Skip to main content

Cooperation of B Cells and T Cells in the Pathogenesis of Multiple Sclerosis

  • Chapter
  • First Online:
Molecular Basis of Multiple Sclerosis

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 51))

Abstract

B cells and T cells are two major players in the pathogenesis of multiple sclerosis (MS) and cooperate at various check points. B cells, besides serving as a source for antibody-secreting plasma cells, are efficient antigen presenting cells for processing of intact myelin antigen and subsequent activation and pro-inflammatory differentiation of T cells. This notion is supported by the immediate clinical benefit of therapeutic B cell depletion in MS, presumably abrogating development of encephalitogenic T cells. However, different B cell subsets strongly vary in their respective effect on T cell differentiation which may relate to B cell phenotype, activation status, antigen specificity and the immunological environment where a B cell encounters a naïve T cell in. In this regard, some B cells also have anti-inflammatory properties producing regulatory cytokines and facilitating development and maintenance of other immunomodulatory immune cells, such as regulatory T cells. Reciprocally, differentiated T cells influence T cell polarizing B cell properties establishing a positive feedback loop of joint pro- or anti-inflammatory B and T cell developments. Further, under the control of activated T helper cells, antigen-primed B cells can switch immunoglobulin isotype, terminally commit to the plasma cell pathway or enter the germinal center reaction to memory B Cell development. Taken together, B cells and T cells thus closely support one another to participate in the pathogenesis of MS in an inflammatory but also in a regulatory manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baranzini SE et al (1999) B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J Immunol 163:5133–5144

    PubMed  CAS  Google Scholar 

  • Benschop RJ, Melamed D, Nemazee D, Cambier JC (1999) Distinct signal thresholds for the unique antigen receptor-linked gene expression programs in mature and immature B cells. J Exp Med 190:749–756

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Berger T, Reindl M (2000) Immunopathogenic and clinical relevance of antibodies against myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis. J Neural Transm Suppl 60:351–360

    PubMed  Google Scholar 

  • Berger T et al (2003) Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med 349:139–145

    Article  PubMed  CAS  Google Scholar 

  • Bettelli E et al (2003) Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med 197:1073–1081

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bettelli E, Baeten D, Jager A, Sobel RA, Kuchroo VK (2006a) Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J Clin Invest 116:2393–2402

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bettelli E et al (2006b) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    Article  PubMed  CAS  Google Scholar 

  • Bourquin C et al (2003) Selective unresponsiveness to conformational B cell epitopes of the myelin oligodendrocyte glycoprotein in H-2b mice. J Immunol 171:455–461

    Article  PubMed  CAS  Google Scholar 

  • Brummel R, Lenert P (2005) Activation of marginal zone B cells from lupus mice with type A(D) CpG-oligodeoxynucleotides. J Immunol 174:2429–2434

    Article  PubMed  CAS  Google Scholar 

  • Constant S, Schweitzer N, West J, Ranney P, Bottomly K (1995a) B lymphocytes can be competent antigen-presenting cells for priming CD4+ T cells to protein antigens in vivo. J Immunol 155:3734–3741

    PubMed  CAS  Google Scholar 

  • Constant S et al (1995b) Peptide and protein antigens require distinct antigen-presenting cell subsets for the priming of CD4+ T cells. J Immunol 154:4915–4923

    PubMed  CAS  Google Scholar 

  • Cragg MS, Walshe CA, Ivanov AO, Glennie MJ (2005) The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun 8:140–174

    Article  PubMed  CAS  Google Scholar 

  • Cree BA, Goodin DS, Hauser SL (2002) Neuromyelitis optica. Semin Neurol 22:105–122

    Article  PubMed  Google Scholar 

  • Cree BA et al (2005) An open label study of the effects of rituximab in neuromyelitis optica. Neurology 64:1270–1272

    Article  PubMed  CAS  Google Scholar 

  • Cross AH, Stark JL, Lauber J, Ramsbottom MJ, Lyons JA (2006) Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 180:63–70

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dittel BN, Urbania TH, Janeway CA Jr (2000) Relapsing and remitting experimental autoimmune encephalomyelitis in B cell deficient mice. J Autoimmun 14:311–318

    Article  PubMed  CAS  Google Scholar 

  • Farina C et al (2002) Treatment with glatiramer acetate induces specific IgG4 antibodies in multiple sclerosis patients. J Neuroimmunol 123:188–192

    Article  PubMed  CAS  Google Scholar 

  • Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3:944–950

    Article  PubMed  CAS  Google Scholar 

  • Fontana A, Fierz W, Wekerle H (1984) Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 307:273–276

    Article  PubMed  CAS  Google Scholar 

  • Genain CP, Cannella B, Hauser SL, Raine CS (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 5:170–175

    Article  PubMed  CAS  Google Scholar 

  • Gillan V, Lawrence RA, Devaney E (2005) B cells play a regulatory role in mice infected with the L3 of Brugia pahangi. Int Immunol 17:373–382

    Article  PubMed  CAS  Google Scholar 

  • Goetz M, Atreya R, Ghalibafian M, Galle PR, Neurath MF (2007) Exacerbation of ulcerative colitis after rituximab salvage therapy. Inflamm Bowel Dis 13:1365–1368

    Article  PubMed  Google Scholar 

  • Greeve I et al (2007) Anti-myelin antibodies in clinically isolated syndrome indicate the risk of multiple sclerosis in a Swiss cohort. Acta Neurol Scand 116:207–210

    Article  PubMed  CAS  Google Scholar 

  • Han S et al (1995) Cellular interaction in germinal centers. Roles of CD40 ligand and B7-2 in established germinal centers. J Immunol 155:556–567

    PubMed  CAS  Google Scholar 

  • Hardy RR (2006) B-1 B cell development. J Immunol 177:2749–2754

    Article  PubMed  CAS  Google Scholar 

  • Harp CT, Lovett-Racke AE, Racke MK, Frohman EM, Monson NL (2008) Impact of myelin-specific antigen presenting B cells on T cell activation in multiple sclerosis. Clin Immunol 128:382–391

    Article  PubMed  CAS  Google Scholar 

  • Harris DP et al (2000) Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 1:475–482

    Article  PubMed  CAS  Google Scholar 

  • Hauser S et al (2007) A phase II randomized, placebo-controlled, multicenter trial of rituximab in adults with relapsing remitting multiple sclerosis (RRMS). Neurology 68(Suppl):A99–A100

    Google Scholar 

  • Hauser SL et al (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358:676–688

    Article  PubMed  CAS  Google Scholar 

  • Hinson SR et al (2008) Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2. J Exp Med 205:2473–2481

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hsu HC et al (2008) Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol 9:166–175

    Article  PubMed  CAS  Google Scholar 

  • Ishizaka A et al (1990) The inductive effect of interleukin-4 on IgG4 and IgE synthesis in human peripheral blood lymphocytes. Clin Exp Immunol 79:392–396

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jacob A et al (2008) Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Arch Neurol 65:1443–1448

    Article  PubMed  Google Scholar 

  • Jarius S et al (2008) Antibody to aquaporin-4 in the long-term course of neuromyelitis optica. Brain 131:3072–3080

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jee Y et al (2007) CD4(+) CD25(+) regulatory T cells contribute to the therapeutic effects of glatiramer acetate in experimental autoimmune encephalomyelitis. Clin Immunol 125:34–42

    Article  PubMed  CAS  Google Scholar 

  • Karni A, Bakimer-Kleiner R, Abramsky O, Ben-Nun A (1999) Elevated levels of antibody to myelin oligodendrocyte glycoprotein is not specific for patients with multiple sclerosis. Arch Neurol 56:311–315

    Article  PubMed  CAS  Google Scholar 

  • Krishnamoorthy G, Lassmann H, Wekerle H, Holz A (2006) Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest 116:2385–2392

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kuhle J et al (2007) Lack of association between antimyelin antibodies and progression to multiple sclerosis. N Engl J Med 356:371–378

    Article  PubMed  CAS  Google Scholar 

  • Lim ET et al (2005) Anti-myelin antibodies do not allow earlier diagnosis of multiple sclerosis. Mult Scler 11:492–494

    Article  PubMed  CAS  Google Scholar 

  • Linington C, Lassmann H (1987) Antibody responses in chronic relapsing experimental allergic encephalomyelitis: correlation of serum demyelinating activity with antibody titre to the myelin/oligodendrocyte glycoprotein (MOG). J Neuroimmunol 17:61–69

    Article  PubMed  CAS  Google Scholar 

  • Lyons JA, San M, Happ MP, Cross AH (1999) B cells are critical to induction of experimental allergic encephalomyelitis by protein but not by a short encephalitogenic peptide. Eur J Immunol 29:3432–3439

    Article  PubMed  CAS  Google Scholar 

  • Lyons JA, Ramsbottom MJ, Cross AH (2002) Critical role of antigen-specific antibody in experimental autoimmune encephalomyelitis induced by recombinant myelin oligodendrocyte glycoprotein. Eur J Immunol 32:1905–1913

    Article  PubMed  CAS  Google Scholar 

  • Mandler RN, Davis LE, Jeffery DR, Kornfeld M (1993) Devic’s neuromyelitis optica: a clinicopathological study of 8 patients. Ann Neurol 34:162–168

    Article  PubMed  CAS  Google Scholar 

  • Mangan NE et al (2004) Helminth infection protects mice from anaphylaxis via IL-10-producing B cells. J Immunol 173:6346–6356

    Article  PubMed  CAS  Google Scholar 

  • Marta CB, Oliver AR, Sweet RA, Pfeiffer SE, Ruddle NH (2005) Pathogenic myelin oligodendrocyte glycoprotein antibodies recognize glycosylated epitopes and perturb oligodendrocyte physiology. Proc Natl Acad Sci USA 102:13992–13997

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mauri C, Gray D, Mushtaq N, Londei M (2003) Prevention of arthritis by interleukin 10-producing B cells. J Exp Med 197:489–501

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Neuhaus O et al (2000) Multiple sclerosis: comparison of copolymer-1- reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci USA 97:7452–7457

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Okamoto H, Kamatani N (2004) Rituximab for rheumatoid arthritis. N Engl J Med 351:1909 author reply 1909

    Article  PubMed  CAS  Google Scholar 

  • Pestronk A et al (2003) Treatment of IgM antibody associated polyneuropathies using rituximab. J Neurol Neurosurg Psychiatry 74:485–489

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Prineas JW, Connell F (1978) The fine structure of chronically active multiple sclerosis plaques. Neurology 28:68–75

    Article  PubMed  CAS  Google Scholar 

  • Qin Y et al (2003) Intrathecal B-cell clonal expansion, an early sign of humoral immunity, in the cerebrospinal fluid of patients with clinically isolated syndrome suggestive of multiple sclerosis. Lab Invest 83:1081–1088

    Article  PubMed  Google Scholar 

  • Ranger AM, Das MP, Kuchroo VK, Glimcher LH (1996) B7–2 (CD86) is essential for the development of IL-4-producing T cells. Int Immunol 8:1549–1560

    Article  PubMed  CAS  Google Scholar 

  • Reindl M et al (1999) Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain 122(Pt 11):2047–2056

    Article  PubMed  Google Scholar 

  • Rivera A, Chen CC, Ron N, Dougherty JP, Ron Y (2001) Role of B cells as antigen-presenting cells in vivo revisited: antigen-specific B cells are essential for T cell expansion in lymph nodes and for systemic T cell responses to low antigen concentrations. Int Immunol 13:1583–1593

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Pinto D, Moreno J (2005) B cells can prime naive CD4+ T cells in vivo in the absence of other professional antigen-presenting cells in a CD154-CD40-dependent manner. Eur J Immunol 35:1097–1105

    Article  PubMed  CAS  Google Scholar 

  • Sato T et al (2004) Aberrant B1 cell migration into the thymus results in activation of CD4 T cells through its potent antigen-presenting activity in the development of murine lupus. Eur J Immunol 34:3346–3358

    Article  PubMed  CAS  Google Scholar 

  • Schluesener HJ, Sobel RA, Linington C, Weiner HL (1987) A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. J Immunol 139:4016–4021

    PubMed  CAS  Google Scholar 

  • Serreze DV et al (1996) B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new “speed congenic” stock of NOD.Ig mu null mice. J Exp Med 184:2049–2053

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Qiao L (2008) Resting B cells expand a CD4(+) CD25(+) Foxp3(+) Treg population via TGF-beta3. Eur J Immunol 38:2488–2498

    Article  PubMed  CAS  Google Scholar 

  • Slavin AJ et al (2001) Requirement for endocytic antigen processing and influence of invariant chain and H-2M deficiencies in CNS autoimmunity. J Clin Invest 108:1133–1139

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Soos JM et al (1998) Astrocytes express elements of the class II endocytic pathway and process central nervous system autoantigen for presentation to encephalitogenic T cells. J Immunol 161:5959–5966

    PubMed  CAS  Google Scholar 

  • Steinman L, Zamvil SS (2005) Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis. Trends Immunol 26:565–571

    Article  PubMed  CAS  Google Scholar 

  • Stuve O et al (2002) The role of the MHC class II transactivator in class II expression and antigen presentation by astrocytes and in susceptibility to central nervous system autoimmune disease. J Immunol 169:6720–6732

    Article  PubMed  CAS  Google Scholar 

  • Tarlinton D (1998) Germinal centers: form and function. Curr Opin Immunol 10:245–251

    Article  PubMed  CAS  Google Scholar 

  • Torrente-Segarra V, Lisbona-Perez M, Rotes-Sala D, Castro-Oreiro S, Carbonell-Abello J (2009) Clinical, biological and ultrasonographic remission in a patient with musculoskeletal systemic lupus erythematosus with rituximab. Lupus 18:270–272

    Article  PubMed  CAS  Google Scholar 

  • van der Veen RC, Trotter JL, Kapp JA (1992) Immune processing of proteolipid protein by subsets of antigen-presenting spleen cells. J Neuroimmunol 38:139–146

    Article  PubMed  Google Scholar 

  • van Vollenhoven RF et al (2004) Biopsy-verified response of severe lupus nephritis to treatment with rituximab (anti-CD20 monoclonal antibody) plus cyclophosphamide after biopsy-documented failure to respond to cyclophosphamide alone. Scand J Rheumatol 33:423–427

    Article  PubMed  CAS  Google Scholar 

  • Vigna-Perez M et al (2006) Clinical and immunological effects of Rituximab in patients with lupus nephritis refractory to conventional therapy: a pilot study. Arthritis Res Ther 8:R83

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • von Budingen HC et al (2002) Molecular characterization of antibody specificities against myelin/oligodendrocyte glycoprotein in autoimmune demyelination. Proc Natl Acad Sci USA 99:8207–8212

    Article  CAS  Google Scholar 

  • von Budingen HC et al (2004) Frontline: epitope recognition on the myelin/oligodendrocyte glycoprotein differentially influences disease phenotype and antibody effector functions in autoimmune demyelination. Eur J Immunol 34:2072–2083

    Article  Google Scholar 

  • Wagle NM et al (2000) B-lymphocyte signaling receptors and the control of class-II antigen processing. Curr Top Microbiol Immunol 245:101–126

    PubMed  CAS  Google Scholar 

  • Wolf SD, Dittel BN, Hardardottir F, Janeway CA Jr (1996) Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J Exp Med 184:2271–2278

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zamvil SS, Steinman L (1990) The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol 8:579–621

    Article  PubMed  CAS  Google Scholar 

  • Zamvil SS, Steinman L (2003) Diverse targets for intervention during inflammatory and neurodegenerative phases of multiple sclerosis. Neuron 38:685–688

    Article  PubMed  CAS  Google Scholar 

  • Zhong X et al (2007) Reciprocal generation of Th1/Th17 and T(reg) cells by B1 and B2 B cells. Eur J Immunol 37:2400–2404

    Article  PubMed  CAS  Google Scholar 

  • Zhou D et al (2006) Identification of a pathogenic antibody response to native myelin oligodendrocyte glycoprotein in multiple sclerosis. Proc Natl Acad Sci USA 103:19057–19062

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Hemmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Weber, M.S., Hemmer, B. (2009). Cooperation of B Cells and T Cells in the Pathogenesis of Multiple Sclerosis. In: Martin, R., Lutterotti, A. (eds) Molecular Basis of Multiple Sclerosis. Results and Problems in Cell Differentiation, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2009_21

Download citation

Publish with us

Policies and ethics