Hopfield JJ (1974) Electron transfer between biological molecules by thermally activated tunneling. Proc Natl Acad Sci USA 71:3640–3644

    CAS  Google Scholar 

  50. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322

    CAS  Google Scholar 

  51. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron transfer. Nature 355:796–802

    CAS  Google Scholar 

  52. Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402:47–52

    CAS  Google Scholar 

  53. McAnaney TB, Zeng W, Doe CF, Bhanji N, Wakelin S, Pearson DS, Abbyad P, Shi X, Boxer SG, Bagshaw CR (2005) Protonation, photobleaching, and photoactivation of yellow fluorescent protein (YFP 10C): a unifying mechanism. Biochemistry 44:5510–5524

    CAS  Google Scholar 

  54. Henderson JN, Gepshtein R, Heenan JR, Kallio K, Huppert D, Remington SJ (2009) Structure and mechanism of the photoactivatable green fluorescent protein. J Am Chem Soc 131:4176–4177

    CAS  Google Scholar 

  55. Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol Suppl:S7–S14

    Google Scholar 

  56. Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300:87–91

    CAS  Google Scholar 

  57. Chudakov DM, Lukyanov S, Lukyanov KA (2007) Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat Protoc 2:2024–2032

    CAS  Google Scholar 

  58. Chudakov DM, Lukyanov S, Lukyanov KA (2007b) Using photoactivatable fluorescent protein Dendra2 to track protein movement. Biotechniques 42:553, 555, 557 passim

    Google Scholar 

  59. Chudakov DM, Verkhusha VV, Staroverov DB, Souslova EA, Lukyanov S, Lukyanov KA (2004) Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol 22:1435–1439

    CAS  Google Scholar 

  60. Chudakov DM, Belousov VV, Zaraisky AG, Novoselov VV, Staroverov DB, Zorov DB, Lukyanov S, Lukyanov KA (2003) Kindling fluorescent proteins for precise in vivo photolabeling. Nat Biotechnol 21:191–194

    CAS  Google Scholar 

  61. Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV (2005) Innovation: photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol 6:885–891

    CAS  Google Scholar 

  62. Verkhusha VV, Sorkin A (2005) Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem Biol 12:279–285

    CAS  Google Scholar 

  63. Schäfer LV, Groenhof G, Boggio-Pasqua M, Robb MA, Grubmuller H (2008) Chromophore protonation state controls photoswitching of the fluoroprotein asFP595. PLoS Comput Biol 4(3):e1000034

    Google Scholar 

  64. Schäfer LV, Groenhof G, Klingen AR, Ullmann GM, Boggio-Pasqua M, Robb MA, Grubmuller H (2007) Photoswitching of the fluorescent protein asFP595: mechanism, proton pathways, and absorption spectra. Angew Chem Int Ed Engl 46:530–536

    Google Scholar 

  65. Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99:12651–12656

    CAS  Google Scholar 

  66. Nienhaus K, Nienhaus GU, Wiedenmann J, Nar H (2005) Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP. Proc Natl Acad Sci USA 102:9156–9159

    CAS  Google Scholar 

  67. Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Rocker C, Salih A, Spindler KD, Nienhaus GU (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci USA 101:15905–15910

    CAS  Google Scholar 

  68. Habuchi S, Tsutsui H, Kochaniak AB, Miyawaki A, van Oijen AM (2008) mKikGR, a monomeric photoswitchable fluorescent protein. PLoS ONE 3(12):e3944

    Google Scholar 

  69. Tsutsui H, Karasawa S, Shimizu H, Nukina N, Miyawaki A (2005) Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep 6:233–238

    CAS  Google Scholar 

  70. Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24:461–465

    CAS  Google Scholar 

  71. Tsutsui H, Shimizu H, Mizuno H, Nukina N, Furuta T, Miyawaki A (2009) The E1 mechanism in photo-induced beta-elimination reactions for green-to-red conversion of fluorescent proteins. Chem Biol 16:1140–1147

    CAS  Google Scholar 

  72. Mizuno H, Mal TK, Tong KI, Ando R, Furuta T, Ikura M, Miyawaki A (2003) Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol Cell 12:1051–1058

    CAS  Google Scholar 

  73. Hayashi I, Mizuno H, Tong KI, Furuta T, Tanaka F, Yoshimura M, Miyawaki A, Ikura M (2007) Crystallographic evidence for water-assisted photo-induced peptide cleavage in the stony coral fluorescent protein Kaede. J Mol Biol 372:918–926

    CAS  Google Scholar 

  74. Lelimousin M, Adam V, Nienhaus GU, Bourgeois D, Field MJ (2009) Photoconversion of the fluorescent protein EosFP: a hybrid potential simulation study reveals intersystem crossings. J Am Chem Soc 131:16814–16823

    CAS  Google Scholar 

  75. Gurskaya NG, Fradkov AF, Pounkova NI, Staroverov DB, Bulina ME, Yanushevich YG, Labas YA, Lukyanov S, Lukyanov KA (2003) A colourless green fluorescent protein homologue from the non-fluorescent hydromedusa Aequorea coerulescens and its fluorescent mutants. Biochem J 373:403–408

    CAS  Google Scholar 

  76. Pletneva NV, Pletnev VZ, Lukyanov KA, Gurskaya NG, Goryacheva EA, Martynov VI, Wlodawer A, Dauter Z, Pletnev S (2010) Structural evidence for a dehydrated intermediate in green fluorescent protein chromophore biosynthesis. J Biol Chem 285:15978–15984

    CAS  Google Scholar 

  77. Barondeau DP, Tainer JA, Getzoff ED (2006) Structural evidence for an enolate intermediate in GFP fluorophore biosynthesis. J Am Chem Soc 128:3166–3168

    CAS  Google Scholar 

  78. Pouwels LJ, Zhang L, Chan NH, Dorrestein PC, Wachter RM (2008) Kinetic isotope effect studies on the de novo rate of chromophore formation in fast- and slow-maturing GFP variants. Biochemistry 47:10111–10122

    CAS  Google Scholar 

  79. Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306:1370–1373

    CAS  Google Scholar 

  80. Andresen M, Stiel AC, Trowitzsch S, Weber G, Eggeling C, Wahl MC, Hell SW, Jakobs S (2007) Structural basis for reversible photoswitching in Dronpa. Proc Natl Acad Sci USA 104:13005–13009

    CAS  Google Scholar 

  81. Stiel AC, Trowitzsch S, Weber G, Andresen M, Eggeling C, Hell SW, Jakobs S, Wahl MC (2007) 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem J 402:35–42

    CAS  Google Scholar 

  82. Andresen M, Wahl MC, Stiel AC, Grater F, Schafer LV, Trowitzsch S, Weber G, Eggeling C, Grubmuller H, Hell SW, Jakobs S (2005) Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc Natl Acad Sci USA 102:13070–13074

    CAS  Google Scholar 

  83. Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA, Savitsky AP, Markelov ML, Zaraisky AG, Zhao X, Fang Y, Tan W, Lukyanov SA (2000) Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275:25879–25882

    CAS  Google Scholar 

  84. Quillin ML, Anstrom DM, Shu X, O’Leary S, Kallio K, Chudakov DM, Remington SJ (2005) Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 A resolution. Biochemistry 44:5774–5787

    CAS  Google Scholar 

  85. Wilmann PG, Petersen J, Pettikiriarachchi A, Buckle AM, Smith SC, Olsen S, Perugini MA, Devenish RJ, Prescott M, Rossjohn J (2005) The 2.1A crystal structure of the far-red fluorescent protein HcRed: inherent conformational flexibility of the chromophore. J Mol Biol 349:223–237

    CAS  Google Scholar 

  86. Brakemann T, Weber G, Andresen M, Groenhof G, Stiel AC, Trowitzsch S, Eggeling C, Grubmuller H, Hell SW, Wahl MC, Jakobs S (2010) Molecular basis of the light-driven switching of the photochromic fluorescent protein Padron. J Biol Chem 285:14603–14609

    CAS  Google Scholar 

  87. Adam V, Lelimousin M, Boehme S, Desfonds G, Nienhaus K, Field MJ, Wiedenmann J, McSweeney S, Nienhaus GU, Bourgeois D (2008) Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. Proc Natl Acad Sci USA 105:18343–18348

    CAS  Google Scholar 

  88. Faro AR, Adam V, Carpentier P, Darnault C, Bourgeois D, de Rosny E (2010) Low-temperature switching by photoinduced protonation in photochromic fluorescent proteins. Photochem Photobiol Sci 9:254–262

    CAS  Google Scholar 

  89. Henderson JN, Ai HW, Campbell RE, Remington SJ (2007) Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc Natl Acad Sci USA 104:6672–6677

    CAS  Google Scholar 

  90. Li X, Chung LW, Mizuno H, Miyawaki A, Morokuma K (2010) A theoretical study on the nature of on- and off-states of reversibly photoswitching fluorescent protein Dronpa: absorption, emission, protonation, and Raman. J Phys Chem B 114:1114–1126

    CAS  Google Scholar 

  91. Mizuno H, Mal TK, Walchli M, Kikuchi A, Fukano T, Ando R, Jeyakanthan J, Taka J, Shiro Y, Ikura M, Miyawaki A (2008) Light-dependent regulation of structural flexibility in a photochromic fluorescent protein. Proc Natl Acad Sci USA 105:9227–9232

    CAS  Google Scholar 

  92. Habuchi S, Ando R, Dedecker P, Verheijen W, Mizuno H, Miyawaki A, Hofkens J (2005) Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc Natl Acad Sci USA 102:9511–9516

    CAS  Google Scholar 

  93. Fron E, Flors C, Schweitzer G, Habuchi S, Mizuno H, Ando R, De Schryver FC, Miyawaki A, Hofkens J (2007) Ultrafast excited-state dynamics of the photoswitchable protein dronpa. J Am Chem Soc 129:4870–4871

    CAS  Google Scholar 

  94. Chudakov DM, Feofanov AV, Mudrik NN, Lukyanov S, Lukyanov KA (2003) Chromophore environment provides clue to “kindling fluorescent protein” riddle. J Biol Chem 278:7215–7219

    CAS  Google Scholar 

  95. Olsen S, Lamothe K, Martinez TJ (2010) Protonic gating of excited-state twisting and charge localization in GFP chromophores: a mechanistic hypothesis for reversible photoswitching. J Am Chem Soc 132:1192–1193

    CAS  Google Scholar 

  96. Polyakov IV, Grigorenko BL, Epifanovsky EM, Krylov AI, Nemukhin AV (2010) Potential energy landscape of the electronic states of the GFP chromophore in different protonation forms: electronic transition energies and conical intersections. J Chem Theory Comput 6:2377–2387

    CAS  Google Scholar 

  97. Bell AF, He X, Wachter RM, Tonge PJ (2000) Probing the ground state structure of the green fluorescent protein chromophore using Raman spectroscopy. Biochemistry 39:4423–4431

    CAS  Google Scholar 

  98. Schuttrigkeit TA, von Feilitzsch T, Kompa CK, Lukyanov KA, Savitsky AP, Voityuk AA, Michel-Beyerle ME (2006) Femtosecond study of light-induced fluorescence increase of the dark chromoprotein asFP595. Chem Phys 323:149–160

    Google Scholar 

  99. Weber W, Helms V, McCammon JA, Langhoff PW (1999) Shedding light on the dark and weakly fluorescent states of green fluorescent proteins. Proc Natl Acad Sci USA 96:6177–6182

    CAS  Google Scholar 

  100. Blum C, Subramaniam V (2009) Single-molecule spectroscopy of fluorescent proteins. Anal Bioanal Chem 393:527–541

    CAS  Google Scholar 

  101. Dickson RM, Cubitt AB, Tsien RY, Moerner WE (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388:355–358

    CAS  Google Scholar 

  102. Scharnagl C, Raupp-Kossmann RA (2004) Solution pK(a) values of the green fluorescent protein chromophore from hybrid quantum-classical calculations. J Phys Chem B 108:477–489

    CAS  Google Scholar 

  103. Petersen J, Wilmann PG, Beddoe T, Oakley AJ, Devenish RJ, Prescott M, Rossjohn J (2003) The 2.0-A crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. J Biol Chem 278:44626–44631

    CAS  Google Scholar 

  104. Wiedenmann J, Schenk A, Rocker C, Girod A, Spindler KD, Nienhaus GU (2002) A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proc Natl Acad Sci USA 99:11646–11651

    CAS  Google Scholar 

  105. Bravaya KB, Bochenkova AV, Granovsky AA, Savitsky AP, Nemukhin AV (2008) Modeling photoabsorption of the asFP595 chromophore. J Phys Chem A 112:8804–8810

    CAS  Google Scholar 

  106. Andresen M, Stiel AC, Folling J, Wenzel D, Schonle A, Egner A, Eggeling C, Hell SW, Jakobs S (2008) Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat Biotechnol 26:1035–1040

    CAS  Google Scholar 

Download references

Acknowledgements

Jasper van Thor is a Royal Society University Research Fellow. JvT acknowledges support from the European Research Council (Grant Agreement N° 208650) and EPSRC (Grant Ref EP/I003304/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasper J. van Thor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Thor, J.J. (2011). Photoconversion of the Green Fluorescent Protein and Related Proteins. In: Jung, G. (eds) Fluorescent Proteins I. Springer Series on Fluorescence, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2011_20

Download citation

Publish with us

Policies and ethics