Skip to main content

Multiple Sclerosis Therapies: Molecular Mechanisms and Future

  • Chapter
  • First Online:
Molecular Basis of Multiple Sclerosis

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 51))

Abstract

The current treatments for multiple sclerosis (MS) are, by many measures, not satisfactory. The original interferon-β therapies were not necessarily based on an extensive knowledge of the pathophysiological mechanisms of the disease. As more and more insight has been acquired about the autoimmune mechanisms of MS and, in particular, the molecular targets involved, several treatment approaches have emerged. In this chapter, we highlight both promising preclinical approaches and therapies in late stage clinical trials that have been developed as a result of the improved understanding of the molecular pathophysiology of MS. These clinical stage therapies include oral agents, monoclonal antibodies, and antigen-specific therapies. Particular emphasis is given to the molecular targets when known and any safety concerns that have arisen because, despite the need for improved efficacy, MS remains a disease in which the safety of any agent remains of paramount importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen O, Lycke J, Tollesson PO, Svenningsson A, Runmarker B, Linde AS, Astrom M, Gjorstrup P, Ekholm S (1996) Linomide reduces the rate of active lesions in relapsing-remitting multiple sclerosis. Neurology 47:895–900

    PubMed  CAS  Google Scholar 

  • Antel J, Bar-Or A (2006) Roles of immunoglobulins and B cells in multiple sclerosis: from pathogenesis to treatment. J Neuroimmunol 180:3–8

    PubMed  CAS  Google Scholar 

  • Arnett HA, Fancy SP, Alberta JA, Zhao C, Plant SR, Kaing S, Raine CS, Rowitch DH, Franklin RJ, Stiles CD (2004) bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science 306:2111–2115

    PubMed  CAS  Google Scholar 

  • Baranzini SE, Jeong MC, Butunoi C, Murray RS, Bernard CC, Oksenberg JR (1999) B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J Immunol 163:5133–5144

    PubMed  CAS  Google Scholar 

  • Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468

    PubMed  Google Scholar 

  • Barnett MH, Henderson AP, Prineas JW (2006) The macrophage in MS: just a scavenger after all? Pathology and pathogenesis of the acute MS lesion. Mult Scler 12:121–132

    PubMed  CAS  Google Scholar 

  • Bar-Or A (2008) The immunology of multiple sclerosis. Semin Neurol 28:29–45

    PubMed  Google Scholar 

  • Bar-Or A, Vollmer T, Antel J, Arnold DL, Bodner CA, Campagnolo D, Gianettoni J, Jalili F, Kachuck N, Lapierre Y et al (2007) Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch Neurol 64:1407–1415

    PubMed  Google Scholar 

  • Becher B, Bechmann I, Greter M (2006) Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain. J Mol Med 84:532–543

    PubMed  CAS  Google Scholar 

  • Beutler E (1992) Cladribine (2-chlorodeoxyadenosine). Lancet 340:952–956

    PubMed  CAS  Google Scholar 

  • Bielekova B, Goodwin B, Richert N, Cortese I, Kondo T, Afshar G, Gran B, Eaton J, Antel J, Frank JA et al (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 6:1167–1175

    PubMed  CAS  Google Scholar 

  • Bielekova B, Richert N, Howard T, Blevins G, Markovic-Plese S, McCartin J, Frank JA, Wurfel J, Ohayon J, Waldmann TA et al (2004) Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon beta. Proc Natl Acad Sci USA 101:8705–8708

    PubMed Central  PubMed  CAS  Google Scholar 

  • Black JA, Liu S, Carrithers M, Carrithers LM, Waxman SG (2007) Exacerbation of experimental autoimmune encephalomyelitis after withdrawal of phenytoin and carbamazepine. Ann Neurol 62:21–33

    PubMed  CAS  Google Scholar 

  • Brinkmann V (2007) Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther 115:84–105

    PubMed  CAS  Google Scholar 

  • Brousil JA, Roberts RJ, Schlein AL (2006) Cladribine: an investigational immunomodulatory agent for multiple sclerosis. Ann Pharmacother 40:1814–1821

    PubMed  CAS  Google Scholar 

  • Buchli AD, Schwab ME (2005) Inhibition of Nogo: a key strategy to increase regeneration, plasticity and functional recovery of the lesioned central nervous system. Ann Med 37:556–567

    PubMed  CAS  Google Scholar 

  • Cepok S, Zhou D, Srivastava R, Nessler S, Stei S, Bussow K, Sommer N, Hemmer B (2005) Identification of Epstein-Barr virus proteins as putative targets of the immune response in multiple sclerosis. J Clin Invest 115:1352–1360

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346:165–173

    PubMed  Google Scholar 

  • Cherwinski HM, McCarley D, Schatzman R, Devens B, Ransom JT (1995) The immunosuppressant leflunomide inhibits lymphocyte progression through cell cycle by a novel mechanism. J Pharmacol Exp Ther 272:460–468

    PubMed  CAS  Google Scholar 

  • Chora AA, Fontoura P, Cunha A, Pais TF, Cardoso S, Ho PP, Lee LY, Sobel RA, Steinman L, Soares MP (2007) Heme oxygenase-1 and carbon monoxide suppress autoimmune neuroinflammation. J Clin Invest 117:438–447

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X, Pelletier J, Capra R, Gallo P, Izquierdo G, Tiel-Wilck K, de Vera A, Jin J, Stites T, Wu S, Aradhye S, Kappos L, TRANSFORMS Study Group (2010) Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 362:402–415

    PubMed  CAS  Google Scholar 

  • Coles A, Deans J, Compston A (2004) Campath-1H treatment of multiple sclerosis: lessons from the bedside for the bench. Clin Neurol Neurosurg 106:270–274

    PubMed  Google Scholar 

  • Cree B (2006) Emerging monoclonal antibody therapies for multiple sclerosis. Neurologist 12:171–178

    PubMed  Google Scholar 

  • de Jong R, Bezemer AC, Zomerdijk TP, van de Pouw-Kraan T, Ottenhoff TH, Nibbering PH (1996) Selective stimulation of T helper 2 cytokine responses by the anti-psoriasis agent monomethylfumarate. Eur J Immunol 26:2067–2074

    PubMed  Google Scholar 

  • Engelhardt B, Ransohoff RM (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26:485–495

    PubMed  CAS  Google Scholar 

  • Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4:703–713

    PubMed  CAS  Google Scholar 

  • Fontoura P, Steinman L, Miller A (2006) Emerging therapeutic targets in multiple sclerosis. Curr Opin Neurol 19:260–266

    PubMed  CAS  Google Scholar 

  • Freund P, Schmidlin E, Wannier T, Bloch J, Mir A, Schwab ME, Rouiller EM (2006) Nogo-A-specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nat Med 12:790–792

    PubMed  CAS  Google Scholar 

  • Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis–the plaque and its pathogenesis. N Engl J Med 354:942–955

    PubMed  CAS  Google Scholar 

  • Fukushima R, Kanamori S, Hirashiba M, Hishikawa A, Muranaka RI, Kaneto M, Nakamura K, Kato I (2007) Teratogenicity study of the dihydroorotate-dehydrogenase inhibitor and protein tyrosine kinase inhibitor Leflunomide in mice. Reprod Toxicol 24:310–316

    PubMed  CAS  Google Scholar 

  • Garren H, Robinson WH, Krasulova E, Havrdova E, Nadj C, Selmaj K, Losy J, Nadj I, Radue EW, Kidd BA et al (2008) Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis. Ann Neurol 63:611–620

    PubMed  CAS  Google Scholar 

  • Genain CP, Cannella B, Hauser SL, Raine CS (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 5:170–175

    PubMed  CAS  Google Scholar 

  • Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Soelberg Sørensen P, Vermersch P, Chang P, Hamlett A, Musch B, Greenberg SJ, CLARITY Study Group (2010) A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med 362:416–426

    PubMed  CAS  Google Scholar 

  • Glass CK, Ogawa S (2006) Combinatorial roles of nuclear receptors in inflammation and immunity. Nat Rev Immunol 6:44–55

    PubMed  CAS  Google Scholar 

  • Grieb P, Ryba M, Stelmasiak Z, Nowicki J, Solski J, Jakubowska B (1994) Cladribine treatment of multiple sclerosis. Lancet 344:538

    PubMed  CAS  Google Scholar 

  • Hafler DA, Slavik JM, Anderson DE, O’Connor KC, De Jager P, Baecher-Allan C (2005) Multiple sclerosis. Immunol Rev 204:208–231

    PubMed  CAS  Google Scholar 

  • Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL, de Bakker PI, Gabriel SB, Mirel DB, Ivinson AJ et al (2007) Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 357:851–862

    PubMed  CAS  Google Scholar 

  • Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S et al (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358:676–688

    PubMed  CAS  Google Scholar 

  • Hemmer B, Archelos JJ, Hartung HP (2002) New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci 3:291–301

    PubMed  CAS  Google Scholar 

  • Jiang H, Chess L (2004) An integrated view of suppressor T cell subsets in immunoregulation. J Clin Invest 114:1198–1208

    PubMed Central  PubMed  CAS  Google Scholar 

  • John GR, Shankar SL, Shafit-Zagardo B, Massimi A, Lee SC, Raine CS, Brosnan CF (2002) Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med 8:1115–1121

    PubMed  CAS  Google Scholar 

  • Jonsson S, Andersson G, Fex T, Fristedt T, Hedlund G, Jansson K, Abramo L, Fritzson I, Pekarski O, Runstrom A et al (2004) Synthesis and biological evaluation of new 1, 2-dihydro-4-hydroxy-2-oxo-3-quinolinecarboxamides for treatment of autoimmune disorders: structure-activity relationship. J Med Chem 47:2075–2088

    PubMed  Google Scholar 

  • Kanter JL, Narayana S, Ho PP, Catz I, Warren KG, Sobel RA, Steinman L, Robinson WH (2006) Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat Med 12:138–143

    PubMed  CAS  Google Scholar 

  • Kappos L, Antel J, Comi G, Montalban X, O’Connor P, Polman CH, Haas T, Korn AA, Karlsson G, Radue EW (2006a) Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med 355:1124–1140

    PubMed  CAS  Google Scholar 

  • Kappos L, Miller DH, MacManus DG, Gold R, Havrdova E, Limmroth V, Polman C, Schmierer K, Yousry T, Yang M et al (2006b) Efficacy of a novel oral single-agent fumarate, BG00012, in patients with relapsing-remitting multiple sclerosis: results of a phase 2 study. J Neurol 253:27

    Google Scholar 

  • Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, Selmaj K, Agoropoulou C, Leyk M, Zhang-Auberson L, Burtin P, FREEDOMS Study Group (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362:387–401

    PubMed  CAS  Google Scholar 

  • Karadottir R, Cavelier P, Bergersen LH, Attwell D (2005) NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438:1162–1166

    PubMed Central  PubMed  CAS  Google Scholar 

  • Karussis DM, Meiner Z, Lehmann D, Gomori JM, Schwarz A, Linde A, Abramsky O (1996) Treatment of secondary progressive multiple sclerosis with the immunomodulator linomide: a double-blind, placebo-controlled pilot study with monthly magnetic resonance imaging evaluation. Neurology 47:341–346

    PubMed  CAS  Google Scholar 

  • Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175

    PubMed  CAS  Google Scholar 

  • Kielian T (2006) Toll-like receptors in central nervous system glial inflammation and homeostasis. J Neurosci Res 83:711–730

    PubMed Central  PubMed  CAS  Google Scholar 

  • Korn T, Toyka K, Hartung HP, Jung S (2001) Suppression of experimental autoimmune neuritis by leflunomide. Brain 124:1791–1802

    PubMed  CAS  Google Scholar 

  • Krogsgaard M, Wucherpfennig KW, Cannella B, Hansen BE, Svejgaard A, Pyrdol J, Ditzel H, Raine C, Engberg J, Fugger L (2000) Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2-MBP 85-99 complex. J Exp Med 191:1395–1412

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712

    PubMed  Google Scholar 

  • Lassmann H (2008) Models of multiple sclerosis: new insights into pathophysiology and repair. Curr Opin Neurol 21:242–247

    PubMed  CAS  Google Scholar 

  • Lassmann H, Bruck W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7:115–121

    PubMed  CAS  Google Scholar 

  • Liblau RS, Pearson CI, Shokat K, Tisch R, Yang XD, McDevitt HO (1994) High-dose soluble antigen: peripheral T-cell proliferation or apoptosis. Immunol Rev 142:193–208

    PubMed  CAS  Google Scholar 

  • Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    PubMed  CAS  Google Scholar 

  • Lundmark F, Duvefelt K, Iacobaeus E, Kockum I, Wallstrom E, Khademi M, Oturai A, Ryder LP, Saarela J, Harbo HF et al (2007) Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nat Genet 39:1108–1113

    PubMed  CAS  Google Scholar 

  • Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, Reynolds R, Aloisi F (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130:1089–1104

    PubMed  Google Scholar 

  • Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ (2007) Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain 130:2800–2815

    PubMed Central  PubMed  Google Scholar 

  • Martin R, Jaraquemada D, Flerlage M, Richert J, Whitaker J, Long EO, McFarlin DE, McFarland HF (1990) Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J Immunol 145:540–548

    PubMed  CAS  Google Scholar 

  • Martino G, Pluchino S (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci 7:395–406

    PubMed  CAS  Google Scholar 

  • Matysiak M, Stasiolek M, Orlowski W, Jurewicz A, Janczar S, Raine CS, Selmaj K (2008) Stem cells ameliorate EAE via an indoleamine 2, 3-dioxygenase (IDO) mechanism. J Neuroimmunol 193:12–23

    PubMed Central  PubMed  CAS  Google Scholar 

  • McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, McFarland HF, Paty DW, Polman CH, Reingold SC et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127

    PubMed  CAS  Google Scholar 

  • McFarland HF, Martin R (2007) Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 8:913–919

    PubMed  CAS  Google Scholar 

  • McGeachy MJ, Cua DJ (2008) Th17 cell differentiation: the long and winding road. Immunity 28:445–453

    PubMed  CAS  Google Scholar 

  • Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, Chang J, Thill G, Levesque M, Zhang M et al (2005) LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 8:745–751

    PubMed  CAS  Google Scholar 

  • Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES, Yuan Q, Wong WM, Wang L, Su H, Chu TH et al (2007) LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med 13:1228–1233

    PubMed  CAS  Google Scholar 

  • Mitchison NA (1964) Induction of immunological paralysis in two zones of dosage. Proc R Soc Lond B Biol Sci 161:275–292

    PubMed  CAS  Google Scholar 

  • Neumann H, Medana IM, Bauer J, Lassmann H (2002) Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci 25:313–319

    PubMed  CAS  Google Scholar 

  • Noseworthy JH, Wolinsky JS, Lublin FD, Whitaker JN, Linde A, Gjorstrup P, Sullivan HC (2000) Linomide in relapsing and secondary progressive MS: part I: trial design and clinical results. North American Linomide Investigators. Neurology 54:1726–1733

    PubMed  CAS  Google Scholar 

  • Nussenblatt RB, Thompson DJ, Li Z, Chan CC, Peterson JS, Robinson RR, Shames RS, Nagarajan S, Tang MT, Mailman M et al (2003) Humanized anti-interleukin-2 (IL-2) receptor alpha therapy: long-term results in uveitis patients and preliminary safety and activity data for establishing parameters for subcutaneous administration. J Autoimmun 21:283–293

    PubMed  CAS  Google Scholar 

  • Ockenfels HM, Schultewolter T, Ockenfels G, Funk R, Goos M (1998) The antipsoriatic agent dimethylfumarate immunomodulates T-cell cytokine secretion and inhibits cytokines of the psoriatic cytokine network. Br J Dermatol 139:390–395

    PubMed  CAS  Google Scholar 

  • O’Connor PW, Li D, Freedman MS, Bar-Or A, Rice GP, Confavreux C, Paty DW, Stewart JA, Scheyer R (2006) A Phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses. Neurology 66:894–900

    PubMed  Google Scholar 

  • Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA (1990) T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346:183–187

    PubMed  CAS  Google Scholar 

  • Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Bruck W, Lucchinetti C, Lassmann H (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129:3165–3172

    PubMed  Google Scholar 

  • Pirko I, Lucchinetti CF, Sriram S, Bakshi R (2007) Gray matter involvement in multiple sclerosis. Neurology 68:634–642

    PubMed  Google Scholar 

  • Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM, Gupta R, Lee LY, Kidd BA, Robinson WH et al (2005) Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310:850–855

    PubMed  CAS  Google Scholar 

  • Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, Martinello M, Cattalini A, Bergami A, Furlan R et al (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271

    PubMed  CAS  Google Scholar 

  • Polman C, Barkhof F, Sandberg-Wollheim M, Linde A, Nordle O, Nederman T (2005) Treatment with laquinimod reduces development of active MRI lesions in relapsing MS. Neurology 64:987–991

    PubMed  CAS  Google Scholar 

  • Prinz M, Schmidt H, Mildner A, Knobeloch K-P, Hanisch U-K, Raasch J, Merkler D, Detje C, Gutcher I, Mages J et al (2008) Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28:1–12

    Google Scholar 

  • Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, Newman RA, Hanna N, Anderson DR (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83:435–445

    PubMed  CAS  Google Scholar 

  • Rice GP, Filippi M, Comi G (2000) Cladribine and progressive MS: clinical and MRI outcomes of a multicenter controlled trial. Cladribine MRI Study Group. Neurology 54:1145–1155

    PubMed  CAS  Google Scholar 

  • Romine JS, Sipe JC, Koziol JA, Zyroff J, Beutler E (1999) A double-blind, placebo-controlled, randomized trial of cladribine in relapsing-remitting multiple sclerosis. Proc Assoc Am Physicians 111:35–44

    PubMed  CAS  Google Scholar 

  • Rose JW, Watt HE, White AT, Carlson NG (2004) Treatment of multiple sclerosis with an anti-interleukin-2 receptor monoclonal antibody. Ann Neurol 56:864–867

    PubMed  CAS  Google Scholar 

  • Schilling S, Goelz S, Linker R, Luehder F, Gold R (2006) Fumaric acid esters are effective in chronic experimental autoimmune encephalomyelitis and suppress macrophage infiltration. Clin Exp Immunol 145:101–107

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schimrigk S, Brune N, Hellwig K, Lukas C, Bellenberg B, Rieks M, Hoffmann V, Pohlau D, Przuntek H (2006) Oral fumaric acid esters for the treatment of active multiple sclerosis: an open-label, baseline-controlled pilot study. Eur J Neurol 13:604–610

    PubMed  CAS  Google Scholar 

  • Schreibelt G, van Horssen J, van Rossum S, Dijkstra CD, Drukarch B, de Vries HE (2007) Therapeutic potential and biological role of endogenous antioxidant enzymes in multiple sclerosis pathology. Brain Res Rev 56:322–330

    PubMed  CAS  Google Scholar 

  • Serafini B, Rosicarelli B, Franciotta D, Magliozzi R, Reynolds R, Cinque P, Andreoni L, Trivedi P, Salvetti M, Faggioni A, Aloisi F (2007) Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med 204:2899–2912

    PubMed Central  PubMed  CAS  Google Scholar 

  • Seto S, Carrera CJ, Kubota M, Wasson DB, Carson DA (1985) Mechanism of deoxyadenosine and 2-chlorodeoxyadenosine toxicity to nondividing human lymphocytes. J Clin Invest 75:377–383

    PubMed Central  PubMed  CAS  Google Scholar 

  • Siden A (1979) Isoelectric focusing and crossed immunoelectrofocusing of CSF immunoglobulins in MS. J Neurol 221:39–51

    PubMed  CAS  Google Scholar 

  • Sipe JC, Romine JS, Koziol JA, McMillan R, Zyroff J, Beutler E (1994) Cladribine in treatment of chronic progressive multiple sclerosis. Lancet 344:9–13

    PubMed  CAS  Google Scholar 

  • Smith T, Groom A, Zhu B, Turski L (2000) Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6:62–66

    PubMed  CAS  Google Scholar 

  • Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747

    PubMed  CAS  Google Scholar 

  • Steinman L (1996) Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85:299–302

    PubMed  CAS  Google Scholar 

  • Steinman L (2001) Multiple sclerosis: a two-stage disease. Nat Immunol 2:762–764

    PubMed  CAS  Google Scholar 

  • Steinman L (2005) Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nat Rev Drug Discov 4:510–518

    PubMed  CAS  Google Scholar 

  • Steinman L, Zamvil SS (2005) Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis. Trends Immunol 26:565–571

    PubMed  CAS  Google Scholar 

  • Szczucinski A, Losy J (2007) Chemokines and chemokine receptors in multiple sclerosis. Potential targets for new therapies. Acta Neurol Scand 115:137–146

    PubMed  CAS  Google Scholar 

  • Tan IL, Lycklama a Nijeholt GJ, Polman CH, Ader HJ, Barkhof F (2000) Linomide in the treatment of multiple sclerosis: MRI results from prematurely terminated phase-III trials. Mult Scler 6:99–104

    PubMed  Google Scholar 

  • Vandermeeren M, Janssens S, Borgers M, Geysen J (1997) Dimethylfumarate is an inhibitor of cytokine-induced E-selectin, VCAM-1, and ICAM-1 expression in human endothelial cells. Biochem Biophys Res Commun 234:19–23

    PubMed  CAS  Google Scholar 

  • Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4 + CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199:971–979

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wakkee M, Thio HB (2007) Drug evaluation: BG-12, an immunomodulatory dimethylfumarate. Curr Opin Investig Drugs 8:955–962

    PubMed  CAS  Google Scholar 

  • Warren KG, Catz I, Steinman L (1995) Fine specificity of the antibody response to myelin basic protein in the central nervous system in multiple sclerosis: the minimal B-cell epitope and a model of its features. Proc Natl Acad Sci USA 92:11061–11065

    PubMed Central  PubMed  CAS  Google Scholar 

  • Warren KG, Catz I, Wucherpfennig KW (1997) Tolerance induction to myelin basic protein by intravenous synthetic peptides containing epitope P85 VVHFFKNIVTP96 in chronic progressive multiple sclerosis. J Neurol Sci 152:31–38

    PubMed  CAS  Google Scholar 

  • Warren KG, Catz I, Ferenczi LZ, Krantz MJ (2006) Intravenous synthetic peptide MBP8298 delayed disease progression in an HLA Class II-defined cohort of patients with progressive multiple sclerosis: results of a 24-month double-blind placebo-controlled clinical trial and 5 years of follow-up treatment. Eur J Neurol 13:887–895

    PubMed  CAS  Google Scholar 

  • Waxman SG (2006) Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci 7:932–941

    PubMed  CAS  Google Scholar 

  • Wolinsky JS, Narayana PA, Noseworthy JH, Lublin FD, Whitaker JN, Linde A, Gjorstrup P, Sullivan HC (2000) Linomide in relapsing and secondary progressive MS: part II: MRI results. MRI Analysis Center of the University of Texas-Houston, Health Science Center, and the North American Linomide Investigators. Neurology 54:1734–1741

    PubMed  CAS  Google Scholar 

  • Yang JS, Xu LY, Xiao BG, Hedlund G, Link H (2004) Laquinimod (ABR-215062) suppresses the development of experimental autoimmune encephalomyelitis, modulates the Th1/Th2 balance and induces the Th3 cytokine TGF-beta in Lewis rats. J Neuroimmunol 156:3–9

    PubMed  CAS  Google Scholar 

  • Zamvil SS, Steinman L (1990) The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol 8:579–621

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Garren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fontoura, P., Garren, H. (2010). Multiple Sclerosis Therapies: Molecular Mechanisms and Future. In: Martin, R., Lutterotti, A. (eds) Molecular Basis of Multiple Sclerosis. Results and Problems in Cell Differentiation, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2010_36

Download citation

Publish with us

Policies and ethics