Skip to main content

Smelling, Tasting, Learning: Drosophila as a Study Case

  • Chapter
  • First Online:
Chemosensory Systems in Mammals, Fishes, and Insects

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 47))

Abstract

Understanding brain function is to account for how the sensory system is integrated with the organism's needs to organize behaviour. We review what is known about these processes with regard to chemosensation and chemosensory learning in Drosophila. We stress that taste and olfaction are organized rather differently. Given that, e.g., sugars are nutrients and should be eaten (irrespective of the kind of sugar) and that toxic substances should be avoided (regardless of the kind of death they eventually cause), tastants are classified into relatively few behavioural matters of concern. In contrast, what needs to be done in response to odours is less evolutionarily determined. Thus, discrimination ability is warranted between different kinds of olfactory input, as any difference between odours may potentially be or become important. Therefore, the olfactory system has a higher dimensionality than gustation, and allows for more sensory—motor flexibility to attach acquired behavioural ‘meaning’ to odours. We argue that, by and large, larval and adult Drosophila are similar in these kinds of architecture, and that additionally there are a number of similarities to vertebrates, in particular regarding the cellular architecture of the olfactory pathway, the functional slant of the taste and smell systems towards classification versus discrimination, respectively, and the higher plasticity of the olfactory sensory—motor system. From our point of view, the greatest gap in understanding smell and taste systems to date is not on the sensory side, where indeed impressive advances have been achieved; also, a satisfying account of associative odour-taste memory trace formation seems within reach. Rather, we lack an understanding as to how sensory and motor formats of processing are centrally integrated, and how adaptive motor patterns actually are selected. Such an understanding, we believe, will allow the analysis to be extended to the motivating factors of behaviour, eventually leading to a comprehensive account of those systems which make Drosophila do what Drosophila's got to do.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams TW, Yovell Y, Onyike CU, Cohen JE, Jarrard, HE. (1998) Analysis of sequence-dependent interactions between transient calcium and transmitter stimuli in activating adenylyl cyclase in Aplysia: possible contribution to CS-US sequence requirement during conditioning. Learn Mem 4:496–509

    PubMed  CAS  Google Scholar 

  • Aceves-Pina EO, Quinn WG. (1979) Learning in normal and mutant Drosophila larvae. Science 206:93–96

    PubMed  CAS  Google Scholar 

  • Ache BW, Young JM. (2005) Olfaction: diverse species, conserved principles. Neuron 48:417–430

    PubMed  CAS  Google Scholar 

  • Awasaki T, Kimura K. (1997) Pox-neuro is required for development of chemosensory bristles in Drosophila. J Neurobiol 32:707–721

    PubMed  CAS  Google Scholar 

  • Bader R, Colomb J, Pankratz B, Schröck A, Stocker RF, Pankratz MJ. (2007) Genetic dissection of neural circuit anatomy underlying feeding behavior in Drosophila: distinct classes of hugin expressing neurons. J Comp Neurol 502:848–856

    PubMed  Google Scholar 

  • Benton R, Sachse S, Michnick SW, Vosshall LB. (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLloS Biol 4:e20.

    PubMed  Google Scholar 

  • Benton R, Vannice KS, Vosshall LB. (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450:289–293

    PubMed  CAS  Google Scholar 

  • Blenau W, Baumann A. (2001) Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera. Arch Insect Biochem Physiol 48:13–38

    PubMed  CAS  Google Scholar 

  • Boulianne GL, Livne-Bar I, Humphreys JM, Liang Y, Lin C, Rogaev E, St George-Hyslop, P. (1997) Cloning and characterization of the Drosophila presenilin homologue. Neuroreport 8:1025–1029

    PubMed  CAS  Google Scholar 

  • Buck L, Axel R. (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    PubMed  CAS  Google Scholar 

  • Carle E. (1969) The very hungry caterpillar. Penguin, New York

    Google Scholar 

  • Chen Q, He G, Qin W, Chen QY, Zhao XZ, Duan SW, Liu XM, Feng GY, Xu YF, St Clair D, Li M, Wang JH, Xing YL, Shi JG, He L. (2004) Family-based association study of synapsin II and schizophrenia. Am J Hum Genet 75:873–877

    PubMed  CAS  Google Scholar 

  • Chu IW, Axtell RC. (1971) Fine structure of the dorsal organ of the house fly larva, Musca domestica L. Z Zellforsch Mikrosk Anat 117:17–34

    PubMed  CAS  Google Scholar 

  • Chu-Wang IW, Axtell RC. (1972) Fine structure of the terminal organ of the house fly larva, Musca domestica L. Z Zellforsch Mikrosk Anat 127:287–305

    PubMed  CAS  Google Scholar 

  • Chyb S, Dahanukar A, Wickens A, Carlson, JR. (2003) Drosophila Gr5a encodes a taste receptor tuned to trehalose. Proc Natl Acad Sci USA 100:14526–14530

    PubMed  CAS  Google Scholar 

  • Clyne PJ, Warr CG, Carlson JR. (2000) Candidate taste receptors in Drosophila. Science 287:1830–1834

    PubMed  CAS  Google Scholar 

  • Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR. (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22:327–338

    PubMed  CAS  Google Scholar 

  • Cobb M. (1999) What and how do maggots smell? Biol Rev 74:425–459

    Google Scholar 

  • Cole SH, Carney GE, McClung CA, Willard SS, Taylor BJ, Hirsh J. (2005) Two functional but noncomplementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility. J Biol Chem 280:14948–14955

    PubMed  CAS  Google Scholar 

  • Colomb J, Grillenzoni N, Ramaekers A, Stocker RF. (2007) Architecture of the primary taste center of Drosophila melanogaster larvae. J Comp Neurol 502:834–847

    PubMed  Google Scholar 

  • Connolly JB, Roberts IJ, Armstrong JD, Kaiser K, Forte M, Tully T, O'Kane CJ. (1996) Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274:2104–2107

    PubMed  CAS  Google Scholar 

  • Couto A, Alenius M, Dickson BJ. (2005) Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol 15:1535–1547

    PubMed  CAS  Google Scholar 

  • Crittenden JR, Skoulakis EM, Han KA, Kalderon D, Davis RL. (1998) Tripartite mushroom body architecture revealed by antigenic markers. Learn Mem 5:38–51

    PubMed  CAS  Google Scholar 

  • Dahanukar A, Foster K, van der Goes van Naters WM, Carlson JR. (2001) A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat Neurosci 4 :1182–1186

    PubMed  CAS  Google Scholar 

  • Dahanukar A, Lei Y-T, Kwon JY, Carlson JR. (2007) Two Gr genes underlie sugar reception in Drosophila. Neuron 56:503–516

    PubMed  CAS  Google Scholar 

  • Datta, S.R., Vasconcelos, M.L., Ruta, V., Luo, S., Wong, A., Demir, E., Flores, J., Balonze, K., Dickson, B.J., and Axel, R. (2008). The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452, 473–477

    CAS  Google Scholar 

  • Davis RL. (2005) Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 28:275–302

    PubMed  CAS  Google Scholar 

  • Dean C, Dresbach T. (2006) Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. Trends Neurosci 29:21–29

    PubMed  CAS  Google Scholar 

  • De Belle JS, Heisenberg M. (1994) Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263:692–695

    PubMed  Google Scholar 

  • De Bruyne M, Clyne PJ, Carlson JR. (1999) Odor coding in a model olfactory organ: the Drosophila maxillary palp. J Neurosci 19:4520–4532

    PubMed  Google Scholar 

  • De Bruyne M, Foster K, Carlson JR. (2001) Odor coding in the Drosophila antenna. Neuron 30:537–552

    PubMed  Google Scholar 

  • De Strooper B. (2007) Loss-of-function presenilin mutations in Alzheimer disease. Talking pPoint on the role of presenilin mutations in Alzheimer disease. EMBO Rep 8:141–146

    Google Scholar 

  • Dethier VG, Hanson FE. (1964) Taste papillae of the blowfly. J Cell Comp Physiol 65:93–100

    Google Scholar 

  • Dickinson A. (2001) Causal learning-an associative analysis. Q J Exp Psychol 54B:3–25

    Google Scholar 

  • Dobritsa AA, van der Goes van Naters W, Warr CG, Steinbrecht RA, Carlson JR. (2003) Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37:827–841

    PubMed  CAS  Google Scholar 

  • Dubnau J, Grady L, Kitamoto T, Tully T. (2001) Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411:476–480

    PubMed  CAS  Google Scholar 

  • Dudai Y, Corfas G, Hazvi S. (1988) What is the possible contribution of Ca2+-stimulated adenylate cyclase to acquisition, consolidation and retention of an associative olfactory memory in Drosophila. J Comp Physiol [A] 162:101–109

    PubMed  CAS  Google Scholar 

  • Dudai Y, Jan YN, Byers D, Quinn WG, Benzer S. (1976) dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci USA 73:1684–1688

    PubMed  CAS  Google Scholar 

  • Duerr JS, Quinn WG. (1982) Three Drosophila mutations that block associative learning also affect habituation and sensitization. Proc Natl Acad Sci USA 79:3646–3650

    PubMed  CAS  Google Scholar 

  • Elsner B, Hommel B. (2001) Effect anticipation and action control. J Exp Psychol Hum Percept Perform 27:229–240

    PubMed  CAS  Google Scholar 

  • Erber J, Masuhr TH, Menzel R. (1980) Localization of short-term memory in the brain of the bee, Apis mellifera. Physiol Entomol 5:343–358

    Google Scholar 

  • Faber T, Joerges J, Menzel R. (1999) Associative learning modifies neural representations of odors in the insect brain. Nat Neurosci 2:74–78

    PubMed  CAS  Google Scholar 

  • Falk R, Bleiseravivi N, Atidia J. (1976) Labellar taste organs of Drosophila melanogaster. J Morphol 150:327–341

    Google Scholar 

  • Farooqui T, Robinson K, Vaessin H, Smith BH. (2003) Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J Neurosci 23:5370–5380

    PubMed  CAS  Google Scholar 

  • Faucher C, Forstreuter M, Hilker M, de Bruyne M (2006) Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context. J Exp Biol 209:2739–2748

    PubMed  CAS  Google Scholar 

  • Ferveur JF (2005) Cuticular hydrocarbons their evolution and roles in Drosophila pheromonal communication. Behav Genet 35:279–295

    PubMed  Google Scholar 

  • Feeny P, Rosenberg L, Carter M (1983) Chemical aspects of oviposition behavior in butterflies. In: Ahmad S (ed) Herbivorous insects: host-seeking behavior and mechanisms. Academic, New York, pp 27–76

    Google Scholar 

  • Fiala A, Spall T, Diegelmann S, Eisermann B, Sachse S, Devaud JM, Buchner E, Galizia CG (2002) Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Curr Biol 12:1877–1884

    PubMed  CAS  Google Scholar 

  • Fischler W, Kong P, Marella S, Scott K (2007) The detection of carbonation by the Drosophila gustatory system. Nature 30:1054–1057

    Google Scholar 

  • Fishilevich E, Domingos AI, Asahina K, Naef F, Vosshall LB, Louis M (2005) Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr Biol 15:2086–2096

    PubMed  CAS  Google Scholar 

  • Fishilevich E, Vosshall LB (2005) Genetic and functional subdivision of the Drosophila antennal lobe. Curr Biol 15:1548–1553

    PubMed  CAS  Google Scholar 

  • Foelix RF, Stocker RF, Steinbrecht RA (1989) Fine structure of a sensory organ in the arista of Drosophila melanogaster and some other dipterans. Cell Tissue Res 258:277–287

    PubMed  CAS  Google Scholar 

  • Forbes B (1993) Larval learning and memory in Drosophila melanogaster. Diploma thesis, University of Würzburg

    Google Scholar 

  • Friggi-Grelin F, Coulom H, Meller M, Gomez D, Hirsh J, Birman S (2003) Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J Neurobiol 54:618–627

    PubMed  CAS  Google Scholar 

  • Fujishiro N, Kijima H, Morita H (1984) Impulse frequency and action potential amplitude in labellar chemosensory neurones of Drosophila melanogaster. J Insect Physiol 30:317–325

    Google Scholar 

  • Gao Q, Chess A (1999) Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60:31–39

    PubMed  CAS  Google Scholar 

  • Gao Q, Yuan B, Chess A (2000) Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nat Neurosci 3:780–785

    PubMed  CAS  Google Scholar 

  • Garcia CC, Blair HJ, Seager M, Coulthard A, Tennant S, Buddles M, Curtis A, Goodship JA (2004) Identification of a mutation in synapsin I, a synaptic vesicle protein, in a family with epilepsy. J Med Genet 41:183–186

    PubMed  CAS  Google Scholar 

  • Gendre N, Lüer K, Friche S, Grillenzoni N, Ramaekers A, A Technau GM, Stocker RF (2004) Integration of complex larval chemosensory organs into the adult nervous system of Drosophila. Development 131:83–92

    PubMed  CAS  Google Scholar 

  • Gerber B, Hendel T (2006) Outcome expectations drive learned behaviour in larval Drosophila. Proc R Soc Lond B 273:2965–2968

    Google Scholar 

  • Gerber B, Scherer S, Neuser K, Michels B, Hendel T, Stocker RF, Heisenberg M (2004) Visual learning in individually assayed Drosophila larvae. J Exp Biol 207:179–188

    PubMed  CAS  Google Scholar 

  • Gerber B, Stocker RF (2007) The Drosophila larva as a model for studying chemosensation and chemosensory learning: a review. Chem Senses 32:65–89

    PubMed  CAS  Google Scholar 

  • Gerber B, Tanimoto H, Heisenberg M (2004) An engram found? Evaluating the evidence from fruit flies. Curr Opin Neurobiol 14:737–744

    PubMed  CAS  Google Scholar 

  • Gitler D, Takagishi Y, Feng J, Ren Y, Rodriguiz RM, Wetsel WC, Greengard P, Augustine GJ (2004) Different presynaptic roles of synapsins at excitatory and inhibitory synapses. J Neurosci 24:11368–11380

    PubMed  CAS  Google Scholar 

  • Godenschwege TA, Reisch D, Diegelmann S, Eberle K, Funk N, Heisenberg M, Hoppe V, Hoppe J, Klagges BRE, Martin JR, Nikitina EA, Putz G, Reifegerste R, Reisch N, Rister J, Schaupp M, Scholz H, Schwärzel M, Werner U, Zars T, Buchner S, Buchner E (2004) Flies lacking all synapsins are unexpectedly healthy but are impaired in complex behaviour. Eur J Neurosci 20:611–622

    PubMed  Google Scholar 

  • Goldman AL,van der Goes van Naters W, Lessing D, Warr CG, Carlson JR (2005) Coexpression of two functional odor receptors in one neuron. Neuron 45:661–666

    PubMed  CAS  Google Scholar 

  • Grillenzoni N, de Vaux V, Meuwly J, Vuichard S, Gendre N, Stocker RF (2007) Role of proneural genes in the formation of the larval olfactory organ of Drosophila. Dev Genes Evol 217:209–219

    PubMed  Google Scholar 

  • Ha TS, Smith DP (2006) A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. J Neurosci 26:8727–8733

    PubMed  CAS  Google Scholar 

  • Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125:143–160

    PubMed  CAS  Google Scholar 

  • Krashes MJ, Waddell S (2008) Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila. J Neuro Sci. 28:3103–3113

    CAS  Google Scholar 

  • Hallem EA, Ho MG, Carlson JR (2004) The molecular basis of odor coding in the Drosophila antenna. Cell 117:965–979

    PubMed  CAS  Google Scholar 

  • Hammer M (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366:59–63

    Google Scholar 

  • Hammer M, Menzel R (1998) Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn Mem 5:146–156

    PubMed  CAS  Google Scholar 

  • Han PL, Levin LR, Reed RR, Davis RL (1992) Preferential expression of the Drosophila rutabaga gene in mushroom bodies, neural centers for learning in insects. Neuron 9:619–627

    PubMed  CAS  Google Scholar 

  • Han KA, Millar NS, Grotewiel MS, Davis RL (1996) DAMB, a novel dompamine receptor expressed specifically in Drosophila mushroom bodies. Neuron 16(6):1127–1135

    PubMed  CAS  Google Scholar 

  • Heimbeck G, Bugnon V, Gendre N, Häberlin C, Stocker RF (1999) Smell and taste perception in D. melanogaster larva: toxin expression studies in chemosensory neurons. J Neurosci 19:6599–6609

    PubMed  CAS  Google Scholar 

  • Heimbeck G, Bugnon V, Gendre N, Keller A, Stocker RF (2001) A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 98:15336–15341

    PubMed  CAS  Google Scholar 

  • Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275

    PubMed  CAS  Google Scholar 

  • Heisenberg M, Borst A, Wagner S, Byers D (1985) Drosophila mushroom body mutants are deficient in olfactory learning. J Neurogen 2:1–30

    CAS  Google Scholar 

  • Heisenberg M, Gerber B. Behavioral Analysis of Learning and Memory in Drosophila. In R. Menzel (Ed.), Learning Theory and Behavior. Vol. [1] of Learning and Memory: A Comprehensive Reference, 4 vols. (J. Byrne Editor), pp. [549–560] Oxford: Elsevier

    Google Scholar 

  • Hendel T, Michels B, Neuser K, Schipanski A, Kaun K, Sokolowski MB, Marohn F, Michel R, Heisenberg M, Gerber B (2005) The carrot, not the stick: appetitive rather than aversive gustatory stimuli support associative olfactory learning in individually assayed Drosophila larvae. J Comp Physiol A 191:265–279

    Google Scholar 

  • Hildebrand JG, Shepherd G (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631

    PubMed  CAS  Google Scholar 

  • Hilfiker S, Pieribone VA, Czernik AJ, Kao H-T, Augustine GJ, Greengard P (1999) Synapsins as regulators of neurotransmitter release. Philos Trans R Soc Lond B 354:269–279

    CAS  Google Scholar 

  • Hiroi M, Marion-Poll F, Tanimura T (2002) Differentiated nerve response to sugars among labellar chemosensilla in Drosophila. Zool Sci 19:1009–1018

    PubMed  Google Scholar 

  • Hiroi M, Meunier N, Marion-Poll F, Tanimura T (2004) Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste in Drosophila. J Neurobiol 61:333–342

    PubMed  Google Scholar 

  • Hoffmann J (2003) Anticipatory behavioral control. In: Butz MV, Sigaud O, Gerad P (eds) Anticipatory behavior in adaptive learning systems. Springer, Heidelberg, pp 44–65

    Google Scholar 

  • Honjo K, Furukubo-Tokunaga K (2005) Induction of cAMP response element-binding protein-dependent medium-term memory by appetitive gustatory reinforcement in Drosophila larvae. J Neurosci 25:7905–7913

    PubMed  CAS  Google Scholar 

  • Inoshita T, Tanimura T (2006) Cellular identification of water gustatory receptor neurons and their central projection pattern in Drosophila. Proc Natl Acad Sci USA 103:1094–1099

    PubMed  CAS  Google Scholar 

  • Ishimoto H, Tanimura T (2004) Molecular neurophysiology of taste in Drosophila. Cell Mol Life Sci 61:10–18

    PubMed  CAS  Google Scholar 

  • Ito K, Awano W, Suzuki K, Hiromi Y, Yamamoto D (1997) The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124:761–771

    PubMed  CAS  Google Scholar 

  • Ito K, Suzuki K, Estes P, Ramaswami M, Yamamoto D, Strausfeld NJ (1998) The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Learn Mem 5:52–77

    PubMed  CAS  Google Scholar 

  • Jefferis GSXE, Potter CJ, Chan AM, Marin EC, Rohlfing T, Maurer CR Jr, Luo L (2007) Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128:1187–1203

    PubMed  CAS  Google Scholar 

  • Jiao Y, Moon SJ, Montell C (2007) A Drosophila gustatory receptor required for the responses to sucrose glucose and maltose identified by mRNA tagging. Proc Natl Acad Sci USA 104:14110–14115

    PubMed  CAS  Google Scholar 

  • Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB (2007) Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445:86–90

    PubMed  CAS  Google Scholar 

  • Kaas JH (2005) The future of mapping sensory cortex in primates: three of many remaining issues. Philos Trans R Soc Lond B 360:653–664

    Google Scholar 

  • Kaun KR, Hendel T, Gerber B, Sokolowski MB (2007) Natural variation in Drosophila larval reward learning and memory due to a cGMP-dependent protein kinase. Learn Mem 14:342–349

    PubMed  Google Scholar 

  • Keene AC, Stratmann M, Keller A, Perrat PN, Vosshall LB, Waddell S (2004) Diverse odor-conditioned memories require uniquely timed dorsal paired medial neuron output. Neuron 44:521–533

    PubMed  CAS  Google Scholar 

  • Keene AC, Waddell S (2007) Drosophila olfactory memory: single genes to complex neural circuits. Nat Rev Neurosci 8:341–354

    PubMed  CAS  Google Scholar 

  • Keene AC, Krashes MJ, Leung B, Bernard JA, Waddell S (2006) Drosophila dorsal paired medial neurons provide a general mechanism for memory consolidation. Curr Biol 16:1524–1530

    PubMed  CAS  Google Scholar 

  • Kim YC, Lee HG, Seong CS, Han KA (2003) Expression of a D1 dopamine receptor dDA1/DmDOP1 in the central nervous system of Drosophila melanogaster. Gene Expr Patterns 3:237–245

    PubMed  CAS  Google Scholar 

  • Kim YC, Lee HG, Han KA (2007) D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. J Neurosci 27:7640–7647

    PubMed  CAS  Google Scholar 

  • Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A, Wagh DA, Pawlu C, Kellner RR, Willig KI, Hell SW, Buchner E, Heckmann M, Sigrist SJ (2006) Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312:1051–1054

    PubMed  CAS  Google Scholar 

  • Klagges B, Heimbeck G, Godenschwege TA, Hofbauer A, Pflugfelder GO, Reifegerste R, Reisch D, Schaupp M, Buchner S, Buchner E (1996) Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J Neurosci 16:3154–3165

    PubMed  CAS  Google Scholar 

  • Knight D, Iliadi K, Charlton MP, Atwood HL, Boulianne GL (2007) Presynaptic plasticity and associative learning are impaired in a Drosophila presenilin null mutant. Dev Neurobiol 67:1598–1613

    PubMed  Google Scholar 

  • Kondoh Y, Kaneshiro KY, Kimura K, Yamamoto D (2003) Evolution of sexual dimorphism in the olfactory brain of Hawaiian Drosophila. Proc R Soc Lond B 270:1005–1013

    Google Scholar 

  • Krashes MJ, Keene AC, Leung B, Armstrong JD, Waddell S (2007) Sequential use of mushroom body neuron subsets during Drosophila odor memory processing. Neuron 53:103–115

    PubMed  CAS  Google Scholar 

  • Kreher SA, Kwon AY, Carlson JR (2005) The molecular basis of odor coding in the Drosophila larva. Neuron 46:445–456

    PubMed  CAS  Google Scholar 

  • Kreher, S.A, Mathew, D, Kim, J, Carlson, JR, (2008) Translation of sensory input into behavioral output via an olfactory system. Neuron 59: 110–124

    PubMed  CAS  Google Scholar 

  • Kurtovic A, Widmer A, Dickson BJ (2007) A single class of olfactory neurons mediates behavioural responses to Drosophila sex pheromone. Nature 446:542–546

    PubMed  CAS  Google Scholar 

  • Kwon JY, Dahanukar A, Weiss LA, Carlson JR (2007) The molecular basis of CO2 reception in Drosophila. Proc Natl Acad Sci USA 104:3574–3578

    PubMed  CAS  Google Scholar 

  • Laissue PP, Reiter C, Hiesinger PR, Halter S, Fischbach KF, Stocker RF (1999) Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J Comp Neurol 405:543–552

    PubMed  CAS  Google Scholar 

  • Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714

    PubMed  CAS  Google Scholar 

  • Lacaille F, Hiroi M, Twele R, Inoshita T, Umemoto D, Manière G, Marion-Poll F, Ozaki M, Francke W, Everaerts C, Tanimura T, Ferveur J-F (2007) A inhibitory sex pheromone tastes bitter for males. PLoS ONE 2:e661

    PubMed  Google Scholar 

  • Laurent G (1996) Odor images and tunes. Neuron 16:473–476

    PubMed  CAS  Google Scholar 

  • Lee T, Lee A, Luo L (1999) Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126:4065–4076

    PubMed  CAS  Google Scholar 

  • Levin LR, Han PL, Hwang PM, Feinstein PG, Davis RL, Reed RR (1992) The Drosophila learning and memory gene rutabaga encodes a Ca2+/calmodulin-responsive adenylyl cyclase. Cell 68:479–489

    PubMed  CAS  Google Scholar 

  • Li J, Ashley J, Budnik V, Bhat MA (2007) Crucial role of Drosophila neurexin in proper active zone apposition to postsynaptic densities, synaptic growth, and synaptic transmission. Neuron 55:741–755

    PubMed  CAS  Google Scholar 

  • Lienhard MC, Stocker RF (1987) Sensory projection patterns of supernumerary legs and aristae in D. melanogaster. J Exp Zool 244:187–201

    Google Scholar 

  • Lin HH, Lai JS, Chin AL, Chen YC, Chiang AS (2007) A map of olfactory representation in the Drosophila mushroom body. Cell 128:1205–1217

    PubMed  CAS  Google Scholar 

  • Lindemann B (2001) Receptors and transduction in taste. Nature 413:219–225

    PubMed  CAS  Google Scholar 

  • Liu L, Leonard AS, Motto DG, Feller MA, Price MP, Johnson WA, Welsh MJ (2003a) Contribution of Drosophila DEG/ENaC genes to salt taste. Neuron 39:133–146

    CAS  Google Scholar 

  • Liu L, Yermolaieva O, Johnson WA, Abboud FM, Welsh MJ (2003b) Identification and function of thermosensory neurons in Drosophila larvae. Nat Neurosci 6:267–273

    CAS  Google Scholar 

  • Liu G, Seiler H, Wen A, Zars T, Ito K, Wolf R, Heisenberg M, Liu L (2006) Distinct memory traces for two visual features in the Drosophila brain. Nature 439:551–556

    PubMed  CAS  Google Scholar 

  • Louis M, Huber T, Benton R, Sakmar TP, Vosshall LB (2008) Bilateral olfactory sensory input enhances chemotaxis behavior. Nat Neurosci 11:187–199

    PubMed  CAS  Google Scholar 

  • Manoli DS, Foss M, Villella A, Taylor BJ, Hall JC, Baker BS (2005) Male-specific fruitless specifies the neural substrates of Drosophila courtship behavior. Nature 436:395–400

    PubMed  CAS  Google Scholar 

  • Mao Z, Roman G, Zong L, Davis RL (2004) Pharmacogenetic rescue in time and space of the rutabaga memory impairment by using Gene-Switch. Proc Natl Acad Sci USA 101:198–203

    PubMed  CAS  Google Scholar 

  • Marella S, Fischler W, Kong P, Asgarian S, Rueckert E, Scott K (2006) Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49:285–295

    PubMed  CAS  Google Scholar 

  • Margulies C, Tully T, Dubnau J (2005) Deconstructing memory in Drosophila. Curr Biol 15:R700-R713

    PubMed  CAS  Google Scholar 

  • Marin EC, Jefferis GSXE, Komiyama T, Zhu H, Luo L (2002) Representation of the glomerular olfactory map in the Drosophila brain. Cell 109:243–255

    PubMed  CAS  Google Scholar 

  • Marin EC, Watts RJ, Tanaka NK, Ito K, Luo L (2005) Developmentally programmed remodeling of the Drosophila olfactory circuit. Development 132:725–737

    PubMed  CAS  Google Scholar 

  • Masuda-Nakagawa LM, Tanaka NK, O'Kane CJ (2005) Stereotypic and random patterns of connectivity in the larval mushroom body calyx of Drosophila. Proc Natl Acad Sci USA 102:19027–19032

    PubMed  CAS  Google Scholar 

  • Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol 5:e118

    PubMed  Google Scholar 

  • McGuire SE, Le PT, Davis RL (2001) The role of Drosophila mushroom body signaling in olfactory memory. Science 293:1330–1333

    PubMed  CAS  Google Scholar 

  • McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302:1765–1768

    PubMed  CAS  Google Scholar 

  • McGuire SE, Deshazer M, Davis RL (2005) Thirty years of olfactory learning and memory research in Drosophila melanogaster. Prog Neurobiol 76:328–347

    PubMed  CAS  Google Scholar 

  • Melcher C, Pankratz MJ (2005) Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain. PLoS Biol 3:e305

    PubMed  Google Scholar 

  • Meunier N, Ferveur JF, Marion-Poll F. (2000) Sex-specific non-pheromonal taste receptors in Drosophila. Curr Biol 10:1583–1586

    PubMed  CAS  Google Scholar 

  • Meunier N, Marion-Poll F, Rospars JP, Tanimura T. (2003) Peripheral coding of bitter taste in Drosophila. J Neurobiol 56:139–152

    PubMed  Google Scholar 

  • Miyakawa Y. (1982) Behavioral evidence for the existence of sugar, salt and amino acid recptor cells and some of their properties in Drosophila larvae. J Insect Physiol 28:405–410

    CAS  Google Scholar 

  • Michels B, Diegelmann S, Tanimoto H, Schwenkert I, Buchner E, Gerber B. (2005) A role of synapsin for associative learning: The Drosophila larva as a study case. Learn Mem 12:224–231

    PubMed  Google Scholar 

  • Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R. (1996) Visualizing an olfactory sensory map. Cell 87:675–686

    PubMed  CAS  Google Scholar 

  • Moon SJ, Kottgen M, Jiao Y, Xu H, Montell C. (2006) A taste receptor required for the caffeine response in vivo. Curr Biol 16:1812–1817

    PubMed  CAS  Google Scholar 

  • Murthy M, Fiete I, Laurent G (2008) Testing odor response stereotypy in the Drosophila mushroom body. Neuron 59:1009–1023

    PubMed  CAS  Google Scholar 

  • Nayak SV, Singh RN. (1983) Sensilla on the tarsal segments and mouthparts of adult Drosophila melanogaster Meigen (Diptera Drosophilidae). Int J Insect Morphol Embryol 12:273–291

    Google Scholar 

  • Neuser K, Husse J, Stock P, Gerber B. (2005) Appetitive olfactory learning in Drosophila larvae: effects of repetition, reward strength, age, gender, assay type, and memory span. Anim Behav 69:891–898

    Google Scholar 

  • Ng M, Roorda RD, Lima SQ, Zemelman BV, Morcillo P, Miesenböck G. (2002) Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36:463–474

    PubMed  CAS  Google Scholar 

  • Niewalda T, Singhal N, Fiala A, Saumweber T, Wegener S, Gerber B (2008) Salt processing in larval Drosophila: Choice, feeding, and learning shift from appetitive to aversive in a concentration-dependent way. Chem Senses 33:685–692

    PubMed  Google Scholar 

  • Olsen SR, Bhandawat V, Wilson RI. (2007) Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe. Neuron 54:89–103

    PubMed  CAS  Google Scholar 

  • Osborne KA, Robicho A, Burgess E, Butland S, Shaw RA, Coulthard A, Pereira HS, Greenspan RJ, Sokolowski MB (1997) Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science 277:834–836

    PubMed  CAS  Google Scholar 

  • Ozaki M, Wada-Katsumata A, Fujikawa K, Iwasaki M, Yokohari F, Satoji Y, Nisimura T, Yamaoka R. (2005) Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309:311–314

    PubMed  CAS  Google Scholar 

  • Park SK, Mann KJ, Lin H, Starostina E, Kolski-Andreaco A, Pikielny CW. (2006) A Drosophila protein specific to pheromone-sensing gustatory hairs delays males' copulation attempts. Curr Biol 16:1154–1159

    PubMed  CAS  Google Scholar 

  • Peele P, Ditzen M, Menzel R, Galizia CG. (2006) Appetitive odor learning does not change olfactory coding in a subpopulation of honeybee antennal lobe neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol [A] 192:1083–1103

    CAS  Google Scholar 

  • Pelz D, Roeske T, Syed Z, de Bruyne M, Galizia CG. (2006) The molecular receptive range of an olfactory receptor in vivo (Drosophila melanogaster Or22a). J Neurobiol 66:1544–1563

    PubMed  CAS  Google Scholar 

  • Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G. (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297:359–365

    PubMed  CAS  Google Scholar 

  • Perisse E, Portelli G, Le Goas S, Teste E, Le Bourg E. (2007) Further characterization of an aversive learning task in Drosophila melanogaster: intensity of the stimulus, relearning, and use of rutabaga mutants. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193:1139–1149

    PubMed  Google Scholar 

  • Python F, Stocker RF. (2002) Adult-like complexity of the larval antennal lobe of D. melanogaster despite markedly low numbers of odorant receptor neurons. J Comp Neurol 445:374–387

    PubMed  Google Scholar 

  • Quinn WG, Harris WA, Benzer S. (1974) Conditioned behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 71:708–712

    PubMed  CAS  Google Scholar 

  • Ramaekers A, Magnenat E, Marin EC, Gendre N, Jefferis GSXE, Luo L, Stocker RF. (2005) Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit. Curr Biol 15:982–992

    PubMed  CAS  Google Scholar 

  • Ressler KJ, Sullivan SL, Buck LB. (1994) Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79:1245–1255

    PubMed  CAS  Google Scholar 

  • Riemensperger T, Voller T, Stock P, Buchner E, Fiala A. (2005) Punishment prediction by dopaminergic neurons in Drosophila. Curr Biol 15:1953–1960

    PubMed  CAS  Google Scholar 

  • Robertson HM, Warr CG, Carlson JR. (2003) Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci USA 100:14537–14542

    PubMed  CAS  Google Scholar 

  • Rodrigues V. (1980) Olfactory behavior of Drosophila melanogaster. In: Siddiqi O, Babu P, Hall LM, Hall JC (eds) Development and nNeurobiology of Drosophila. Plenum, New York, London: Plenum, pp 361–371

    Google Scholar 

  • Rodrigues V, Siddiqi O. (1978) Genetic-analysis of chemosensory pathway. Proc Indian Acad Sci Sect B Biol Sci 87:147–160

    Google Scholar 

  • Root CM, Semmelhack JL, Wong AM, Flores J, Wang JW. (2007) Propagation of olfactory information in Drosophila. Proc Natl Acad Sci USA 104:11826–11831

    PubMed  CAS  Google Scholar 

  • Sachse, S., Rueckert, E., Keller, A., Okada, R., Tanaka, N.K., Ito, K., and Vosshall, L.B. (2007). Activity-dependent plasticity in an olfactory circuit. Neuron 56, 838–850

    PubMed  CAS  Google Scholar 

  • Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006.

    PubMed  CAS  Google Scholar 

  • Scherer S, Stocker RF, Gerber B. (2003) Olfactory learning in individually assayed Drosophila larvae. Learn Mem 10:217–225

    PubMed  Google Scholar 

  • Schipanski A. (2007) Reinforcement processing in larval Drosophila melanogaster. Diploma thesis,. Universität University of Würzburg.

    Google Scholar 

  • Schipanski A, Yarali A, Niewalda T, Gerber B (2008) Behavioral analyses of sugar processing in choice, feeding, and learning in larval Drosophila. Chem Senses 33:563–573

    PubMed  Google Scholar 

  • Schroll1 C, Riemensperger T, Bucher D, Ehmer J, Völler T, Erbgut K, Gerber B, Hendel T, Nagel G, Buchner E, Fiala A. (2006) Light-induced activation of distinct modulatory neurons substitutes for appetitive or aversive reinforcement during associative learning in larval Drosophila. Curr Biol 16:1741–1747

    PubMed  CAS  Google Scholar 

  • Schlief, M.L., and Wilson, R.I. (2007). Olfactory processing and behavior downstream from highly selective receptor neurons. Nat Neurosci 10, 623–630

    PubMed  CAS  Google Scholar 

  • Schwaerzel M, Heisenberg M, Zars T. (2002) Extinction antagonizes olfactory memory at the subcellular level. Neuron 35:951–960

    PubMed  CAS  Google Scholar 

  • Schwaerzel M. (2003) Localizing engrams of olfactory memories in Drosophila. PhD Thesis, Würzburg: Universitäty of Würzburg

    Google Scholar 

  • Schwaerzel M, Monastirioti M, Scholz H, Friggi-Grelin F, Birman S, Heisenberg M. (2003) Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23:10495–10502

    PubMed  CAS  Google Scholar 

  • Schwaerzel M, Jaeckel A, Mueller U. (2007) Signaling at A-kinase anchoring proteins organizes anesthesia-sensitive memory in Drosophila. J Neurosci 27:1229–1233

    PubMed  CAS  Google Scholar 

  • Scott K, Brady R Jr, Cravchik A, Morozov P, Rzhetsky A, Zuker C, Axel R. (2001) A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104:661–673

    PubMed  CAS  Google Scholar 

  • Shanbhag SR, Müller B, Steinbrecht RA. (1999) Atlas of olfactory organs of Drosophila melanogaster. 1. Types, external organization, innervation and distribution of olfactory sensilla. Int J Insect Morphol Embryol 28:377–397

    Google Scholar 

  • Shanbhag SR, Park SK, Pikielny CW, Steinbrecht RA. (2001) Gustatory organs of Drosophila melanogaster fine structure and expression of the putative odorant-binding protein PBPRP2. Cell Tissue Res 304:423–437

    PubMed  CAS  Google Scholar 

  • Shang Y, Claridge-Chang A, Sjulson L, Pypaert M, Miesenböck G. (2007) Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128:601–612

    PubMed  CAS  Google Scholar 

  • Sinakevitch I, Strausfeld NJ. (2006) Comparison of octopamine-like immunoreactivity in the brains of the fruit fly and blow fly. J Comp Neurol 494:460–475

    PubMed  CAS  Google Scholar 

  • Singh RN. (1998) Neurobiology of the gustatory systems of Drosophila and some terrestrial insects. Microsc Res Techn 39:547–563

    Google Scholar 

  • Singh RN, Singh K. (1984) Fine structure of the sensory organs of Drosophila melanogaster Meigen lLarva (Diptera: Drosophilidae). Int J Insect Morphol Embryol 13:255–273

    Google Scholar 

  • Slone J, Daniels J, Amrein H. (2007) Sugar receptors in Drosophila. Curr Biol 17:1809–1816

    PubMed  CAS  Google Scholar 

  • Sone M, Suzuki E, Hoshino M, Hou D, Kuromi H, Fukata M, Kuroda S, Kaibuchi K, Nabeshima Y, Hama C. (2000) Synaptic development is controlled in the periactive zones of Drosophila synapses. Development 127:4157–4168

    PubMed  CAS  Google Scholar 

  • Stocker RF. (1994) The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tiss Res 275:3–26

    CAS  Google Scholar 

  • Stocker RF. (2001) Drosophila as a focus in olfactory research: mapping of olfactory sensilla by fine structure, odor specificity, odorant receptor expression and central connectivity. Microsc Res Techn 55:284–296

    PubMed  CAS  Google Scholar 

  • Stocker RF, Heimbeck G, Gendre N, de Belle JS. (1997) Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. J Neurobiol 32:443–456

    PubMed  CAS  Google Scholar 

  • Stocker RF, Singh RN, Schorderet M, Siddiqi O. (1983) Projection patterns of different types of antennal sensilla in the antennal glomeruli of Drosophila melanogaster. Cell Tissue Res 232:237–248

    PubMed  CAS  Google Scholar 

  • Stockinger P, Kvitsiani D, Rotkopf S, Tirian L, Dickson BJ. (2005) Neural circuitry that governs Drosophila male courtship behavior. Cell 121:795–807

    PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Hildebrand JG. (1999) Olfactory systems: common design, uncommon origins? Curr Opin Neurobiol 9:634–639

    PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Sinakevitch I, Vilinsky I. (2003) The mushroom bodies of Drosophila melanogaster: an immunocytological and Golgi study of Kenyon cell organization in the calyces and lobes. Microsc Res Tech 62:151–169

    PubMed  Google Scholar 

  • Suh GSB, Wong AM, Hergarden AC, Wang JW, Simon AF, Benzer S, Axel R, Anderson DJ. (2004) A single population of olfactory sensory neurons mediates an innate avoidance behavior in Drosophila. Nature 431:854–859

    PubMed  CAS  Google Scholar 

  • Tamura T, Chiang AS, Ito N, Liu HP, Horiuchi J, Tully T, Saitoe M. (2003) Aging specifically impairs amnesiac-dependent memory in Drosophila. Neuron 40:1003–1011

    PubMed  CAS  Google Scholar 

  • Tanaka NK, Awasaki T, Shimada T, Ito K. (2004) Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr Biol 14:449–457

    PubMed  CAS  Google Scholar 

  • Tanaka, N.K., Tanimoto, H., and Ito, K. (2008). Neuronal assemblies of the Drosophila mushroom body. J Comp Neurol 508, 711–755

    PubMed  Google Scholar 

  • Tanimura T, Isono K, Takamura T, Shimada I. (1982) Genetic dimorphism in the taste sensitivity to trehalose in Drosophila melanogaster. J Comp Physiol [A] 147:433–437

    Google Scholar 

  • Tanimura T, Isono K, Yamamoto M-T. (1988) Taste sensitivity to trehalose and its alteration by gene dosage in Drosophila melanogaster. Genetics 119:366–406

    Google Scholar 

  • Tempel BL, Bonini N, Dawson DR, Quinn WG. (1983) Reward learning in normal and mutant Drosophila. Proc Natl Acad Sci USA 80:1482–1486

    PubMed  CAS  Google Scholar 

  • Thorne N, Chromey C, Bray S, Amrein H. (2004) Taste perception and coding in Drosophila. Curr Biol 14:1065–1079

    PubMed  CAS  Google Scholar 

  • Thum AS, Jenett A, Ito K, Heisenberg M, Tanimoto H. (2007) Multiple memory traces for olfactory reward learning in Drosophila. J Neurosci 27:11132–11138

    PubMed  CAS  Google Scholar 

  • Tully T, Quinn WG. (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol [A] 157:263–277

    PubMed  CAS  Google Scholar 

  • Tully T, Cambiazo V, Kruse L. (1994) Memory through metamorphosis in normal and mutant Drosophila. J Neurosci 14:68–74

    PubMed  CAS  Google Scholar 

  • Trehalose sensitivity in Drosophila correlates with mutations in and expression of the gustatory receptor gene Gr5a. Curr Biol 11:1451–1455

    PubMed  CAS  Google Scholar 

  • Van der Goes van Naters W, Carlson JR. (2007) Receptors and neurons for fly odors in Drosophila. Curr Biol 17:606–612

    Google Scholar 

  • Vassar R, Chao SK, Sitcheran R, Nunez JM, Vosshall LB, Axel R. (1994) Topographic organization of sensory projections to the olfactory bulb. Cell 79:981–991

    PubMed  CAS  Google Scholar 

  • Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R. (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96:725–736

    PubMed  CAS  Google Scholar 

  • Vosshall LB, Wong AM, Axel R. (2000) An olfactory sensory map in the fly brain. Cell 102:147–159.

    PubMed  CAS  Google Scholar 

  • Vosshall LB, Stocker RF. (2007) Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 30:505–533

    PubMed  CAS  Google Scholar 

  • Waddell S, Armstrong JD, Kitamoto T, Kaiser K, Quinn WG. (2000) The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell 103:805–813

    PubMed  CAS  Google Scholar 

  • Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Durrbeck H, Buchner S, Dabauvalle MC, Schmidt M, Qin G, Wichmann C, Kittel R, Sigrist SJ, Buchner E. (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49:833–844

    PubMed  CAS  Google Scholar 

  • Wang Y, Guo HF, Pologruto TA, Hannan F, Hakker I, Svoboda K, Zhong Y. (2004a) Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging. J Neurosci 24:6507–6514

    CAS  Google Scholar 

  • Wang Z, Singhvi A, Kong P, Scott K. (2004b) Taste representations in the Drosophila brain. Cell 117:981–991

    CAS  Google Scholar 

  • Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS(2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011

    PubMed  CAS  Google Scholar 

  • Wilson RI, Laurent G. (2005) Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 25:9069–9079

    PubMed  CAS  Google Scholar 

  • Wilson RI, Turner GC, Laurent G. (2004) Transformation of olfactory representations in the Drosophila antennal lobe. Science 303:366–370

    PubMed  CAS  Google Scholar 

  • Wolfe MS. (2007) When loss is gain: reduced presenilin proteolytic function leads to increased Abeta42/Abeta40. Talking pPoint on the role of presenilin mutations in Alzheimer disease. EMBO Rep 8:136–140

    PubMed  CAS  Google Scholar 

  • Wong AM, Wang JW, Axel R. (2002) Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109:229–241

    PubMed  CAS  Google Scholar 

  • Wustmann G, Rein K, Wolf R, Heisenberg M. (1996) A new paradigm for operant conditioning of Drosophila melanogaster. J Comp Physiol [A] 179:429–436

    PubMed  CAS  Google Scholar 

  • Yao CA, Ignell R, Carlson JR. (2005) Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J Neurosci 25:8359–8367

    PubMed  CAS  Google Scholar 

  • Yarali T, Hendel B, Gerber B. (2007) Olfactory learning and behaviour are ‘insulated’ against visual processing in larval Drosophila. J Comp Physiol [A] 192:1133–1145

    Google Scholar 

  • Yasuyama K, Meinertzhagen IA, Schürmann FW. (2002) Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J Comp Neurol 445:211–226

    PubMed  Google Scholar 

  • Yu D, Ponomarev A, Davis RL (2004) Altered representation of the spatial code for odors after olfactory classical conditioning: memory trace formation by synaptic recruitment. Neuron 42:437–449

    PubMed  CAS  Google Scholar 

  • Yu D, Keene AC, Srivatsan A, Waddell S, Davis RL. (2005) Drosophila DPM neurons form a delayed and branch-specific memory trace after olfactory classical conditioning. Cell 123:945–957

    PubMed  CAS  Google Scholar 

  • Zars T. (2000) Behavioral functions of the insect mushroom bodies. Curr Opin Neurobiol 10:790–795

    PubMed  CAS  Google Scholar 

  • Zars T, Fischer M, Schulz R, Heisenberg M. (2000) Localization of a short-term memory in Drosophila. Science 288:672–675

    PubMed  CAS  Google Scholar 

  • Zeng X, Sun M, Liu L, Chen F, Wei L, Xie W. (2007) Neurexin-1 is required for synapse formation and larvae associative learning in Drosophila. FEBS Lett 581:2509–2516

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We express cordial thanks to the members and colleagues at our research institutions, and to the students in our groups, for the critique and discussions that shaped this review. Our research programmes are supported by the Volkswagen Foundation, the German-Israeli Foundation and the Deutsche Forschungsgemeinschaft (Heisenberg Fellowship, SFB 554, GK 1156 to B.G.), by the Swiss National Funds (grants nos. 31-63447.00 and 3100A0-105517 to R.F.S. and A.S.T.) and by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to T.T.). E. Balamurugan from the Springer production team deserves our gratitude for extended patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gerber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Gerber, B., Stocker, R., Tanimura, T., Thum, A. (2009). Smelling, Tasting, Learning: Drosophila as a Study Case. In: Korsching, S., Meyerhof, W. (eds) Chemosensory Systems in Mammals, Fishes, and Insects. Results and Problems in Cell Differentiation, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2008_9

Download citation

Publish with us

Policies and ethics