Skip to main content

VIP and PACAP

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 50))

Abstract

Vasoactive intestinal polypeptide (VIP) is derived from a 170 amino acid precursor which in addition is processed to preproVIP 22-79, PHI, preproVIP 111-122 and preproVIP 156-170. All preproVIP-derived peptides have been shown in normal tissue and VIP-producing cell lines and elevated quantities occur in plasma and tumour tissues from patients with VIP-producing tumours. In some tissues the dibasic cleavage site after PHI is uncleaved resulting in a C-terminally extended form, PHV. PHI and VIP are present in a 1:1 molar ratio in large dense core vesicles and released in roughly equimolar amounts. Carboxyamidation of VIP and PHI is not critical and glycine-extended forms of both peptides have been demonstrated. Pituitary adenylate cyclase activating polypeptide (PACAP) is derived from a 170 amino acid long precursor, which gives rise to PACAP 38, PACAP 27 and PACAP related peptide (PRP). All peptides are present in tissue, the dominating form being PACAP 38. Prohormone convertase (PC) 1 and 2 seem to be involved in the processing of PACAP, except in the testes and ovary, where the PACAP precursor is substrate for PC4.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agoston DV, Ballmann M, Conlon JM et al (1985) Isolation of neuropeptide-containing vesicles from the guinea pig ileum. J Neurochem 45:398–406

    Article  PubMed  CAS  Google Scholar 

  • Agoston DV, Fahrenkrug J, Mikkelsen JD et al (1989) A peptide with N-terminal histidine and C-terminal isoleucine amide (PHI) and vasoactive intestinal peptide (VIP) are copackaged in myenteric neurones of the guinea pig ileum. Peptides 10:571–573

    Article  PubMed  CAS  Google Scholar 

  • Arimura A (1998) Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Jpn J Physiol 48:301–331

    Article  PubMed  CAS  Google Scholar 

  • Bloom SR, Polak JM (1982) Vipomas. In: Said SI (ed) Vasoactive intestinal peptide. Raven, New York

    Google Scholar 

  • Bredkjær HE, Rønnov Jessen D, Fahrenkrug L et al (1991) Expression of preproVIP-derived peptides in the human gastrointestinal tract: a biochemical and immunocytochemical study. Regul Pept 33:145–164

    Article  PubMed  Google Scholar 

  • Bredkjær HE, Palle C, Ekblad E et al (1997) PreproVIP-derived peptides in the human female genital tract: expression and biological function. Neuropeptides 31:209–215

    Article  Google Scholar 

  • Buhl T, Georg B, Nilsson C et al (1995) Effect of thyroid hormones on vasoactive intestinal polypeptide gene expression in the rat cerebral cortex and anterior pituitary. Regul Pept 55:237–251

    Article  PubMed  CAS  Google Scholar 

  • Buhl T, Nilsson C, Ekblad E et al (1996) Expression of prepro-VIP derived peptides in the gastrointestinal tract of normal, hypothyroid and hyperthyroid rats. Neuropeptides 30:237–247

    Article  PubMed  CAS  Google Scholar 

  • Cai Y, Xin X, Yamada T et al (1995) Assignments of the genes for rat pituitary adenylate cyclase activating polypeptide (Adcyap1) and its receptor subtypes (Adcyap1r1, Adcyap1r2, and Adcyap1r3). Cytogenet Cell Genet 71:193–196

    Article  PubMed  CAS  Google Scholar 

  • Cauvin A, Vandermeers A, Vandermeers-Piret MC et al (1989a) Variable distribution of three molecular forms of peptide histidine isoleucinamide in rat tissues: identification of the large molecular form as peptide histidine valine-(1–42). Endocrinology 125:2645–2655

    Article  PubMed  CAS  Google Scholar 

  • Cauvin A, Vandermeers A, Vandermeers-Piret MC et al (1989b) Peptide histidine isoleucinamide (PHI)-(1–27)-Gly as a new major form of PHI in the rat small intestine. Endocrinology 125:1296–1302

    Article  PubMed  CAS  Google Scholar 

  • Cauvin A, Vandermeers-Piret MC, Vandermeers A et al (1990) Rat PHI, PHI-GLY and PHV (1–42) stimulate adenylate cyclase in six rat tissue and cell membranes. Peptides 11:1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Christofides ND, Yiangou Y, Piper PJ et al (1984) Distribution of peptide histidine isoleucine in the mammalian respiratory tract and some aspects of its pharmacology. Endocrinology 115:1958–1963

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrug J (1987) Co-existence and co-secretion of the structurally related peptides VIP and PHI. Scand J Clin Lab Invest Suppl 186:43–50

    PubMed  CAS  Google Scholar 

  • Fahrenkrug J (1991) Glycine-extended processing intermediate of proVIP: a new form of VIP in the rat. Biochem Biophys Res Commun 178:173–177

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrug J (1993) Transmitter role of vasoactive intestinal peptide. Pharmacol Toxicol 72:354–363

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrug J, Emson PC (1989) Characterization and regional distribution of peptides derived from the vasoactive intestinal peptide precursor in the normal human brain. J Neurochem 53:1142–1148

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrug J, Hannibal J (1996) Pituitary adenylate cyclase activating polypeptide innervation of the rat female reproductive tract and the associated paracervical ganglia: effect of capsaicin. Neuroscience 73:1049–1060

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrug J, Hannibal J (1998) Pituitary adenylate cyclase activating polypeptide immunoreactivity in capsaicin-sensitive nerve fibres supplying the rat urinary tract. Neuroscience 83:1261–1272

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrug J, Bek T, Lundberg JM et al (1985) VIP and PHI in cat neurons: co-localization but variable tissue content possible due to differential processing. Regul Pept 12:21–34

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrug J, Ottesen B, Palle C (1989) Non-amidated forms of VIP (glycine-extended VIP and VIP-free acid) have full bioactivity on smooth muscle. Regul Pept 26:235–239

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrug J, Buhl T, Hannibal J (1995) PreproPACAP-derived peptides occur in VIP-producing tumours and co-exist with VIP. Regul Pept 58:89–98

    Article  PubMed  CAS  Google Scholar 

  • Georg B, Wulff BS, Fahrenkrug J (1994) Characterization of the effects of retinoic acid on vasoactive intestinal polypeptide gene expression in neuroblastoma cells. Endocrinology 135:1455–1463

    Article  PubMed  CAS  Google Scholar 

  • Ghatei MA, Takahashi K, Suzuki Y et al (1993) Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide and its precursor encoding messenger RNA in human and rat tissues. J Endocrinol 136:159–166

    Article  PubMed  CAS  Google Scholar 

  • Hannibal J, Fahrenkrug J (1995) Expression of pituitary adenylate cyclase activating polypeptide (PACAP) gene by rat spermatogenic cells. Regul Pept 55:111–115

    Article  PubMed  CAS  Google Scholar 

  • Hannibal J, Mikkelsen JD, Clausen H et al (1995) Gene expression of pituitary adenylate cyclase activating polypeptide (PACAP) in the rat hypothalamus. Regul Pept 55:133–148

    Article  PubMed  CAS  Google Scholar 

  • Hannibal J, Ekblad E, Mulder H et al (1998) Pituitary adenylate cyclase activating polypeptide (PACAP) in the gastrointestinal tract of the rat: distribution and effects of capsaicin or denervation. Cell Tissue Res 291:65–79

    Article  PubMed  CAS  Google Scholar 

  • Holst JJ, Fahrenkrug J, Knuthsen S et al (1987) VIP and PHI in the pig pancreas: coexistence, corelease, and cooperative effects. Am J Physiol 252:G182–G189

    PubMed  CAS  Google Scholar 

  • Hosoya M, Onda H, Ogi K et al (1993) Molecular cloning and functional expression of rat cDNAs encoding the receptor for pituitary adenylate cyclase activating polypeptide (PACAP). Biochem Biophys Res Commun 194:133–143

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Kato Y, Koshiyama H et al (1988) Interaction between vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI) in stimulating the secretion of prolactin from rat anterior pituitary cells in vitro. Neurosci Lett 85:363–369

    Article  PubMed  CAS  Google Scholar 

  • Itoh N, Obata K, Yanaihara N et al (1983) Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature 304:547–549

    Article  PubMed  CAS  Google Scholar 

  • Kitada C, Watanabe T, Masuda Y et al (1992) Biological activity of the segment of PACAP precursor protein:383-395

    Google Scholar 

  • Lamperti ED, Rosen KM, Villa-Komaroff L (1991) Characterization of the gene and messages for vasoactive intestinal polypeptide (VIP) in rat and mouse. Brain Res Mol Brain Res 9:217–231

    Article  PubMed  CAS  Google Scholar 

  • Li M, Nakayama K, Shuto Y et al (1998) Testis-specific prohormone convertase PC4 processes the precursor of pituitary adenylate cyclase-activating polypeptide (PACAP). Peptides 19:259–268

    Article  PubMed  CAS  Google Scholar 

  • Li M, Shuto Y, Somogyvari-Vigh A et al (1999) Prohormone convertases 1 and 2 process ProPACAP and generate matured, bioactive PACAP38 and PACAP27 in transfected rat pituitary GH4C1 cells. Neuroendocrinology 69:217–226

    Article  PubMed  CAS  Google Scholar 

  • Li M, Mbikay M, Arimura A (2000) Pituitary adenylate cyclase-activating polypeptide precursor is processed solely by prohormone convertase 4 in the gonads. Endocrinology 141:3723–3730

    Article  PubMed  CAS  Google Scholar 

  • Linder S, Barkhem T, Norberg A et al (1987) Structure and expression of the gene encoding the vasoactive intestinal peptide precursor. Proc Natl Acad Sci USA 84:605–609

    Article  PubMed  CAS  Google Scholar 

  • Lundberg JM, Fahrenkrug J, Larsson O et al (1984a) Corelease of vasoactive intestinal polypeptide and peptide histidine isoleucine in relation to atropine-resistant vasodilation in cat submandibular salivary gland. Neurosci Lett 52:37–42

    Article  PubMed  CAS  Google Scholar 

  • Lundberg JM, Fahrenkrug J, Hokfelt T et al (1984b) Co-existence of peptide HI (PHI) and VIP in nerves regulating blood flow and bronchial smooth muscle tone in various mammals including man. Peptides 5:593–606

    Article  PubMed  CAS  Google Scholar 

  • Mbikay M, Tadros H, Ishida N et al (1997) Impaired fertility in mice deficient for the testicular germ-cell protease PC4. Proc Natl Acad Sci USA 94:6842–6846

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen JD, Fahrenkrug J (1994) Concentrations and distribution of vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI) and peptide histidine valine (PHV) in the cerebral cortex and the suprachiasmatic nucleus of the mouse. Brain Res 656:95–107

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen JD, Hannibal J, Fahrenkrug J et al (1995) Pituitary adenylate cyclase activating peptide-38 (PACAP-38), PACAP-27, and PACAP related peptide (PRP) in the rat median eminence and pituitary. J Neuroendocrinol 7:47–55

    Article  PubMed  CAS  Google Scholar 

  • Miller R, Toneff T, Vishnuvardhan D et al (2003) Selective roles for the PC2 processing enzyme in the regulation of peptide neurotransmitter levels in brain and peripheral neuroendocrine tissues of PC2 deficient mice. Neuropeptides 37:140–148

    Article  PubMed  CAS  Google Scholar 

  • Miyata A, Arimura A, Dahl RR et al (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–574

    Article  PubMed  CAS  Google Scholar 

  • Miyata A, Jiang L, Dahl RD et al (1990) Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 170:643–648

    Article  PubMed  CAS  Google Scholar 

  • Moriarty KJ, Hegarty JE, Tatemoto K et al (1984) Effect of peptide histidine isoleucine on water and electrolyte transport in the human jejunum. Gut 25:624–628

    Article  PubMed  CAS  Google Scholar 

  • Mutt V, Said SI (1974) Structure of the porcine vasoactive intestinal octacosapeptide. The amino-acid sequence. Use of kallikrein in its determination. Eur J Biochem 42:581–589

    Article  PubMed  CAS  Google Scholar 

  • Nilsson C, Fahrenkrug J (1995) Biosynthetic processing of preprovasoactive intestinal polypeptide in parasympathetic neurons of the sphenopalatine ganglion. J Neurochem 65:2663–2670

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa M, Hayakawa Y, Yanaihara N et al (1985) Nucleotide sequence divergence and functional constraint in VIP precursor mRNA evolution between human and rat. FEBS Lett 183:55–59

    Article  PubMed  CAS  Google Scholar 

  • Ohkubo S, Kimura C, Ogi K et al (1992) Primary structure and characterization of the precursor to human pituitary adenylate cyclase activating polypeptide. DNA Cell Biol 11:21–30

    Article  PubMed  CAS  Google Scholar 

  • Okazaki K, Kimura C, Kosaka T et al (1992) Expression of human pituitary adenylate cyclase activating polypeptide (PACAP) cDNA in CHO cells and characterization of the products. FEBS Lett 298:49–56

    Article  PubMed  CAS  Google Scholar 

  • Ottesen B, Bredkjær HE, Ekblad E et al (1995) Expression and characterization of preproVIP derived peptides in the human male urogenital tract. Neuropeptides 28:227–236

    Article  PubMed  CAS  Google Scholar 

  • Palle C, Ottesen B, Jørgensen J et al (1989) Peptide histidine methionine and vasoactive intestinal peptide: occurrence and relaxant effect in the human female reproductive tract. Biol Reprod 41:1103–1111

    Article  PubMed  CAS  Google Scholar 

  • Palle C, Ottesen B, Fahrenkrug J (1992) Peptide histidine valine (PHV) is present and biologically active in the human female genital tract. Regul Pept 38:101–109

    Article  PubMed  CAS  Google Scholar 

  • Rønnov-Jensen D, Gether U, Fahrenkrug J (1991) PreproVIP-derived peptides in tissue and plasma from patients with VIP-producing tumours. Eur J Clin Invest 21:154–160

    Article  PubMed  Google Scholar 

  • Said SI, Mutt V (1970a) Polypeptide with broad biological activity: isolation from small intestine. Science 169:1217–1218

    Article  PubMed  CAS  Google Scholar 

  • Said SI, Mutt V (1970b) Potent peripheral and splanchnic vasodilator peptide from normal gut. Nature 225:863–864

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Satoh S, Lederis K et al (1991) Cerebral vascular effects of peptide histidine methionine in canine and bovine species. Pharmacology 42:241–245

    Article  PubMed  CAS  Google Scholar 

  • Tams JW, Johnsen AH, Fahrenkrug J (1999) Identification of pituitary adenylate cyclase-activating polypeptide1–38-binding factor in human plasma, as ceruloplasmin. Biochem J 341(Pt 2):271–276

    Article  PubMed  CAS  Google Scholar 

  • Tapia-Arancibia L, Reichlin S (1985) Vasoactive intestinal peptide and PHI stimulate somatostatin release from rat cerebral cortical and diencephalic cells in dispersed cell culture. Brain Res 336:67–72

    Article  PubMed  CAS  Google Scholar 

  • Tatemoto K, Mutt V (1981) Isolation and characterization of the intestinal peptide porcine PHI (PHI-27), a new member of the glucagon-secretin family. Proc Natl Acad Sci USA 78:6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Tornøe K, Hannibal J, Georg B et al (2001) PACAP 1–38 as neurotransmitter in the porcine antrum. Regul Pept 101:109–121

    Article  PubMed  CAS  Google Scholar 

  • Tse DL, Pang RT, Wong AO et al (2002) Identification of a potential receptor for both peptide histidine isoleucine and peptide histidine valine. Endocrinology 143:1327–1336

    Article  PubMed  CAS  Google Scholar 

  • Tsukada T, Horovitch SJ, Montminy MR et al (1985) Structure of the human vasoactive intestinal polypeptide gene. DNA 4:293–300

    PubMed  CAS  Google Scholar 

  • Vaudry D, Gonzalez BJ, Basille M et al (2000) Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 52:269–324

    PubMed  CAS  Google Scholar 

  • Wray V, Nokihara K, Naruse S et al (1995) Synthesis, solution structure and biological action of PACAP-related peptide. Biomed Pept Proteins Nucleic Acids 1:77–82

    PubMed  CAS  Google Scholar 

  • Yiangou Y, Christofides ND, Gu J et al (1985) Peptide histidine methionine (PHM) and the human male genitalia. Neuropeptides 6:133–142

    PubMed  CAS  Google Scholar 

  • Yiangou Y, DiMarzo V, Spokes RA et al (1987) Isolation, characterisation, and pharmacological actions of peptide histidine valine 42, a novel prepro-vasoactive intestinal peptide-derived peptide. J Biol Chem 262:14010–14013

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Fahrenkrug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fahrenkrug, J. (2009). VIP and PACAP. In: Rehfeld, J., Bundgaard, J. (eds) Cellular Peptide Hormone Synthesis and Secretory Pathways. Results and Problems in Cell Differentiation, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2009_24

Download citation

Publish with us

Policies and ethics