Skip to main content

Impact of TNF-R1 and CD95 Internalization on Apoptotic and Antiapoptotic Signaling

  • Chapter
  • First Online:
Book cover Death Receptors and Cognate Ligands in Cancer

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 49))

Abstract

Internalization of cell surface receptors has long been regarded as a pure means to terminate signaling via receptor degradation. A growing body of information points to the fact that many internalized receptors are still in their active state and that signaling continues along the endocytic pathway. Thus endocytosis orchestrates cell signaling by coupling and integrating different cascades on the surface of endocytic vesicles to control the quality, duration, intensity, and distribution of signaling events. The death receptors tumor necrosis factor-receptor 1 (TNF-R1) and CD95 (Fas, APO-1) are known not only to signal for cell death via apoptosis but are also capable of inducing antiapoptotic signals via transcription factor NF-κB induction or activation of the proliferative mitogen-activated protein kinase (MAPK)/ERK (extracellular signal-regulated kinase) protein kinase cascades, resulting in cell protection and tissue regeneration. A clue to the understanding of these contradictory biological phenomena may arise from recent findings which reveal a regulatory role of receptor internalization and intracellular receptor trafficking in selectively transmitting signals, which lead either to apoptosis or to the survival of the cell.

In this chapter, we discuss the dichotomy of pro- and antiapoptotic signaling of the death receptors TNF-R1 and CD95. First, we will address the role of lipid rafts and post-translational modifications of death receptors in regulating the formation of receptor complexes. Then, we will discuss the role of internalization in determining the fate of the receptors and subsequently the specificity of signaling events. We propose that fusion of internalized TNF-receptosomes with trans-Golgi vesicles should be recognized as a novel mechanism to transduce death signals along the endocytic route. Finally, the lessons learnt from the strategy of adenovirus to escape apoptosis by targeting death receptor internalization demonstrate the biological significance of TNF receptor compartmentalization for immunosurveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn JH, Park SM, Cho HS, Lee MS, Yoon JB, Vilcek J, Lee TH (2001) Non-apoptotic signaling pathways activated by soluble Fas ligand in serum-starved human fibroblasts. Mitogen-activated protein kinases and NF-kappaB-dependent gene expression. J Biol Chem 276:47100–47106

    CAS  PubMed  Google Scholar 

  • Algeciras-Schimnich A, Peter ME (2003) Actin dependent CD95 internalization is specific for Type I cells. FEBS Lett 546:185–188

    CAS  PubMed  Google Scholar 

  • Algeciras-Schimnich A, Shen L, Barnhart BC, Murmann AE, Burkhardt JK, Peter ME (2002) Molecular ordering of the initial signaling events of CD95. Mol Cell Biol 22:207–220

    CAS  PubMed  Google Scholar 

  • Austin CD, Lawrence DA, Peden AA, Varfolomeev EE, Totpal K, De Maziere AM, Klumperman J, Arnott D, Pham V, Scheller RH, Ashkenazi A (2006) Death-receptor activation halts clathrin-dependent endocytosis. Proc Natl Acad Sci U S A 103:10283–10288

    CAS  PubMed  Google Scholar 

  • Barnhart BC, Alappat EC, Peter ME (2003) The CD95 type I/type II model. Semin Immunol 15:185–193

    CAS  PubMed  Google Scholar 

  • Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G, Peter ME (2004) CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J 23:3175–3185

    CAS  PubMed  Google Scholar 

  • Benedict CA, Norris PS, Prigozy TI, Bodmer JL, Mahr JA, Garnett CT, Martinon F, Tschopp J, Gooding LR, Ware CF (2001) Three adenovirus E3 proteins cooperate to evade apoptosis by tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and -2. J Biol Chem 276:3270–3278

    CAS  PubMed  Google Scholar 

  • Benedict CA, Norris PS, Ware CF (2002) To kill or be killed: viral evasion of apoptosis. Nat Immunol 3:1013–1018

    CAS  PubMed  Google Scholar 

  • Benedict CA, Banks TA, Ware CF (2003) Death and survival: viral regulation of TNF signaling pathways. Curr Opin Immunol 15:59–65

    CAS  PubMed  Google Scholar 

  • Bradley JR, Johnson DR, Pober JS (1993) Four different classes of inhibitors of receptor-mediated endocytosis decrease tumor necrosis factor-induced gene expression in human endothelial cells. J Immunol 150:5544–5555

    CAS  PubMed  Google Scholar 

  • Brenner B, Ferlinz K, Grassme H, Weller M, Koppenhoefer U, Dichgans J, Sandhoff K, Lang F, Gulbins E (1998) Fas/CD95/Apo-I activates the acidic sphingomyelinase via caspases. Cell Death Differ 5:29–37

    CAS  PubMed  Google Scholar 

  • Chakrabandhu K, Herincs Z, Huault S, Dost B, Peng L, Conchonaud F, Marguet D, He HT, Hueber AO (2007) Palmitoylation is required for efficient Fas cell death signaling. EMBO J 26:209–220

    CAS  PubMed  Google Scholar 

  • Chen G, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science 296:1634–1635

    CAS  PubMed  Google Scholar 

  • Chin YR, Horwitz MS (2005) Mechanism for removal of tumor necrosis factor receptor 1 from the cell surface by the adenovirus RIDalpha/beta complex. J Virol 79:13606–13617

    CAS  PubMed  Google Scholar 

  • Chin YR, Horwitz MS (2006) Adenovirus RID complex enhances degradation of internalized tumour necrosis factor receptor 1 without affecting its rate of endocytosis. J Gen Virol 87:3161–3167

    CAS  PubMed  Google Scholar 

  • Cifone MG, De Maria R, Roncaioli P, Rippo MR, Azuma M, Lanier LL, Santoni A, Testi R (1994) Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med 180:1547–1552

    CAS  PubMed  Google Scholar 

  • Cremesti A, Paris F, Grassme H, Holler N, Tschopp J, Fuks Z, Gulbins E, Kolesnick R (2001) Ceramide enables fas to cap and kill. J Biol Chem 276:23954–23961

    CAS  PubMed  Google Scholar 

  • D'Alessio A, Al Lamki RS, Bradley JR, Pober JS (2005) Caveolae participate in tumor necrosis factor receptor 1 signaling and internalization in a human endothelial cell line. Am J Pathol 166:1273–1282

    PubMed  Google Scholar 

  • De Maria R, Rippo MR, Schuchman EH, Testi R (1998) Acidic sphingomyelinase (ASM) is necessary for fas-induced GD3 ganglioside accumulation and efficient apoptosis of lymphoid cells. J Exp Med 187:897–902

    CAS  PubMed  Google Scholar 

  • Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Liu Z (2000) The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 12:419–429

    CAS  PubMed  Google Scholar 

  • Doan JE, Windmiller DA, Riches DW (2004) Differential regulation of TNF-R1 signaling: lipid raft dependency of p42mapk/erk2 activation, but not NF-kappaB activation. J Immunol 172:7654–7660

    CAS  PubMed  Google Scholar 

  • Dumitru CA, Gulbins E (2006) TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene 25:5612–5625

    CAS  PubMed  Google Scholar 

  • Eramo A, Sargiacomo M, Ricci-Vitiani L, Todaro M, Stassi G, Messina CG, Parolini I, Lotti F, Sette G, Peschle C, De Maria R (2004) CD95 death-inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells. Eur J Immunol 34:1930–1940

    CAS  PubMed  Google Scholar 

  • Feig C, Tchikov V, Schütze S, Peter ME (2007) Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J 26:221–231

    CAS  PubMed  Google Scholar 

  • Fessler SP, Chin YR, Horwitz MS (2004) Inhibition of tumor necrosis factor (TNF) signal transduction by the adenovirus group C RID complex involves downregulation of surface levels of TNF receptor 1. J Virol 78:13113–13121

    CAS  PubMed  Google Scholar 

  • Gajate C, Mollinedo F (2007) Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109:711–719

    CAS  PubMed  Google Scholar 

  • Gajate C, Canto-Janez E, Acuna AU, Amat-Guerri F, Geijo E, Santos-Beneit AM, Veldman RJ, Mollinedo F (2004) Intracellular triggering of Fas aggregation and recruitment of apoptotic molecules into Fas-enriched rafts in selective tumor cell apoptosis. J Exp Med 200:353–365

    CAS  PubMed  Google Scholar 

  • Garcia-Ruiz C, Colell A, Mari M, Morales A, Calvo M, Enrich C, Fernandez-Checa JC (2003) Defective TNF-alpha-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J Clin Invest 111:197–208

    CAS  PubMed  Google Scholar 

  • Glebov OO, Bright NA, Nichols BJ (2006) Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol 8:46–54

    CAS  PubMed  Google Scholar 

  • Golks A, Brenner D, Krammer PH, Lavrik IN (2006) The c-FLIP-NH2 terminus (p22-FLIP) induces NF-kappaB activation. J Exp Med 203:1295–1305

    CAS  PubMed  Google Scholar 

  • Grassme H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K, Kolesnick R, Gulbins E (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276:20589–20596

    CAS  PubMed  Google Scholar 

  • Harper N, Hughes M, MacFarlane M, Cohen GM (2003) Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. J Biol Chem 278:25534–25541

    CAS  PubMed  Google Scholar 

  • Heinrich M, Wickel M, Schneider-Brachert W, Sandberg C, Gahr J, Schwandner R, Weber T, Saftig P, Peters C, Brunner J, Krönke M, Schütze S (1999) Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J 18:5252–5263

    CAS  PubMed  Google Scholar 

  • Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto-Morbach S, Wickel M, Schneider-Brachert W, Trauzold A, Hethke A, Schütze S (2004) Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ 11:550–563

    CAS  PubMed  Google Scholar 

  • Helms JB, Zurzolo C (2004) Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic 5:247–254

    CAS  PubMed  Google Scholar 

  • Henkler F, Behrle E, Dennehy KM, Wicovsky A, Peters N, Warnke C, Pfizenmaier K, Wajant H (2005) The extracellular domains of FasL and Fas are sufficient for the formation of supramolecular FasL-Fas clusters of high stability. J Cell Biol 168:1087–1098

    CAS  PubMed  Google Scholar 

  • Herr I, Wilhelm D, Bohler T, Angel P, Debatin KM (1997) Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis. EMBO J 16:6200–6208

    CAS  PubMed  Google Scholar 

  • Horton TM, Ranheim TS, Aquino L, Kusher DI, Saha SK, Ware CF, Wold WS, Gooding LR (1991) Adenovirus E3 14.7K protein functions in the absence of other adenovirus proteins to protect transfected cells from tumor necrosis factor cytolysis. J Virol 65:2629–2639

    CAS  PubMed  Google Scholar 

  • Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV (1996a) TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4:387–396

    CAS  Google Scholar 

  • Hsu H, Shu HB, Pan MG, Goeddel DV (1996b) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84:299–308

    CAS  Google Scholar 

  • Hueber AO, Bernard AM, Herincs Z, Couzinet A, He HT (2002) An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep 3:190–196

    CAS  PubMed  Google Scholar 

  • Hunter I, Nixon GF (2006) Spatial compartmentalization of tumor necrosis factor (TNF) receptor 1-dependent signaling pathways in human airway smooth muscle cells. Lipid rafts are essential for TNF-alpha-mediated activation of RhoA but dispensable for the activation of the NF-kappaB and MAPK pathways. J Biol Chem 281:34705–34715

    CAS  PubMed  Google Scholar 

  • Jin Z, El Deiry WS (2006) Distinct signaling pathways in TRAIL- versus tumor necrosis factor-induced apoptosis. Mol Cell Biol 26:8136–8148

    CAS  PubMed  Google Scholar 

  • Kamitani T, Nguyen HP, Yeh ET (1997) Activation-induced aggregation and processing of the human Fas antigen. Detection with cytoplasmic domain-specific antibodies. J Biol Chem 272:22307–22314

    CAS  PubMed  Google Scholar 

  • Kataoka T, Budd RC, Holler N, Thome M, Martinon F, Irmler M, Burns K, Hahne M, Kennedy N, Kovacsovics M, Tschopp J (2000) The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways. Curr Biol 10:640–648

    CAS  PubMed  Google Scholar 

  • Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P (1998) The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 8:297–303

    CAS  PubMed  Google Scholar 

  • Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–5588

    CAS  PubMed  Google Scholar 

  • Ko YG, Lee JS, Kang YS, Ahn JH, Seo JS (1999) TNF-alpha-mediated apoptosis is initiated in caveolae-like domains. J Immunol 162:7217–7223

    CAS  PubMed  Google Scholar 

  • Kohlhaas SL, Craxton A, Sun XM, Pinkoski MJ, Cohen GM (2007) Receptor-mediated endocytosis is not required for TRAIL-induced apoptosis. J Biol Chem 282:12831–12841

    CAS  PubMed  Google Scholar 

  • Koncz G, Kerekes K, Chakrabandhu K, Hueber AO (2007) Regulating Vav1 phosphorylation by the SHP-1 tyrosine phosphatase is a fine-tuning mechanism for the negative regulation of DISC formation and Fas-mediated cell death signaling. Cell Death Differ 15:494–503

    PubMed  Google Scholar 

  • Kull FC Jr, Cuatrecasas P (1981) Possible requirement of internalization in the mechanism of in vitro cytotoxicity in tumor necrosis serum. Cancer Res 41:4885–4890

    CAS  PubMed  Google Scholar 

  • Lajoie P, Nabi IR (2007) Regulation of raft-dependent endocytosis. J Cell Mol Med 11:644–653

    CAS  PubMed  Google Scholar 

  • Le Roy C, Wrana JL (2005) Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6:112–126

    CAS  PubMed  Google Scholar 

  • Lee KH, Feig C, Tchikov V, Schickel R, Hallas C, Schütze S, Peter ME, Chan AC (2006) The role of receptor internalization in CD95 signaling. EMBO J 24:1009–1023

    Google Scholar 

  • Legembre P, Daburon S, Moreau P, Ichas F, de Giorgi F, Moreau JF, Taupin JL (2005) Amplification of Fas-mediated apoptosis in type II cells via microdomain recruitment. Mol Cell Biol 25:6811–6820

    CAS  PubMed  Google Scholar 

  • Legembre P, Daburon S, Moreau P, Moreau JF, Taupin JL (2006) Modulation of Fas-mediated apoptosis by lipid rafts in T lymphocytes. J Immunol 176:716–720

    CAS  PubMed  Google Scholar 

  • Legler DF, Micheau O, Doucey MA, Tschopp J, Bron C (2003) Recruitment of TNF Receptor 1 to lipid rafts is essential for TNFalpha-mediated NF-kappaB activation. Immunity 18:655–664

    CAS  PubMed  Google Scholar 

  • Li-Weber M, Krammer PH (2003) Function and regulation of the CD95 (APO-1/Fas) ligand in the immune system. Semin Immunol 15:145–157

    CAS  PubMed  Google Scholar 

  • Liao W, Xiao Q, Tchikov V, Fujita K, Yang W, Wincovitch S, Garfield S, Conze D, El-Deiry WS, Schütze S, Srinivasula SM (2008) CARP-2 is an endosome-associated ubiquitin protein ligase for RIP and regulates TNF-induced NF-B activation. Curr Biol 18:641–649

    CAS  PubMed  Google Scholar 

  • Lichtenstein DL, Krajcsi P, Esteban DJ, Tollefson AE, Wold WS (2002) Adenovirus RIDbeta subunit contains a tyrosine residue that is critical for RID-mediated receptor internalization and inhibition of Fas- and TRAIL-induced apoptosis. J Virol 76:11329–11342

    CAS  PubMed  Google Scholar 

  • Lichtenstein DL, Doronin K, Toth K, Kuppuswamy M, Wold WS, Tollefson AE (2004a) Adenovirus E3-6.7K protein is required in conjunction with the E3-RID protein complex for the internalization and degradation of TRAIL receptor 2. J Virol 78:12297–12307

    CAS  Google Scholar 

  • Lichtenstein DL, Toth K, Doronin K, Tollefson AE, Wold WS (2004b) Functions and mechanisms of action of the adenovirus E3 proteins. Int Rev Immunol 23:75–111

    CAS  Google Scholar 

  • Lin T, Genestier L, Pinkoski MJ, Castro A, Nicholas S, Mogil R, Paris F, Fuks Z, Schuchman EH, Kolesnick RN, Green DR (2000) Role of acidic sphingomyelinase in Fas/CD95-mediated cell death. J Biol Chem 275:8657–8663

    CAS  PubMed  Google Scholar 

  • Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    CAS  PubMed  Google Scholar 

  • Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612

    CAS  PubMed  Google Scholar 

  • McPherson PS, Kay BK, Hussain NK (2001) Signaling on the endocytic pathway. Traffic 2:375–384

    CAS  PubMed  Google Scholar 

  • Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH, Peter ME (1997) FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J 16:2794–2804

    CAS  PubMed  Google Scholar 

  • Miaczynska M, Pelkmans L, Zerial M (2004) Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol 16:400–406

    CAS  PubMed  Google Scholar 

  • Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190

    CAS  PubMed  Google Scholar 

  • Miyaji M, Jin ZX, Yamaoka S, Amakawa R, Fukuhara S, Sato SB, Kobayashi T, Domae N, Mimori T, Bloom ET, Okazaki T, Umehara H (2005) Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J Exp Med 202:249–259

    CAS  PubMed  Google Scholar 

  • Monney L, Olivier R, Otter I, Jansen B, Poirier GG, Borner C (1998) Role of an acidic compartment in tumor-necrosis-factor-alpha-induced production of ceramide, activation of caspase-3 and apoptosis. Eur J Biochem 251:295–303

    CAS  PubMed  Google Scholar 

  • Morales A, Lee H, Goni FM, Kolesnick R, Fernandez-Checa JC (2007) Sphingolipids and cell death. Apoptosis 12:923–939

    CAS  PubMed  Google Scholar 

  • Mosselmans R, Hepburn A, Dumont JE, Fiers W, Galand P (1988) Endocytic pathway of recombinant murine tumor necrosis factor in L-929 cells. J Immunol 141:3096–3100

    CAS  PubMed  Google Scholar 

  • Muppidi JR, Tschopp J, Siegel RM (2004) Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity 21:461–465

    CAS  PubMed  Google Scholar 

  • Nakayama J, Ogawa Y, Yoshigae Y, Onozawa Y, Yonemura A, Saito M, Ichikawa K, Yamoto T, Komai T, Tatsuta T, Ohtsuki M (2006) A humanized anti-human Fas antibody, R-125224, induces apoptosis in type I activated lymphocytes but not in type II cells. Int Immunol 18:113–124

    CAS  PubMed  Google Scholar 

  • Neumeyer J, Hallas C, Merkel O, Winoto-Morbach S, Jakob M, Thon L, Adam D, Schneider-Brachert W, Schütze S (2006) TNF-receptor I defective in internalization allows for cell death through activation of neutral sphingomyelinase. Exp Cell Res 312:2142–2153

    CAS  PubMed  Google Scholar 

  • O'Reilly LA, Divisekera U, Newton K, Scalzo K, Kataoka T, Puthalakath H, Ito M, Huang DC, Strasser A (2004) Modifications and intracellular trafficking of FADD/MORT1 and caspase-8 after stimulation of T lymphocytes. Cell Death Differ 11:724–736

    PubMed  Google Scholar 

  • Papoff G, Hausler P, Eramo A, Pagano MG, Di Leve G, Signore A, Ruberti G (1999) Identification and characterization of a ligand-independent oligomerization domain in the extracellular region of the CD95 death receptor. J Biol Chem 274:38241–38250

    CAS  PubMed  Google Scholar 

  • Parlato S, Giammarioli AM, Logozzi M, Lozupone F, Matarrese P, Luciani F, Falchi M, Malorni W, Fais S (2000) CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: a novel regulatory mechanism of the CD95 apoptotic pathway. EMBO J 19:5123–5134

    CAS  PubMed  Google Scholar 

  • Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    CAS  PubMed  Google Scholar 

  • Pastorino JG, Simbula G, Yamamoto K, Glascott PA Jr, Rothman RJ, Farber JL (1996) The cytotoxicity of tumor necrosis factor depends on induction of the mitochondrial permeability transition. J Biol Chem 271:29792–29798

    CAS  PubMed  Google Scholar 

  • Peter ME, Budd RC, Desbarats J, Hedrick SM, Hueber AO, Newell MK, Owen LB, Pope RM, Tschopp J, Wajant H, Wallach D, Wiltrout RH, Zornig M, Lynch DH (2007) The CD95 receptor: apoptosis revisited. Cell 129:447–450

    CAS  PubMed  Google Scholar 

  • Rahman MM, McFadden G (2006) Modulation of tumor necrosis factor by microbial pathogens. PLoS Path 2:e4

    Google Scholar 

  • Scaffidi C, Medema JP, Krammer PH, Peter ME (1997) FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J Biol Chem 272:26953–26958

    CAS  PubMed  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    CAS  PubMed  Google Scholar 

  • Scheel-Toellner D, Wang K, Singh R, Majeed S, Raza K, Curnow SJ, Salmon M, Lord JM (2002) The death-inducing signalling complex is recruited to lipid rafts in Fas-induced apoptosis. Biochem Biophys Res Commun 297:876–879

    CAS  PubMed  Google Scholar 

  • Schneider-Brachert W, Tchikov V, Neumeyer J, Jakob M, Winoto-Morbach S, Held-Feindt J, Heinrich M, Merkel O, Ehrenschwender M, Adam D, Mentlein R, Kabelitz D, Schütze S (2004) Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21:415–428

    CAS  PubMed  Google Scholar 

  • Schneider-Brachert W, Tchikov V, Merkel O, Jakob M, Hallas C, Kruse ML, Groitl P, Lehn A, Hildt E, Held-Feindt J, Dobner T, Kabelitz D, Krönke M, Schütze S (2006) Inhibition of TNF receptor 1 internalization by adenovirus 14.7K as a novel immune escape mechanism. J Clin Invest 116:2901–2913

    CAS  PubMed  Google Scholar 

  • Schütze S, Tchikov V (2008) Immunomagnetic isolation of TNF receptosomes. Methods in Enzymology 442: 101–123

    PubMed  Google Scholar 

  • Schütze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Krönke M (1992) TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71:765–776

    PubMed  Google Scholar 

  • Schütze S, Machleidt T, Adam D, Schwandner R, Wiegmann K, Kruse ML, Heinrich M, Wickel M, Krönke M (1999) Inhibition of receptor internalization by monodansylcadaverine selectively blocks p55 tumor necrosis factor receptor death domain signaling. J Biol Chem 274:10203–10212

    PubMed  Google Scholar 

  • Schwandner R, Wiegmann K, Bernardo K, Kreder D, Krönke M (1998) TNF receptor death domain-associated proteins TRADD and FADD signal activation of acid sphingomyelinase. J Biol Chem 273:5916–5922

    CAS  PubMed  Google Scholar 

  • Shisler J, Yang C, Walter B, Ware CF, Gooding LR (1997) The adenovirus E3-10.4K/14.5K complex mediates loss of cell surface Fas (CD95) and resistance to Fas-induced apoptosis. J Virol 71:8299–8306

    CAS  PubMed  Google Scholar 

  • Siegel RM, Muppidi JR, Sarker M, Lobito A, Jen M, Martin D, Straus SE, Lenardo MJ (2004) SPOTS: signaling protein oligomeric transduction structures are early mediators of death receptor-induced apoptosis at the plasma membrane. J Cell Biol 167:735–744

    CAS  PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    CAS  PubMed  Google Scholar 

  • Smotrys JE, Linder ME (2004) Palmitoylation of intracellular signaling proteins: regulation and function. Annu Rev Biochem 73:559–587

    CAS  PubMed  Google Scholar 

  • Sorkin A, Von Zastrow M (2002) Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 3:600–614

    CAS  PubMed  Google Scholar 

  • Stanger BZ, Leder P, Lee TH, Kim E, Seed B (1995) RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81:513–523

    CAS  PubMed  Google Scholar 

  • Teis D, Huber LA (2003) The odd couple: signal transduction and endocytosis. Cell Mol Life Sci 60:2020–2033

    CAS  PubMed  Google Scholar 

  • Thon L, Mathieu S, Kabelitz D, Adam D (2006) The murine TRAIL receptor signals caspase-independent cell death through ceramide. Exp Cell Res 312:3808–3821

    CAS  PubMed  Google Scholar 

  • Tollefson AE, Hermiston TW, Lichtenstein DL, Colle CF, Tripp RA, Dimitrov T, Toth K, Wells CE, Doherty PC, Wold WS (1998) Forced degradation of Fas inhibits apoptosis in adenovirus-infected cells. Nature 392:726–730

    CAS  PubMed  Google Scholar 

  • Tollefson AE, Toth K, Doronin K, Kuppuswamy M, Doronina OA, Lichtenstein DL, Hermiston TW, Smith CA, Wold WS (2001) Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins. J Virol 75:8875–8887

    CAS  PubMed  Google Scholar 

  • Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65

    CAS  PubMed  Google Scholar 

  • Watanabe N, Kuriyama H, Sone H, Neda H, Yamauchi N, Maeda M, Niitsu Y (1988) Continuous internalization of tumor necrosis factor receptors in a human myosarcoma cell line. J Biol Chem 263:10262–10266

    CAS  PubMed  Google Scholar 

  • Wiegmann K, Schütze S, Machleidt T, Witte D, Krönke M (1994) Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78:1005–1015

    CAS  PubMed  Google Scholar 

  • Wiegmann K, Schwandner R, Krut O, Yeh WC, Mak TW, Krönke M (1999) Requirement of FADD for tumor necrosis factor-induced activation of acid sphingomyelinase. J Biol Chem 274:5267–5270

    CAS  PubMed  Google Scholar 

  • Woo CH, Kim TH, Choi JA, Ryu HC, Lee JE, You HJ, Bae YS, Kim JH (2006) Inhibition of receptor internalization attenuates the TNFalpha-induced ROS generation in non-phagocytic cells. Biochem Biophys Res Commun 351:972–978

    CAS  PubMed  Google Scholar 

  • Zanardi TA, Yei S, Lichtenstein DL, Tollefson AE, Wold WS (2003) Distinct domains in the adenovirus E3 RIDalpha protein are required for degradation of Fas and the epidermal growth factor receptor. J Virol 77:11685–11696

    CAS  PubMed  Google Scholar 

  • Zheng L, Bidere N, Staudt D, Cubre A, Orenstein J, Chan FK, Lenardo M (2006) Competitive control of independent programs of tumor necrosis factor receptor-induced cell death by TRADD and RIP1. Mol Cell Biol 26:3505–3513

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schütze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schütze, S., Schneider-Brachert, W. (2009). Impact of TNF-R1 and CD95 Internalization on Apoptotic and Antiapoptotic Signaling . In: Kalthoff, H. (eds) Death Receptors and Cognate Ligands in Cancer. Results and Problems in Cell Differentiation, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2008_23

Download citation

Publish with us

Policies and ethics