Skip to main content

Clinical Application of Time-Resolved Fluorometric Assays

  • Chapter
  • First Online:
Lanthanide Luminescence

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 7))

Abstract

The development of time-resolved fluoroimmunoassays (TRFIAs) was driven by the need to eliminate the use of radioactive isotopes in immunoassays and to develop automatic and ultrasensitive immunoassays. The use of time-resolved fluorescence became possible through the development of chelates that bound lanthanides with high affinity and could be coupled to proteins. This was combined with methods to dissociate the primary chelate together with the formation of a highly fluorescent new complex. The advantages of this technology are most efficiently used in sandwich assays using two antibodies, a solid phase antibody capturing the antigen and a detector antibody labeled with a lanthanide complex. This method facilitated a 10–100-fold lower detection limit in combination with an assay range covering 5–6 orders of magnitude. These advantages have facilitated elucidation of new biological phenomena and development of unique clinical applications. These have proved to be especially valuable for the determination of protein hormones and tumor markers. This review describes the clinical application of TRFIA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACT:

α1-Antichymotrypsin

Aio!:

All-in-one

BPH:

Benign prostatic hyperplasia

cpm:

Counts per minute

DELFIAs:

Dissociation-enhanced lanthanide fluoroimmunoassays

Dy:

Dysprosium

Eu:

Europium

fPSA:

Free PSA

FSH:

Follicle-stimulating hormone

GH:

Growth hormone

hCG:

Human chorionic gonadotropin

hCGβ:

β Subunit of human chorionic gonadotropin

hK2:

Human kallikrein 2

IEMA:

Immuno-enzymometric assays

IFMA:

Immunofluorometric assay

Ig:

Immunoglobulin

IRMA:

Immunoradiometric assay

KLK:

Kallikrein-related peptidase

LH:

Luteinizing hormone

MAb:

Monoclonal antibody

PCR:

Polymerase chain reaction

PSA:

Prostate-specific antigen

PSA-ACT:

Complex between PSA and ACT

RIA:

Radioimmunoassay

Sm:

Samarium

Tb:

Terbium

tPSA:

Total PSA (sum of free and complexed PSA)

TRFIA:

Time-resolved fluoroimmunoassay, time-resolved fluorometric assay

TR-FRET:

Time-resolved fluorescence resonance energy transfer

References

  1. Soini E, Kojola H (1983) Time-resolved fluorometer for lanthanide chelates – a new generation of nonisotopic immunoassays. Clin Chem 29:65–68

    CAS  Google Scholar 

  2. Ekins RP (1998) Ligand assays: from electrophoresis to miniaturized microarrays. Clin Chem 44:2015–2030

    CAS  Google Scholar 

  3. Lovgren T, Hemmila I, Pettersson K, Eskola JU, Bertoft E (1984) Determination of hormones by time-resolved fluoroimmunoassay. Talanta 31:909–916

    Article  CAS  Google Scholar 

  4. Hemmila I (1985) Fluoroimmunoassays and immunofluorometric assays. Clin Chem 31:359–370

    CAS  Google Scholar 

  5. Soini E, Hemmila I, Dahlen P (1990) Time-resolved fluorescence in biospecific assays. Ann Biol Clin (Paris) 48:567–571

    CAS  Google Scholar 

  6. Hemmila I, Dakubu S, Mukkala VM, Siitari H, Lovgren T (1984) Europium as a label in time-resolved immunofluorometric assays. Anal Biochem 137:335–343

    Article  CAS  Google Scholar 

  7. Xu Y, Li Q (2007) Multiple fluorescent labeling of silica nanoparticles with lanthanide chelates for highly sensitive time-resolved immunofluorometric assays. Clin Chem 53:1503–1510

    Article  CAS  Google Scholar 

  8. Pettersson K, Alfthan H, Stenman UH, Turpeinen U, Suonpaa M, Soderholm J et al (1993) Simultaneous assay of alpha-fetoprotein and free beta subunit of human chorionic gonadotropin by dual-label time-resolved immunofluorometric assay. Clin Chem 39:2084–2089

    CAS  Google Scholar 

  9. Mitrunen K, Pettersson K, Piironen T, Bjork T, Lilja H, Lovgren T (1995) Dual-label one-step immunoassay for simultaneous measurement of free and total prostate-specific antigen concentrations and ratios in serum. Clin Chem 41:1115–1120

    CAS  Google Scholar 

  10. Zhu L, Leinonen J, Zhang WM, Finne P, Stenman UH (2003) Dual-label immunoassay for simultaneous measurement of prostate-specific antigen (PSA)-alpha1-antichymotrypsin complex together with free or total PSA. Clin Chem 49:97–103

    Article  CAS  Google Scholar 

  11. Meurman OH, Hemmila IA, Lovgren TN, Halonen PE (1982) Time-resolved fluoroimmunoassay: a new test for rubella antibodies. J Clin Microbiol 16:920–925

    CAS  Google Scholar 

  12. Tanner P, Stenman U-H, Seppälä M, Schröder J (1982) Sensitive and specific RIA for human chorionic gonadotropin (hCG) using monoclonal antibodies. Protides Biol Fluids 29:843–846

    Google Scholar 

  13. Dechaud H, Bador R, Claustrat F, Desuzinges C (1986) Laser-excited immunofluorometric assay of prolactin, with use of antibodies coupled to lanthanide-labeled diethylenetriaminepentaacetic acid. Clin Chem 32:1323–1327

    CAS  Google Scholar 

  14. Tarkkinen P, Palenius T, Lovgren T (2002) Ultrarapid, ultrasensitive one-step kinetic immunoassay for C-reactive protein (CRP) in whole blood samples: measurement of the entire CRP concentration range with a single sample dilution. Clin Chem 48:269–277

    CAS  Google Scholar 

  15. von Lode P, Rainaho J, Laiho MK, Punnonen K, Peltola O, Harjola VP, Pettersson K (2006) Sensitive and quantitative, 10-min immunofluorometric assay for d-dimer in whole blood. Thromb Res 118:573–585

    Article  Google Scholar 

  16. von Lode P, Rainaho J, Pettersson K (2004) Quantitative, wide-range, 5-minute point-of-care immunoassay for total human chorionic gonadotropin in whole blood. Clin Chem 50:1026–1035

    Article  Google Scholar 

  17. Khosravi MJ, Chan MA, Bellem AC, Diamandis EP (1988) A sensitive time-resolved immunofluorometric assay of ferritin in serum with monoclonal antibodies. Clin Chim Acta 175:267–275

    Article  CAS  Google Scholar 

  18. Black MH, Grass CL, Leinonen J, Stenman UH, Diamandis EP (1999) Characterization of monoclonal antibodies for prostate-specific antigen and development of highly sensitive free prostate-specific antigen assays. Clin Chem 45:347–354

    CAS  Google Scholar 

  19. Diamandis EP (1988) Immunoassays with time-resolved fluorescence spectroscopy: principles and applications. Clin Biochem 21:139–150

    CAS  Google Scholar 

  20. Mathis G (1993) Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin Chem 39:1953–1959

    CAS  Google Scholar 

  21. Mathis G, Socquet F, Viguier M, Darbouret B (1997) Homogeneous immunoassays using rare earth cryptates and time resolved fluorescence: principles and specific advantages for tumor markers. Anticancer Res 17:3011–3014

    CAS  Google Scholar 

  22. Dahlen P, Hurskainen P, Lovgren T, Hyypia T (1988) Time-resolved fluorometry for the identification of viral DNA in clinical specimens. J Clin Microbiol 26:2434–2436

    CAS  Google Scholar 

  23. Dahlen P, Syvanen AC, Hurskainen P, Kwiatkowski M, Sund C, Ylikoski J et al (1987) Sensitive detection of genes by sandwich hybridization and time-resolved fluorometry. Mol Cell Probes 1:159–168

    Article  CAS  Google Scholar 

  24. Nurmi J, Ylikoski A, Soukka T, Karp M, Lovgren T (2000) A new label technology for the detection of specific polymerase chain reaction products in a closed tube. Nucleic Acids Res 28:E28

    Article  CAS  Google Scholar 

  25. Alfthan H (1986) Comparison of immunoradiometric and immunofluorometric assays for serum hCG. J Immunol Methods 88:239–244

    Article  CAS  Google Scholar 

  26. Madersbacher S, Shu-Chen T, Schwarz S, Dirnhofer S, Wick G, Berger P (1993) Time-resolved immunofluorometry and other frequently used immunoassay types for follicle-stimulating hormone compared by using identical monoclonal antibodies. Clin Chem 39:1435–1439

    CAS  Google Scholar 

  27. Ferguson RA, Yu H, Kalyvas M, Zammit S, Diamandis EP (1996) Ultrasensitive detection of prostate-specific antigen by a time-resolved immunofluorometric assay and the immulite immunochemiluminescent third-generation assay: potential applications in prostate and breast cancers. Clin Chem 42:675–684

    CAS  Google Scholar 

  28. Robertson DM, Pruysers E, Stephenson T, Pettersson K, Morton S, McLachlan RI (2001) Sensitive LH and FSH assays for monitoring low serum levels in men undergoing steroidal contraception. Clin Endocrinol (Oxf) 55:331–339

    Article  CAS  Google Scholar 

  29. Stenman UH (1997) Immunoassay standardisation. In: Price C, Newman D (eds) Principles and practice of immunoassay, 2nd edn. Macmillan, London, pp 245–268

    Google Scholar 

  30. Dunkel L, Alfthan H, Stenman UH, Tapanainen P, Perheentupa J (1990) Pulsatile secretion of LH and FSH in prepubertal and early pubertal boys revealed by ultrasensitive time-resolved immunofluorometric assays. Pediatr Res 27:215–219

    Article  CAS  Google Scholar 

  31. Apter D, Cacciatore B, Alfthan H, Stenman UH (1989) Serum luteinizing hormone concentrations increase 100-fold in females from 7 years to adulthood, as measured by time-resolved immunofluorometric assay. J Clin Endocrinol Metab 68:53–57

    Article  CAS  Google Scholar 

  32. Demir A, Voutilainen R, Juul A, Dunkel L, Alfthan H, Skakkebaek NE, Stenman UH (1996) Increase in first morning voided urinary luteinizing hormone levels precedes the physical onset of puberty. J Clin Endocrinol Metab 81:2963–2967

    Article  CAS  Google Scholar 

  33. Demir A, Dunkel L, Stenman UH, Voutilainen R (1995) Age-related course of urinary gonadotropins in children. J Clin Endocrinol Metab 80:1457–1460

    Article  CAS  Google Scholar 

  34. Stenman UH, Unkila KL, Korhonen J, Alfthan H (1997) Immunoprocedures for detecting human chorionic gonadotropin: clinical aspects and doping control. Clin Chem 43:1293–1298

    CAS  Google Scholar 

  35. Alfthan H, Haglund C, Roberts P, Stenman UH (1992) Elevation of free beta subunit of human choriogonadotropin and core beta fragment of human choriogonadotropin in the serum and urine of patients with malignant pancreatic and biliary disease. Cancer Res 52:4628–4633

    CAS  Google Scholar 

  36. Stenman UH, Alfthan H, Hotakainen K (2004) Human chorionic gonadotropin in cancer. Clin Biochem 37:549–561

    Article  CAS  Google Scholar 

  37. Stenman UH, Alfthan H, Ranta T, Vartiainen E, Jalkanen J, Seppala M (1987) Serum levels of human chorionic gonadotropin in nonpregnant women and men are modulated by gonadotropin-releasing hormone and sex steroids. J Clin Endocrinol Metab 64:730–736

    Article  CAS  Google Scholar 

  38. Alfthan H, Haglund C, Dabek J, Stenman UH (1992) Concentrations of human choriogonadotropin, its beta-subunit, and the core fragment of the beta-subunit in serum and urine of men and nonpregnant women. Clin Chem 38:1981–1987

    CAS  Google Scholar 

  39. Lempiainen A, Hotakainen K, Blomqvist C, Alfthan H, Stenman UH (2007) Increased human chorionic gonadotropin due to hypogonadism after treatment of a testicular seminoma. Clin Chem 53:1560–1561

    Article  CAS  Google Scholar 

  40. Strasburger C, Barnard G, Toldo L, Zarmi B, Zadik Z, Kowarski A, Kohen F (1989) Somatotropin as measured by a two-site time-resolved immunofluorometric assay. Clin Chem 35:913–917

    CAS  Google Scholar 

  41. Albertsson-Wikland K, Jansson C, Rosberg S, Novamo A (1993) Time-resolved immunofluorometric assay of human growth hormone. Clin Chem 39:1620–1625

    CAS  Google Scholar 

  42. Bidlingmaier M, Wu Z, Strasburger CJ (2003) Problems with GH doping in sports. J Endocrinol Invest 26:924–931

    CAS  Google Scholar 

  43. Stenman UH, Leinonen J, Alfthan H, Rannikko S, Tuhkanen K, Alfthan O (1991) A complex between prostate-specific antigen and alpha 1-antichymotrypsin is the major form of prostate-specific antigen in serum of patients with prostatic cancer: assay of the complex improves clinical sensitivity for cancer. Cancer Res 51:222–226

    CAS  Google Scholar 

  44. Piironen T, Lovgren J, Karp M, Eerola R, Lundwall A, Dowell B et al (1996) Immunofluorometric assay for sensitive and specific measurement of human prostatic glandular kallikrein (hK2) in serum. Clin Chem 42:1034–1041

    CAS  Google Scholar 

  45. Vaisanen V, Peltola MT, Lilja H, Nurmi M, Pettersson K (2006) Intact free prostate-specific antigen and free and total human glandular kallikrein 2. Elimination of assay interference by enzymatic digestion of antibodies to F(ab′)2 fragments. Anal Chem 78:7809–7815

    Article  Google Scholar 

  46. Saedi MS, Hill TM, Kuus-Reichel K, Kumar A, Payne J, Mikolajczyk SD et al (1998) The precursor form of the human kallikrein 2, a kallikrein homologous to prostate-specific antigen, is present in human sera and is increased in prostate cancer and benign prostatic hyperplasia. Clin Chem 44:2115–2119

    CAS  Google Scholar 

  47. Qin Q, Christiansen M, Lovgren T, Norgaard-Pedersen B, Pettersson K (1997) Dual-label time-resolved immunofluorometric assay for simultaneous determination of pregnancy-associated plasma protein A and free beta-subunit of human chorionic gonadotropin. J Immunol Methods 205:169–175

    Article  CAS  Google Scholar 

  48. Norgaard-Pedersen B, Alfthan H, Arends J, Hogdall CK, Larsen SO, Pettersson K et al (1994) A new simple and rapid dual assay for AFP and free beta hCG in screening for Down syndrome. Clin Genet 45:1–4

    Article  CAS  Google Scholar 

  49. Ankelo M, Westerlund A, Blomberg K, Knip M, Ilonen J, Hinkkanen AE (2007) Time-resolved immunofluorometric dual-label assay for simultaneous detection of autoantibodies to GAD65 and IA-2 in children with type 1 diabetes. Clin Chem 53:472–479

    Article  CAS  Google Scholar 

  50. Bünzli J-CG, Eliseeva SV (2010) Basics of lanthanide photophysics. Springer Ser Fluoresc doi: 10.1007/4243_2010_3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf-Håkan Stenman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stenman, UH. (2010). Clinical Application of Time-Resolved Fluorometric Assays. In: Hänninen, P., Härmä, H. (eds) Lanthanide Luminescence. Springer Series on Fluorescence, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2010_12

Download citation

Publish with us

Policies and ethics