Skip to main content

Imaging of Lanthanide Luminescence by Time-Resolved Microscopy

  • Chapter
  • First Online:
Book cover Lanthanide Luminescence

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 7))

Abstract

Time-resolved fluorescence microscopy (TRFM) of objects stained with luminescent lanthanides chelate-based reagents requires adaptation of microscope equipment to distinguish the long-lived fluorescence of the lanthanide from scattered excitation light and relatively short-lived autofluorescence of biological objects and optical components. How this is accomplished depends on the choice of image scanning, e.g., wide-field microscopy (image plane scanning) or object plane scanning [(confocal) laser microscopy]. Typically, excitation light is presented as pulses by applying mechanically chopping of a continuous light beam, or by using flash lamps or pulse lasers. The detector (CCD camera, photomultiplier tube) is time-gated to record the delayed signal in a defined time interval, either electronically or using phase-locked choppers in the emission pathway. This chapter discusses strategies for optimal TRFM and reviews the main existing configurations used for lanthanide imaging. In addition, special techniques such are Fluorescence Lifetime Imaging Microscopy (FLIM) and Time-Correlated Single Photon Counting (TCSPC) are presented and discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCD:

Charge-coupled device

DELFIA:

Dissociation enhanced lanthanide fluoroimmunoassay

FLIM:

Fluorescence lifetime imaging microscopy

FRET:

Fluorescence resonance energy transfer

LED:

Light emitting diode

MRI:

Magnetic resonance imaging

PMT:

Photomultiplier tube

TCSPC:

Time-correlated single photon counting

TR-FIA:

Time-resolved fluoroimmuno assay

TRFM:

Time-resolved fluorescence microscopy

References

  1. Thaer AA, Sernetz M (1973) Fluorescence techniques in cell biology. Spinger verlag, Berlin

    Google Scholar 

  2. Sacchi CA, Swelto O, Prenna G (1974) Pulsed tunable lasers in cytofluorometry. Histochem J 6:251–258

    Article  CAS  Google Scholar 

  3. Mueller W, Hirschfeld T (1977) Background reduction in fluorochrome staining. Histochem J 9:121–123

    Article  CAS  Google Scholar 

  4. Aubin JE (1979) Autofluorescence of viable cultured mammalian cells. J Histochem Cytochem 27:36–43

    Article  CAS  Google Scholar 

  5. Soini EJ, Pelliniemi LJ, Hemmila IA et al (1988) Lanthanide chelates as new fluorochrome labels for cytochemistry. J Histochem Cytochem 36:1449–1451

    Article  CAS  Google Scholar 

  6. Hiraoka Y, Sedat JW, Agard DA (1987) The use of a charge-coupled device for quantitative optical microscopy of biological structures. Science 238:36–414

    Article  CAS  Google Scholar 

  7. Beverloo HB, van Schadewijk A, Gelderen-Boele S et al (1990) Inorganic phosphors as new labels for immunocytochemistry and time-resolved microscopy. Cytometry 11:784–792

    Article  CAS  Google Scholar 

  8. Beverloo HB, van Schadewijk A, Bonnet J et al (1992) Preparation and microscopic visualization of multicolor luminescent immunophosphors. Cytometry 13:561–570

    Article  CAS  Google Scholar 

  9. Seveus L, Vaisala M, Syrjanen S et al (1992) Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization. Cytometry 13:329–338

    Article  CAS  Google Scholar 

  10. Marriott G, Heidecker M, Diamandis EP (1994) Time-resolved delayed luminescence image microscopy using an europium chelate complex. Biophys J 67:957–965

    Article  CAS  Google Scholar 

  11. Verwoerd NP, Hennink EJ, Bonnet J et al (1994) Use of ferroelectric liquid crystal shutters for time-resolved fluorescence microscopy. Cytometry 16:113–117

    Article  CAS  Google Scholar 

  12. de Haas RR, van Gijlswijk RPM, van der Tol EB et al (1997) Platinum porphyrins as phosphorescent label for time-resolved microscopy. J Histochem Cytochem 45:1279–1292

    Article  Google Scholar 

  13. Soini AE, Kuusisto A, Meltola N et al (2003) A new technique for multiparameter imaging microscopy: use of long decay time photoluminescent labels enables multiple color immunocytochemistry with low channel-to-channel crosstalk. Microsc Res Tech 62:396–407

    Article  CAS  Google Scholar 

  14. Hennink EJ, de Haas R, Verwoerd NP et al (1996) Evaluation of a time-resolved fluorescence microscope using a phosphorescent Pt-Porphine model system. Cytometry 24:312–320

    Article  CAS  Google Scholar 

  15. Marriott G, Clegg RM, Arndt-Jovin DJ et al (1991) Time-resolved imaging microscopy. Biophys J 60:1374–1387

    Article  CAS  Google Scholar 

  16. Connally RE, Piper JA (2008) Time-gated luminescence microscopy. Ann NY Acad Sci 1130:106–116

    Article  CAS  Google Scholar 

  17. Connally RE, Veal DA, Piper J (2006) High intensity solid-state UV source for gated time-gated luminescence microscopy. Cytometry 69A:1020–1027

    Article  Google Scholar 

  18. Phimphivong S, Kolchens S, Edmiston PL et al (1995) Time-resolved, total internal reflection fluorescence microscopy of cultured cells using a Tb chelate label. Anal Chim Acta 307:403–417

    Article  CAS  Google Scholar 

  19. de Haas RR, Verwoerd NP, van der Corput MPC et al (1996) The use of peroxidase-mediated deposition of biotin-tyramide in combination with time-resolved fluorescence imaging of europium chelate label in immunocytchemistry and in situ hybridization. J Histochem Cytochem 44:1091–1099

    Article  Google Scholar 

  20. Rulli M, Kuusisto A, Salo J et al (1997) Time-resolved fluorescence imaging in islet cell autoantibody quantitation. J Immunol Methods 208:169–179

    Article  CAS  Google Scholar 

  21. Vereb G, Jares-Erijman E, Selvin PR et al (1998) Temporally and spectrally resolved imaging microscopy of lanthanide chelates. Biophys J 74:2210–2222

    Article  CAS  Google Scholar 

  22. Connally R, Veal D, Piper J (2004) Flash lamp excited time-resolved fluorescence microscope suppresses autofluorescence in water concentrates to deliver 11-fold increase signal to noise ratio. J Biomed Opt 9:725–734

    Article  Google Scholar 

  23. Herman P, Lin HJ, Lakowicz JR (2003) Lifetime-based imaging. In: Biomedical photonics handbook. CRC, Boca Raton, pp 9.1–9.30

    Google Scholar 

  24. Clegg RM, Holub O, Gohlke C (2003) Fluorescence lifetime-resolved imaging: measuring lifetimes in an image. In: Methods in enzymology. Academic, New York, pp 509–542

    Google Scholar 

  25. Suhling K, French PMW, Phillips D (2005) Time-resolved fluorescence microscopy. Photochem Photobiol Sci 4:13–22

    Article  CAS  Google Scholar 

  26. Suhling K (2006) Fluorescence lifetime imaging. In: Stephens S (ed) Cell imaging. Scion Publishing Ltd, Bloxham, UK

    Google Scholar 

  27. Gerritsen HC, Sanders R, Draaijer A et al (1996) Fluorescence imaging of oxygen in living cells. J Fluoresc 7:11–15

    Article  Google Scholar 

  28. Gerritsen HC, Asselbergs NAH, Agronska V et al (2002) Fluorescence lifetime imaging in scanning microscopes: acquisition, speed, photon economy and lifetime resolution. J Microsc 206:218–224

    Article  CAS  Google Scholar 

  29. Jovin TM, Marriott G, Clegg RM et al (1989) Photophysical processes exploited in digital microscopy: fluorescence resonance energy transfer and delayed luminescence. Ber Bunsenges Phys Chem 93:387–391

    CAS  Google Scholar 

  30. Lakowicz JR, Szmacinski H, Nowaczyk K et al (1992) Fluorescence lifetime imaging. Anal Biochem 202:316–330

    Article  CAS  Google Scholar 

  31. Becker W, Bergmann A, Hink MA et al (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63:58–66

    Article  CAS  Google Scholar 

  32. Becker W, Bergmann A, Haustein E et al (2006) Fluorescence lifetime images and correlation spectra obtained by multidimensional time-correlated single photon counting. Microsc Res Tech 69:186–195

    Article  CAS  Google Scholar 

  33. Gratton E, Breusegem S, Sutin J et al (2003) Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. J Biomed Opt 8:381–390

    Article  Google Scholar 

  34. Mujumdar RB, Ernst LA, Mujumdar SR et al (1989) Cyanine dye labeling reagents containing isothiocyanate groups. Cytometry 10:11–19

    Article  CAS  Google Scholar 

  35. Mansfield JR, Hoyt C, Lebenson RM (2008) Visualization of microscopy-based spectral imaging data from multi-label tissue sections. Curr Protoc Mol Biol 12:14–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Tanke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tanke, H.J. (2010). Imaging of Lanthanide Luminescence by Time-Resolved Microscopy. In: Hänninen, P., Härmä, H. (eds) Lanthanide Luminescence. Springer Series on Fluorescence, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2010_2

Download citation

Publish with us

Policies and ethics