Skip to main content

Glucagon and Glucagon-Like Peptides 1 and 2

  • Chapter
  • First Online:
Cellular Peptide Hormone Synthesis and Secretory Pathways

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 50))

Abstract

The glucagon gene is expressed not only in the alpha cells of the pancreatic islets but also in the endocrine cells of the intestinal epithelium (so-called L-cells), and in certain neurons of the brain stem. Whereas in the pancreas, glucagon, the hyperglycaemic hormone, is cleaved out of the 160 amino acid precursor, proglucagon, leaving behind proglucagon fragments (PG 1-30 and PG 72-158, the so-called major proglucagon fragment (MPGF)) that are probably inactive, the intestinal processing leads to the formation of glicentin (PG 1-69; action uncertain) and glucagon-like peptides 1 (PG 78-107amide, a potent incretin homone, regulating insulin secretion, glucagon secretion, gastrointestinal motility and appetite) and 2 (PG 126-158, a regulator of gut mucosal growth and integrity). The two prohormone convertases PC2 and PC1/3, respectively, are responsible for the differential processing. After their release, the hormones are eliminated mainly in the kidneys, but both GLP-2 and in particular GLP-1, but not glucagon, are metabolized both locally and in the circulation and liver by dipeptidyl peptidase 4 (DPP-4) which inactivates the peptides, suggesting that GLP-1 acts locally rather than in an endocrine manner. A number of transcription factors have been identified that can at least partly explain the differential cellular expression of the glucagon gene as well as the differential tissue-specific processing of the precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldissera FG, Holst JJ (1984) Glucagon-related peptides in the human gastrointestinal mucosa. Diabetologia 26:223–228

    PubMed  CAS  Google Scholar 

  • Baldissera FG, Holst JJ (1986) Glicentin 1-61 probably represents a major fraction of glucagon- related peptides in plasma of anaesthetized uraemic pigs. Diabetologia 29:462–467

    PubMed  CAS  Google Scholar 

  • Bataille D (2007) Pro-protein convertases in intermediary metabolism: islet hormones, brain/gut hormones and integrated physiology. J Mol Med 85:673–684

    PubMed  CAS  Google Scholar 

  • Bataille D, Tatemoto K, Gespach C et al (1982) Isolation of glucagon-37 (bioactive enteroglucagon/oxyntomodulin) from porcine jejuno-ileum. Characterization of the peptide. FEBS Lett 146:79–86

    PubMed  CAS  Google Scholar 

  • Bell GI, Sanchez-Pescador R, Laybourn PJ et al (1983a) Exon duplication and divergence in the human preproglucagon gene. Nature 304:368–371

    PubMed  CAS  Google Scholar 

  • Bell GI, Santerre RF, Mullenbach GT (1983b) Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature 302:716–718

    PubMed  CAS  Google Scholar 

  • Bottcher G, Alumets J, Hakanson R et al (1986) Co-existence of glicentin and peptide YY in colorectal L-cells in cat and man. An electron microscopic study. Regul Pept 13:283–291

    PubMed  CAS  Google Scholar 

  • Bryant MG, Bloom SR, Polak JM et al (1983) Measurement of gut hormonal peptides in biopsies from human stomach and proximal small intestine. Gut 24:114–119

    PubMed  CAS  Google Scholar 

  • Buffa R, Capella C, Fontana P et al (1978) Types of endocrine cells in the human colon and rectum. Cell Tissue Res 192:227–240

    PubMed  CAS  Google Scholar 

  • Buhl T, Thim L, Kofod H et al (1988) Naturally occurring products of proglucagon 111-160 in the porcine and human small intestine. J Biol Chem 263:8621–8624

    PubMed  CAS  Google Scholar 

  • Creutzfeldt WO, Kleine N, Willms B et al (1996) Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7-36) amide in type I diabetic patients. Diabetes Care 19:580–586

    PubMed  CAS  Google Scholar 

  • de Heer J, Rasmussen C, Coy DH et al (2008) Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas. Diabetologia 51:2263–2270

    PubMed  CAS  Google Scholar 

  • Deacon CF, Johnsen AH, Holst JJ (1995) Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 80:952–957

    PubMed  CAS  Google Scholar 

  • Deacon CF, Pridal L, Klarskov L et al (1996) Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized pig. Am J Physiol 271:E458–E464

    PubMed  CAS  Google Scholar 

  • Deacon CF, Kelstrup M, Trebbien R et al (2003) Differential regional metabolism of glucagon in anesthetized pigs. Am J Physiol Endocrinol Metab 285:E552–E560

    PubMed  CAS  Google Scholar 

  • Drucker DJ (2006) The biology of incretin hormones. Cell Metab 3:153–165

    PubMed  CAS  Google Scholar 

  • Drucker DJ, Asa S (1988) Glucagon gene expression in vertebrate brain. J Biol Chem 263:13475–13478

    PubMed  CAS  Google Scholar 

  • Eissele R, Goke R, Willemer S et al (1992) Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur J Clin Invest 22:283–291

    PubMed  CAS  Google Scholar 

  • Flamez D, Van Breusegem A, Scrocchi LA et al (1998) Mouse pancreatic beta-cells exhibit preserved glucose competence after disruption of the glucagon-like peptide-1 receptor gene. Diabetes 47:646–652

    PubMed  CAS  Google Scholar 

  • Furuta M, Yano H, Zhou A et al (1997) Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proc Natl Acad Sci USA 94:6646–6651

    PubMed  CAS  Google Scholar 

  • Gelling RW, Du XQ, Dichmann DS et al (2003) Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci USA 100:1438–1443

    PubMed  CAS  Google Scholar 

  • Grant SF, Thorleifsson G, Reynisdottir I et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323

    PubMed  CAS  Google Scholar 

  • Grimelius L, Capella C, Buffa R et al (1976) Cytochemical and ultrastructural differentiation of enteroglucagon and pancreatic-type glucagon cells of the gastrointestinal tract. Virchows Arch B Cell Pathol 20:217–228

    PubMed  CAS  Google Scholar 

  • Hansen L, Deacon CF, Orskov C et al (1999) Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine [In Process Citation]. Endocrinology 140:5356–5363

    PubMed  CAS  Google Scholar 

  • Hansen L, Hartmann B, Bisgaard T et al (2000) Somatostatin restrains the secretion of glucagon-like peptide-1 and 2 from isolated perfused porcine ileum. Am J Physiol 278:E1010–E1018

    CAS  Google Scholar 

  • Hansen L, Hartmann B, Mineo H et al (2004) Glucagon-like peptide-1 secretion is influenced by perfusate glucose concentration and by a feedback mechanism involving somatostatin in isolated perfused porcine ileum. Regul Pept 118:11–18

    PubMed  CAS  Google Scholar 

  • Hartmann B, Harr MB, Jeppesen PB et al (2000a) In vivo and in vitro degradation of glucagon-like peptide-2 in humans. J Clin Endocrinol Metab 85:2884–2888

    PubMed  CAS  Google Scholar 

  • Hartmann B, Johnsen AH, Orskov C et al (2000b) Structure, measurement, and secretion of human glucagon-like peptide-2 [In Process Citation]. Peptides 21:73–80

    PubMed  CAS  Google Scholar 

  • Heinrich G, Gros P, Habener JF (1984) Glucagon gene sequence. Four of six exons encode separate functional domains of rat pre-proglucagon. J Biol Chem 259:14082–14087

    PubMed  CAS  Google Scholar 

  • Heller RS, Aponte GW (1995) Intra-islet regulation of hormone secretion by glucagon-like peptide-1- (7-36) amide. Am J Physiol 269:G852–G860

    PubMed  CAS  Google Scholar 

  • Hill ME, Asa SL, Drucker DJ (1999) Essential requirement for Pax6 in control of enteroendocrine proglucagon gene transcription. Mol Endocrinol 13:1474–1486

    PubMed  CAS  Google Scholar 

  • Holst JJ (1980) Evidence that glicentin contains the entire sequence of glucagon. Biochem J 187:337–343

    PubMed  CAS  Google Scholar 

  • Holst JJ (1982) Evidence that enteroglucagon (II) is identical with the C- terminal sequence (residues 33-69) of glicentin. Biochem J 207:381–388

    PubMed  CAS  Google Scholar 

  • Holst JJ (1991) Degradation of Glucagons. In: Henriksen JH (ed) Degradation of Bioactive Substances: Physiology and Pathophysiology. CRC, Boca Raton, pp 167–180

    Google Scholar 

  • Holst JJ, Aggestrup S, Loud FB et al (1983a) Content and gel filtration profiles of glucagon-like and somatostatin- like immunoreactivity in human fundic mucosa. J Clin Endocrinol Metab 56:729–732

    PubMed  CAS  Google Scholar 

  • Holst JJ, Pedersen JH, Baldissera F et al (1983b) Circulating glucagon after total pancreatectomy in man. Diabetologia 25:396–399

    PubMed  CAS  Google Scholar 

  • Holst JJ, Orskov C, Nielsen OV et al (1987) Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett 211:169–174

    PubMed  CAS  Google Scholar 

  • Holst JJ, Bersani M, Johnsen AH et al (1994) Proglucagon processing in porcine and human pancreas. J BiolChem 269:18827–18833

    CAS  Google Scholar 

  • Hupe-Sodmann K, Goke R, Goke B et al (1997) Endoproteolysis of glucagon-like peptide (GLP)-1 (7-36) amide by ectopeptidases in RINm5F cells. Peptides 18:625–632

    PubMed  CAS  Google Scholar 

  • Irwin DM, Wong J (1995) Trout and chicken proglucagon: alternative splicing generates mRNA transcripts encoding glucagon-like peptide 2. Mol Endocrinol 9:267–277

    PubMed  CAS  Google Scholar 

  • Jackson RS, Creemers JW, Farooqi IS et al (2003) Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J Clin Invest 112:1550–1560

    PubMed  CAS  Google Scholar 

  • Jin SL, Han VK, Simmons JG et al (1988) Distribution of glucagonlike peptide I (GLP-I), glucagon, and glicentin in the rat brain: an immunocytochemical study. J Comp Neurol 271:519–532

    PubMed  CAS  Google Scholar 

  • Jin T (2008) Mechanisms underlying proglucagon gene expression. J Endocrinol 198:17–28

    PubMed  CAS  Google Scholar 

  • Kauth T, Metz J (1987) Immunohistochemical localization of glucagon-like peptide 1. Use of poly- and monoclonal antibodies. Histochemistry 86:509–515

    PubMed  CAS  Google Scholar 

  • Kieffer TJ, Habener JF (1999) The glucagon-like peptides. Endocr Rev 20:876–913

    PubMed  CAS  Google Scholar 

  • Knudsen JB, Holst JJ, Asnaes S et al (1975) Identification of cells with pancreatic-type and gut-type glucagon immunoreactivity in the human colon. Acta Pathol Microbiol Scand [A] 83:741–743

    CAS  Google Scholar 

  • Knudsen LB, Pridal L (1996) Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur J Pharmacol 318:429–435

    PubMed  CAS  Google Scholar 

  • Larsen PJ, Tang-Christensen M, Holst JJ et al (1997) Distribution of glucagon-like peptide-1 and other preproglucagon- derived peptides in the rat hypothalamus and brainstem. Neuroscience 77:257–270

    PubMed  CAS  Google Scholar 

  • Lee YC, Asa SL, Drucker DJ (1992) Glucagon gene 5’-flanking sequences direct expression of simian virus 40 large T antigen to the intestine, producing carcinoma of the large bowel in transgenic mice. J Biol Chem 267:10705–10708

    PubMed  CAS  Google Scholar 

  • Lefebvre PJ, Luyckx AS (1980) Neurotransmitters and glucagon release from the isolated, perfused canine stomach. Diabetes 29:697–701

    PubMed  CAS  Google Scholar 

  • List JF, He H, Habener JF (2006) Glucagon-like peptide-1 receptor and proglucagon expression in mouse skin. Regul Pept 134:149–157

    PubMed  CAS  Google Scholar 

  • Lopez LC, Frazier ML, Su CJ et al (1983) Mammalian pancreatic preproglucagon contains three glucagon- related peptides. Proc Natl Acad Sci USA 80:5485–5489

    PubMed  CAS  Google Scholar 

  • Lotfi S, Li Z, Sun J et al (2006) Role of the exchange protein directly activated by cyclic adenosine 5’-monophosphate (Epac) pathway in regulating proglucagon gene expression in intestinal endocrine L cells. Endocrinology 147:3727–3736

    PubMed  CAS  Google Scholar 

  • Lund PK, Goodman RH, Dee PC et al (1982) Pancreatic preproglucagon cDNA contains two glucagon-related coding sequences arranged in tandem. Proc Natl Acad Sci USA 79:345–349

    PubMed  CAS  Google Scholar 

  • Ma X, Zhang Y, Gromada J et al (2005) Glucagon stimulates exocytosis in mouse and rat pancreatic alpha-cells by binding to glucagon receptors. Mol Endocrinol 19:198–212

    PubMed  CAS  Google Scholar 

  • Masur K, Tibaduiza EC, Chen C et al (2005) Basal receptor activation by locally produced glucagon-like peptide-1 contributes to maintaining beta-cell function. Mol Endocrinol 19:1373–1382

    PubMed  CAS  Google Scholar 

  • McKinnon CM, Ravier MA, Rutter GA (2006) FoxO1 is required for the regulation of preproglucagon gene expression by insulin in pancreatic alphaTC1-9 cells. J Biol Chem 281:39358–39369

    PubMed  CAS  Google Scholar 

  • Meier JJ, Nauck MA, Kranz D et al (2004) Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes 53:654–662

    PubMed  CAS  Google Scholar 

  • Mojsov S, Heinrich G, Wilson IB et al (1986) Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J Biol Chem 261:11880–11889

    PubMed  CAS  Google Scholar 

  • Mojsov S, Weir GC, Habener JF (1987) Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79:616–619

    PubMed  CAS  Google Scholar 

  • Mojsov S, Kopczynski MG, Habener JF (1990) Both amidated and nonamidated forms of glucagon-like peptide I are synthesized in the rat intestine and the pancreas. J Biol Chem 265:8001–8008

    PubMed  CAS  Google Scholar 

  • Moody AJ, Holst JJ, Thim L et al (1981) Relationship of glicentin to proglucagon and glucagon in the porcine pancreas. Nature 289:514–516

    PubMed  CAS  Google Scholar 

  • Mortensen K, Christensen LL, Holst JJ et al (2003) GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Pept 114:189–196

    PubMed  CAS  Google Scholar 

  • Murlin JR, Clough HD, Gibbs CBF et al (1923) Aqueous extracts of the pancreas. I. Influence on the carbohydrate metabolism of depancreatized animals. J Biol Chem 56:253–296

    CAS  Google Scholar 

  • Nian M, Drucker DJ, Irwin D (1999) Divergent regulation of human and rat proglucagon gene promoters in vivo. Am J Physiol 277:G829–G837

    PubMed  CAS  Google Scholar 

  • Nian M, Gu J, Irwin DM et al (2002) Human glucagon gene promoter sequences regulating tissue-specific versus nutrient-regulated gene expression. Am J Physiol Regul IntegrComp Physiol 282:R173–R183

    CAS  Google Scholar 

  • Nie Y, Nakashima M, Brubaker PL et al (2000) Regulation of pancreatic PC1 and PC2 associated with increased glucagon-like peptide 1 in diabetic rats. J Clin Invest 105:955–965

    PubMed  CAS  Google Scholar 

  • Novak U, Wilks A, Buell G et al (1987) Identical mRNA for preproglucagon in pancreas and gut. Eur J Biochem 164:553–558

    PubMed  CAS  Google Scholar 

  • Orci L, Bordi C, Unger RH et al (1983) Glucagon- and glicentin-producing cells. In: Lefebvre PJ (ed) Glucagon. Springer, Berlin

    Google Scholar 

  • Orci L, Pictet R, Forssmann WG et al (1968) Structural evidence for glucagon producing cells in the intestinal mucosa of the rat. Diabetologia 4:56–67

    PubMed  CAS  Google Scholar 

  • Orskov C, Bersani M, Johnsen AH et al (1989) Complete sequences of glucagon-like peptide-1 from human and pig small intestine. J Biol Chem 264:12826–12829

    PubMed  CAS  Google Scholar 

  • Orskov C, Holst JJ, Knuhtsen S et al (1986) Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 119:1467–1475

    PubMed  CAS  Google Scholar 

  • Orskov C, Holst JJ, Poulsen SS et al (1987) Pancreatic and intestinal processing of proglucagon in man. Diabetologia 30:874–881

    PubMed  CAS  Google Scholar 

  • Orskov C, Rabenhoj L, Wettergren A et al (1994) Tissue and plasma concentrations of amidated and glycine- extended glucagon-like peptide I in humans. Diabetes 43:535–539

    PubMed  CAS  Google Scholar 

  • Orskov C, Wettergren A, Holst JJ (1993) Biological effects and metabolic rates of glucagonlike peptide-1 7-36 amide and glucagonlike peptide-1 7-37 in healthy subjects are indistinguishable. Diabetes 42:658–661

    PubMed  CAS  Google Scholar 

  • Patzelt C, Schug G (1981) The major proglucagon fragment: an abundant islet protein and secretory product. FEBS Lett 129:127–130

    PubMed  CAS  Google Scholar 

  • Pedersen NB, Hjollund KR, Johnsen AH et al (2008) Porcine glucagon-like peptide-2: structure, signaling, metabolism and effects. Regul Pept 146:310–320

    PubMed  CAS  Google Scholar 

  • Philippe J (1991) Insulin regulation of the glucagon gene is mediated by an insulin-responsive DNA element. Proc Natl Acad Sci USA 88:7224–7227

    PubMed  CAS  Google Scholar 

  • Pilgaard K, Jensen CB, Schou JH et al (2009) The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men. Diabetologia 52:1298–1307

    PubMed  CAS  Google Scholar 

  • Plamboeck A, Holst JJ, Carr RD et al (2005) Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both mediators of the degradation of glucagon-like peptide 1 in the anaesthetised pig. Diabetologia 48:1882–1890

    PubMed  CAS  Google Scholar 

  • Rouille Y, Kantengwa S, Irminger JC et al (1997) Role of the prohormone convertase PC3 in the processing of proglucagon to glucagon-like peptide 1. J Biol Chem 272:32810–32816

    PubMed  CAS  Google Scholar 

  • Rouille Y, Westermark G, Martin SK et al (1994) Proglucagon is processed to glucagon by prohormone convertase PC2 in alpha TC1-6 cells. Proc Natl Acad Sci USA 91:3242–3246

    PubMed  CAS  Google Scholar 

  • Schafer SA, Tschritter O, Machicao F et al (2007) Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 (TCF7L2) gene polymorphisms. Diabetologia 50:2443–2450

    PubMed  CAS  Google Scholar 

  • Schinner S, Barthel A, Dellas C et al (2005) Protein kinase B activity is sufficient to mimic the effect of insulin on glucagon gene transcription. J Biol Chem 280:7369–7376

    PubMed  CAS  Google Scholar 

  • Scrocchi LA, Hill ME, Saleh J et al (2000) Elimination of glucagon-like peptide 1R signaling does not modify weight gain and islet adaptation in mice with combined disruption of leptin and GLP-1 action. Diabetes 49:1552–1560

    PubMed  CAS  Google Scholar 

  • Shu L, Matveyenko AV, Kerr-Conte J et al (2009) Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum Mol Genet 18:2388–2399

    PubMed  CAS  Google Scholar 

  • Sundby F, Jacobsen H, Moody AJ (1976) Purification and characterization of a protein from porcine gut with glucagon-like immunoreactivity. Horm Metab Res 8:366–371

    PubMed  CAS  Google Scholar 

  • Sundler F, Alumets J, Holst J et al (1976) Ultrastructural identification of cells storing pancreatic-type glucagon in dog stomach. Histochemistry 50:33–37

    PubMed  CAS  Google Scholar 

  • Sutherland EW, De Duve C (1948) Origin and distribution of the hyperglycemic-glycogenolytic factor of the pancreas. J Biol Chem 175:663–674

    PubMed  CAS  Google Scholar 

  • Thim L, Moody AJ (1981) The amino acid sequence of porcine glicentin. Peptides 2(Suppl 2):37–9

    PubMed  CAS  Google Scholar 

  • Thim L, Moody AJ (1982) Purification and chemical characterization of a glicentin- related pancreatic peptide (proglucagon fragment) from porcine pancreas. Biochim Biophys Acta 703:134–141

    PubMed  CAS  Google Scholar 

  • Trebbien R, Klarskov L, Olesen M et al (2004) Neutral endopeptidase 24.11 is important for the degradation of both endogenous and exogenous glucagon in anesthetized pigs. Am J Physiol Endocrinol Metab 287:E431–E438

    PubMed  CAS  Google Scholar 

  • Trinh DK, Zhang K, Hossain M et al (2003) Pax-6 activates endogenous proglucagon gene expression in the rodent gastrointestinal epithelium. Diabetes 52:425–433

    PubMed  CAS  Google Scholar 

  • Ugleholdt R, Zhu X, Deacon CF et al (2004) Impaired intestinal proglucagon processing in mice lacking prohormone convertase 1. Endocrinology 145:1349–1355

    PubMed  CAS  Google Scholar 

  • Unger RH, Eisentraut AM, McCall RH et al (1961) Glucagon antibodies and an immunoassay for glucagon. J Clin Invest 40:1280–1289

    PubMed  CAS  Google Scholar 

  • Unger RH, Ketterer H, Eisentraut AM (1966) Distribution of immunoassayable glucagon in gastrointestinal tissues. Metabolism 15:865–867

    PubMed  CAS  Google Scholar 

  • Unger RH, Ohneda A, Valverde I et al (1968) Characterization of the responses of circulating glucagon-like immunoreactivity to intraduodenal and intravenous administration of glucose. J Clin Invest 47:48–65

    PubMed  CAS  Google Scholar 

  • Valverde I, Rigopoulou D, Exton J et al (1968) Demonstration and characterization of a second fraction of glucagon- like immunoreactivity in jejunal extracts. Am J Med Sci 255:415–420

    PubMed  CAS  Google Scholar 

  • Varndell IM, Bishop AE, Sikri KL et al (1985) Localization of glucagon-like peptide (GLP) immunoreactants in human gut and pancreas using light and electron microscopic immunocytochemistry. J Histochem Cytochem 33:1080–1086

    PubMed  CAS  Google Scholar 

  • Vilsboll T, Agerso H, Krarup T et al (2003) Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab 88:220–224

    PubMed  CAS  Google Scholar 

  • Vilsboll T, Krarup T, Deacon CF et al (2000) Reduced concentrations of intact and total GIP and GLP-1 in type 2 diabetic patients

    Google Scholar 

  • Wettergren A, Pridal L, Wojdemann M, Holst JJ (1998) Amidated and non-amidated glucagon-like peptide-1 (GLP-1): non-pancreatic effects (cephalic phase acid secretion) and stability in plasma in humans. Regul Pept 77:83–87

    PubMed  CAS  Google Scholar 

  • Wideman RD, Yu IL, Webber TD et al (2006) Improving function and survival of pancreatic islets by endogenous production of glucagon-like peptide 1 (GLP-1). Proc Natl Acad Sci USA 103:13468–13473

    PubMed  CAS  Google Scholar 

  • Wilson ME, Kalamaras JA, German MS (2002) Expression pattern of IAPP and prohormone convertase 1/3 reveals a distinctive set of endocrine cells in the embryonic pancreas. Mech Dev 115:171–176

    PubMed  CAS  Google Scholar 

  • Yi F, Brubaker PL, Jin T (2005) TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem 280:1457–1464

    PubMed  CAS  Google Scholar 

  • Zander M, Madsbad S, Deacon CF et al (2006) The metabolite generated by dipeptidyl-peptidase 4 metabolism of glucagon-like peptide-1 has no influence on plasma glucose levels in patients with type 2 diabetes. Diabetologia 49:369–374

    PubMed  CAS  Google Scholar 

  • Zhou L, Nian M, Gu J et al (2006) Intron 1 sequences are required for pancreatic expression of the human proglucagon gene. Am J Physiol Regul Integr Comp Physiol 290:R634–R641

    PubMed  CAS  Google Scholar 

  • Zhu X, Zhou A, Dey A et al (2002) Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects. Proc Natl Acad Sci USA 99:10293–10298

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Juul Holst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holst, J.J. (2009). Glucagon and Glucagon-Like Peptides 1 and 2. In: Rehfeld, J., Bundgaard, J. (eds) Cellular Peptide Hormone Synthesis and Secretory Pathways. Results and Problems in Cell Differentiation, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2009_35

Download citation

Publish with us

Policies and ethics