Skip to main content

Near-Infrared Luminescent Labels and Probes Based on Lanthanide Ions and Their Potential for Applications in Bioanalytical Detection and Imaging

  • Chapter
  • First Online:
Lanthanide Luminescence

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 7))

Abstract

The use of near-infrared (NIR) light in bioanalytical detection and biological imaging presents certain advantages over UV–visible light in terms of penetration depth, reduction of background signals and decreased phototoxicity. Under suitable conditions, complexes of ytterbium(III)-, neodymium(III)- and erbium (III)-containing organic chromophores may display relatively bright NIR luminescence upon excitation with visible light. This contrasts with the more commonly studied visibly luminescent europium(III) and terbium(III) complexes, which generally need UV or blue light for excitation. We discuss the current knowledge on NIR luminescence of lanthanide complexes (including holmium(III), praseodymium(III) and thulium(III)) in solution. It is suggested that among the NIR luminescent lanthanide complexes, ytterbium(III) complexes are likely to be the most promising candidates for biophotonic applications. The study of NIR luminescence and its application in bioanalytical detection are enabled by progress in detector and light source technology, which are also addressed. Recent developments in lanthanide-based NIR luminescent materials, including complexes and doped nanoparticles, are discussed in the light of their potential for bioanalytical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCD:

Charge-coupled device

DNA:

Deoxyribonucleic acid

DTPA:

Diethylenetriamine pentaacetic acid (or any of its conjugate acetate ions)

ECL:

Electrochemiluminescence

EDTA:

Ethylenediamine tetraacetic acid (or any of its conjugate acetate ions)

FRET:

Förster resonance energy transfer, a form of excitation energy transfer (sometimes referred to with the incorrect term “fluorescence resonance energy transfer”)

NIR:

Near-infrared

OD:

Optical density

PMT:

Photomultiplier tube

UV:

Ultraviolet

Tris:

Tris(hydroxymethyl)aminomethane

ε :

Molar absorption coefficient

ε Ln :

Molar absorption coefficient of the lanthanide ion

ε sens :

Molar absorption coefficient of the sensitiser

εΦ :

Photoluminescence brightness (product of molar absorption coefficient and photoluminescence quantum yield)

η sens :

Excitation energy transfer efficiency from the sensitiser to the lanthanide ion in a luminescent lanthanide complex

τ obs :

Observed photoluminescence decay time

τ rad :

Radiative (or “natural”) lifetime of the luminescent transition

Φ tot :

Overall photoluminescence quantum yield of a sensitiser-modified luminescent lanthanide complex (excitation via the sensitiser)

Φ Ln :

Intrinsic photoluminescence quantum yield of the lanthanide ion in a luminescent lanthanide complex

References

  1. Taroni P, Pifferi A, Torricelli A, Comelli D, Cubeddu R (2003) Photochem Photobiol Sci 2:124–129

    Article  CAS  Google Scholar 

  2. Valeur B (2008) Sons et lumière. Editions Belin, Paris, p 35

    Google Scholar 

  3. Abugo OO, Nair R, Lakowicz JR (2000) Anal Biochem 279:142–150

    Article  CAS  Google Scholar 

  4. Crosby GA, Kasha M (1958) Spectrochim Acta 10:377–382

    Article  CAS  Google Scholar 

  5. Heller A (1967) J Am Chem Soc 89:167–168

    Article  Google Scholar 

  6. Werts MHV, Jukes RTF, Verhoeven JW (2002) Phys Chem Chem Phys 4:1542–1548

    Article  CAS  Google Scholar 

  7. Werts MHV, Verhoeven JW, Hofstraat JW (2000) J Chem Soc Perkin Trans 2:433–439

    Google Scholar 

  8. Hasegawa Y, Wada Y, Yanagida S (2004) J Photochem Photobiol C 5:183–202

    Article  CAS  Google Scholar 

  9. Beeby A, Dickins RS, Faulkner S, Parker D, Williams JAG (1997) Chem Commun 1401–1402

    Google Scholar 

  10. Davies GM, Adams H, Pope SJA, Faulkner S, Ward MD (2005) Photochem Photobiol Sci 4:829–834

    Article  CAS  Google Scholar 

  11. Moore EG, Szigethy G, Xu J, Palsson LO, Beeby A, Raymond KN (2008) Angew Chem Int Ed 47:9500–9503

    Article  CAS  Google Scholar 

  12. Zhang J, Badger PD, Geib SJ, Petoud S (2005) Angew Chem Int Ed 44:2508–2512

    Article  CAS  Google Scholar 

  13. Hasegawa Y, Ohkubo T, Sogabe K, Kawamura Y, Wada Y, Nakashima N, Yanagida S (2000) Angew Chem Int Ed Engl 39:357–360

    Article  CAS  Google Scholar 

  14. Gouterman M, Schumaker CD, Srivastava TS, Yonetani T (1976) Chem Phys Lett 40:456–461

    Article  CAS  Google Scholar 

  15. Gaiduk MI, Grigoryants VV, Mironov AF, Rumyantseva VD, Chissov VI, Sukhin GM (1990) J Photochem Photobiol B 7:15–20

    Article  CAS  Google Scholar 

  16. Rusakova NV, Meshkova SB (1990) Zh Anal Khim 45:1914–1921

    CAS  Google Scholar 

  17. Rusakova NV, Meshkova SB, Venchikov VY, Pyatosin VE, Tsvirko MP (1992) J Appl Spectrosc 56:488–490

    Article  Google Scholar 

  18. Werts MHV, Hofstraat JW, Geurts FAJ, Verhoeven JW (1997) Chem Phys Lett 276:196–201

    Article  CAS  Google Scholar 

  19. Hasegawa Y, Kimura Y, Murakoshi K, Wada Y, Kim JH, Nakashima N, Yamanaka T, Yanagida S (1996) J Phys Chem 100:10201–10205

    Article  CAS  Google Scholar 

  20. Beeby A, Faulkner S (1997) Chem Phys Lett 266:116–122

    Article  CAS  Google Scholar 

  21. Ding X, Alford JM, Wright JC (1997) Chem Phys Lett 269:72–78

    Article  CAS  Google Scholar 

  22. Korovin Y, Rusakova N (2004) J Alloys Compd 374:311–314

    Article  CAS  Google Scholar 

  23. Li M, Selvin PR (1995) J Am Chem Soc 117:8132–8138

    Article  CAS  Google Scholar 

  24. Werts MHV, Nerambourg N, Pélégry D, Le Grand Y, Blanchard-Desce M (2005) Photochem Photobiol Sci 4:531–538

    Article  CAS  Google Scholar 

  25. Klink SI, Keizer H, van Veggel FCJM (2000) Angew Chem Int Ed 39:4319

    CAS  Google Scholar 

  26. Beeby A, Clarkson IM, Dickins RS, Faulkner S, Parker D, Royle L, Sousa AS, Williams JAG, Woods M (1999) J Chem Soc Perkin Trans 2:493–503

    Google Scholar 

  27. Werts MHV, Woudenberg RH, Emmerink PG, van Gassel R, Hofstraat JW, Verhoeven JW (2000) Angew Chem Int Ed 39:4542–4544

    Article  CAS  Google Scholar 

  28. Bassett AP, Van Deun R, Nockemann P, Glover PB, Kariuki BM, Van Hecke K, Van Meervelt L, Pikramenou Z (2005) Inorg Chem 44:6140–6142

    Article  CAS  Google Scholar 

  29. Glover PB, Bassett AP, Nockemann P, Kariuki BM, Van Deun R, Pikramenou Z (2007) Chem Eur J 13:6308–6320

    Article  CAS  Google Scholar 

  30. Liu H, Yuan L, Yang X, Wang K (2003) Chem Biol Interact 146:27–37

    Article  CAS  Google Scholar 

  31. Voloshin AI, Shavaleev NM, Kazakov VP (2001) J Lumin 93:199–204

    Article  CAS  Google Scholar 

  32. Voloshin AI, Shavaleev NM, Kazakov VP (2000) J Lumin 91:49–58

    Article  CAS  Google Scholar 

  33. Davies GM, Aarons RJ, Motson GR, Jeffery JC, Adams H, Faulkner S, Ward MD (2004) Dalton Trans 1136–1144

    Google Scholar 

  34. Sharma PK, Van Doorn AR, Staring AGJ (1994) J Lumin 62:219–225

    Article  CAS  Google Scholar 

  35. Serra OA, Nassar EJ, Calefi PS, Rosa ILV (1998) J Alloys Compd 275:838–840

    Article  Google Scholar 

  36. Zhang J, Petoud S (2008) Chem Eur J 14:1264–1272

    Article  CAS  Google Scholar 

  37. Blasse G, Schipper W, Hamelink JJ (1991) Inorg Chim Acta 189:77–80

    Article  CAS  Google Scholar 

  38. Azenha ME, Burrows HD, Fonseca SM, Ramos ML, Rovisco J, de Melo JS, Sobral AJFN, Kogej K (2008) New J Chem 32:1531–1535

    Article  CAS  Google Scholar 

  39. Li WL, Mishima T, Adachi GY (1987) Inorg Chim Acta 131:287–291

    Article  CAS  Google Scholar 

  40. Tapia MJ, Burrows HD (2002) Langmuir 18:1872–1876

    Article  CAS  Google Scholar 

  41. Fivet V, Quinet P, Biemont E, Jorissen A, Yushchenko AV, Van Eck S (2007) Mon Not R Astron Soc 382:944

    Article  Google Scholar 

  42. Fivet V, Quinet P, Biemont E, Jorissen A, Yushchenko AV, Van Eck S (2007) Mon Not R Astron Soc 380:771–780

    Article  CAS  Google Scholar 

  43. Krause C et al (2003) ORNL Rev 36:3

    Google Scholar 

  44. Krupke WF (1972) IEEE J Quant Electron 8:725

    Article  CAS  Google Scholar 

  45. Bailey MP, Rocks BF, Riley C (1984) Analyst (London) 109:1449–1450

    Article  CAS  Google Scholar 

  46. Hebbink GA, Klink SI, Grave L, Alink PGBO, van Veggel FCJM (2002) Chem Phys Chem 3:1014–1018

    CAS  Google Scholar 

  47. Slooff LH, Polman A, Klink SI, Hebbink GA, Grave L, van Veggel FCJM, Reinhoudt DN, Hofstraat JW (2000) Opt Mater 14:101–107

    Article  CAS  Google Scholar 

  48. Beeby A, Dickins RS, FitzGerald S, Govenlock LJ, Maupin CL, Parker D, Riehl J, Siligardi G, Williams J (2000) Chem Commun 1183–1184

    Google Scholar 

  49. Tsvirko M, Korovin Y, Rusakova N (2007) J Phys Conf Ser 79:012025

    Article  Google Scholar 

  50. Zhuravlyov S, Rusakova N, Korovin Y (2008) J Alloys Compd 451:334–337

    Article  CAS  Google Scholar 

  51. Seltzer MD, Fallis S, Hollins RA, Prokopuk N, Bui RN (2005) J Fluoresc 15:597–603

    Article  CAS  Google Scholar 

  52. Chudinov AV, Rumyantseva VD, Lobanov AV, Chudinova GK, Stomakhin AA, Mironov AF (2004) Russ J Bioorganic Chem 30:89–93

    Article  CAS  Google Scholar 

  53. Jiang FL, Poon CT, Wong WK, Koon HK, Mak NK, Choi CY, Kwong DWJ, Liu Y (2008) Chem Bio Chem 9:1034–1039

    Google Scholar 

  54. Turro NJ (1978) Modern molecular photochemistry. Benjamin/Cummings, Menlo Park, CA

    Google Scholar 

  55. Horrocks William DeW, Jr BJP, Smith WD, Supkowski RM (1997) J Am Chem Soc 119:5972–5973

    Article  CAS  Google Scholar 

  56. Hofstraat JW, Oude Wolbers MP, Van Veggel FCJM, Reinhoudt DN, Werts MHV, Verhoeven JW (1998) J Fluoresc 8:301–308

    Article  CAS  Google Scholar 

  57. Shi J, Zhang X, Neckers DC (1992) J Org Chem 57:4418–4421

    Article  CAS  Google Scholar 

  58. Shi J, Zhang X, Neckers DC (1993) Tetrahedron Lett 34:6013–6016

    Article  CAS  Google Scholar 

  59. Hebbink G, Grave L, Woldering L, Reinhoudt D, van Veggel F (2003) J Phys Chem A 107:2483–2491

    Article  CAS  Google Scholar 

  60. Steemers FJ, Verboom W, Reinhoudt DN, Van der Tol EB, Verhoeven JW (1995) J Am Chem Soc 117:9408–9414

    Article  CAS  Google Scholar 

  61. Werts MHV, Duin MA, Hofstraat JW, Verhoeven JW (1999) Chem Commun 799–800

    Google Scholar 

  62. Hebbink GA, Reinhoudt DN, van Veggel FCJM (2001) Eur J Org Chem 4101–4106

    Google Scholar 

  63. Eaton DF (1988) Pure Appl Chem 60:1107–1114

    Article  CAS  Google Scholar 

  64. Beverloo HB, Van Schadewijk A, Van Gelderen-Boele S, Tanke HJ (1990) Cytometry 11:784–792

    Article  CAS  Google Scholar 

  65. Van de Rijke F, Zijlmans H, Li S, Vail T, Raap AK, Niedbala RS, Tanke HJ (2001) Nat Biotechnol 19:273–276

    Article  Google Scholar 

  66. Riwotzki K, Meyssamy H, Kornowski A, Haase M (2000) J Phys Chem B 104:2824–2828

    Article  CAS  Google Scholar 

  67. Stouwdam JW, Hebbink GA, Huskens J, Van Veggel FCJM (2003) Chem Mater 15:4604–4616

    Article  CAS  Google Scholar 

  68. Heer S, Kömpe K, Güdel HU, Haase M (2004) Adv Mater 16:2102–2105

    Article  CAS  Google Scholar 

  69. Wei Y, Lu F, Zhang X, Chen D (2007) J Alloys Compd 427:333–340

    Article  CAS  Google Scholar 

  70. Chengelis DA, Yingling AM, Badger PD, Shade CM, Petoud S (2005) J Am Chem Soc 127:16752–16753

    Article  CAS  Google Scholar 

  71. Diamente PR, Burke RD, Van Veggel FCJM (2006) Langmuir 22:1782–1788

    Article  CAS  Google Scholar 

  72. Lim SF, Riehn R, Ryu WS, Khanarian N, Tung C, Tank D, Austin RH (2006) Nano Lett 6:169–174

    Article  CAS  Google Scholar 

  73. Driesen K, Van Deun R, Görller-Walrand C, Binnemans K (2004) Chem Mater 16:1531–1535

    Article  CAS  Google Scholar 

  74. Sun L, Yu J, Zhang H, Meng Q, Ma E, Peng C, Yang K (2007) Microporous Mesoporous Mater 98:156–165

    Article  CAS  Google Scholar 

  75. Zipfel WR, Williams RM, Webb WW (2003) Nat Biotechnol 21:1369–1377

    Article  CAS  Google Scholar 

  76. Lakowicz JR, Piszczek G, Maliwal BP, Gryczynski I (2001) Chem Phys Chem 4:247–252

    Google Scholar 

  77. White GF, Litvinenko KL, Meech SR, Andrews DL, Thomson AJ (2004) Photochem Photobiol Sci 3:47–55

    Article  CAS  Google Scholar 

  78. Fu LM, Wen XF, Ai XC, Sun Y, Wu YS, Zhang JP, Wang Y (2005) Angew Chem Int Ed 44:747–750

    Article  CAS  Google Scholar 

  79. Piszczek G, Gryczynski I, Maliwal BP, Lakowicz JR (2002) J Fluoresc 12:15–17

    Article  CAS  Google Scholar 

  80. Meijer EW, Wijnberg H (1982) J Chem Ed 59:1071–1072

    Article  CAS  Google Scholar 

  81. Wildes PD, White EH (1971) J Am Chem Soc 93:6286–6288

    Article  CAS  Google Scholar 

  82. Bard AJ (ed) (2004) Electrogenerated chemiluminescence. CRC, Boca Raton, FL

    Google Scholar 

  83. Liu BF, Ozaki M, Utsumi Y, Hattori T, Terabe S (2003) Anal Chem 75:36–41

    Article  CAS  Google Scholar 

  84. Zhan W, Alvarez J, Crooks RM (2002) J Am Chem Soc 124:13265–13270

    Article  CAS  Google Scholar 

  85. Kazakov VP, Voloshin AI, Shavaleev NM (1998) J Photochem Photobiol A 119:177–186

    Article  CAS  Google Scholar 

  86. Ala-Kleme T, Haapakka K, Latva M (1999) Anal Chim Acta 395:205–211

    Article  CAS  Google Scholar 

  87. Jimenez-Banzo A, Ragas X, Kapusta P, Nonell S (2008) Photochem Photobiol Sci 7:1003–1010

    Article  CAS  Google Scholar 

  88. Snyder JW, Zebger I, Gao Z, Poulsen L, Frederiksen PK, Skovsen E, McIlroy SP, Klinger M, Andersen LK, Ogilby PR (2004) Acc Chem Res 37:894–901

    Article  CAS  Google Scholar 

  89. Bechet D, Couleaud P, Frochot C, Viriot ML, Guillemin F, Barberi-Heyob M (2008) Trends Biotechnol 26:612–621

    Article  CAS  Google Scholar 

  90. Wilson BC, Patterson MS (2008) Phys Med Biol 53:R61–R109

    Article  CAS  Google Scholar 

  91. Dossing A (2005) Eur J Inorg Chem 1425–1434

    Google Scholar 

  92. Parker D, Senanayake PK, Williams JAG (1998) J Chem Soc Perkin Trans 2:2129–2139

    Google Scholar 

  93. Beeby A, Faulkner S, Williams JAG (2002) J Chem Soc Dalton Trans 1918–1922

    Google Scholar 

  94. Coldwell JB, Felton CE, Harding LP, Moon R, Pope SJA, Rice CR (2006) Chem Commun 5048–5050

    Google Scholar 

  95. Bodi A, Borbas KE, Bruce JI (2007) Dalton Trans 4352–4358

    Google Scholar 

  96. Chauvin AS, Comby S, Song B, Vandevyver CDB, Bunzli JCG (2008) Chem Eur J 14:1726–1739

    Article  CAS  Google Scholar 

  97. Shealy DB, Lipowska M, Lipowski J, Narayanan N, Sutter S, Strekowski L, Patonay G (1995) Anal Chem 67:247–251

    Article  CAS  Google Scholar 

  98. Lin Y, Weissleder R, Tung CH (2002) Bioconjug Chem 13:605–610

    Article  Google Scholar 

  99. Weissleder R, Tung CH, Mahmood U, Bogdanov A (1999) Nat Biotechnol 17:375–378

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martinus H. V. Werts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Werts, M.H.V. (2010). Near-Infrared Luminescent Labels and Probes Based on Lanthanide Ions and Their Potential for Applications in Bioanalytical Detection and Imaging. In: Hänninen, P., Härmä, H. (eds) Lanthanide Luminescence. Springer Series on Fluorescence, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2010_9

Download citation

Publish with us

Policies and ethics