Skip to main content

Immune-Mediated CNS Damage

  • Chapter
  • First Online:
Molecular Basis of Multiple Sclerosis

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 51))

Abstract

Multiple sclerosis (MS) is a demyelinating autoimmune disease. However, the persisting neurological deficits in MS patients result from acute axonal injury and chronic neurodegeneration, which are both triggered by the autoreactive immune response. Innate immunity, mainly mediated by activated microglial cells and invading macrophages, appears to contribute to chronic neurodegeneration. Activated microglia produce several reactive oxygen species and proinflammatory cytokines which affect neuronal function, integrity and survival. Adaptive immunity, particularly in cytotoxic CD8+ T cells, participates in acute demyelination and axonal injury by directly attacking oligodendrocytes and possibly neurons as well. Understanding the mechanisms of immune-mediated neuronal damage might help to design novel therapy strategies for MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    PubMed  CAS  Google Scholar 

  • Alarcon R, Fuenzalida C, Santibanez M,von Bernhardi R (2005) Expression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound beta-amyloid. J Biol Chem 280:30406–30415

    PubMed  CAS  Google Scholar 

  • Alt C, Laschinger M, Engelhardt B (2002) Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood-brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur J Immunol 32:2133–2144

    PubMed  CAS  Google Scholar 

  • Aravalli RN, Hu S, Rowen TN, Palmquist JM, Lokensgard JR (2005) Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J Immunol 175:4189–4193

    PubMed  CAS  Google Scholar 

  • Archelos JJ, Previtali SC, Hartung HP (1999) The role of integrins in immune-mediated diseases of the nervous system. Trends Neurosci 22:30–38

    PubMed  CAS  Google Scholar 

  • Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, Friese M, Schroder R, Deckert M, Schmidt S et al (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192:393–404

    PubMed Central  PubMed  CAS  Google Scholar 

  • Babior BM (2000) Phagocytes and oxidative stress. Am J Med 109:33–44

    PubMed  CAS  Google Scholar 

  • Becher B, Durell BG, Miga AV, Hickey WF, Noelle RJ (2001) The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J Exp Med 193:967–974

    PubMed Central  PubMed  CAS  Google Scholar 

  • Becher B, Bechmann I, Greter M (2006) Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain. J Mol Med 84:532–543

    PubMed  CAS  Google Scholar 

  • Bergmann CC, Yao Q, Stohlman SA (1999) Microglia exhibit clonal variability in eliciting cytotoxic T lymphocyte responses independent of class I expression. Cell Immunol 198:44–53

    PubMed  CAS  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    PubMed  CAS  Google Scholar 

  • Booss J, Esiri MM, Tourtellotte WW, Mason DY (1983) Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. J Neurol Sci 62:219–232

    PubMed  CAS  Google Scholar 

  • Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021

    PubMed  CAS  Google Scholar 

  • Buechler C, Ritter M, Quoc CD, Agildere A, Schmitz G (1999) Lipopolysaccharide inhibits the expression of the scavenger receptor Cla-1 in human monocytes and macrophages. Biochem Biophys Res Commun 262:251–254

    PubMed  CAS  Google Scholar 

  • Bullard DC, Hu X, Schoeb TR, Axtell RC, Raman C, Barnum SR (2005) Critical requirement of CD11b (Mac-1) on T cells and accessory cells for development of experimental autoimmune encephalomyelitis. J Immunol 175:6327–6333

    PubMed  CAS  Google Scholar 

  • Campbell JJ, Bowman EP, Murphy K, Youngman KR, Siani MA, Thompson DA, Wu L, Zlotnik A, Butcher EC (1998) 6-C-kine (SLC), a lymphocyte adhesion-triggering chemokine expressed by high endothelium, is an agonist for the MIP-3beta receptor CCR7. J Cell Biol 141:1053–1059

    PubMed Central  PubMed  CAS  Google Scholar 

  • Carson MJ, Sutcliffe JG, Campbell IL (1999) Microglia stimulate naive T-cell differentiation without stimulating T-cell proliferation. J Neurosci Res 55:127–134

    PubMed  CAS  Google Scholar 

  • Cho BP, Song DY, Sugama S, Shin DH, Shimizu Y, Kim SS, Kim YS, Joh TH (2006) Pathological dynamics of activated microglia following medial forebrain bundle transection. Glia 53:92–102

    PubMed  Google Scholar 

  • Christensen SR, Shupe J, Nickerson K, Kashgarian M, Flavell RA, Shlomchik MJ (2006) Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25:417–428

    PubMed  CAS  Google Scholar 

  • Christie RH, Freeman M, Hyman BT (1996) Expression of the macrophage scavenger receptor, a multifunctional lipoprotein receptor, in microglia associated with senile plaques in Alzheimer’s disease. Am J Pathol 148:399–403

    PubMed Central  PubMed  CAS  Google Scholar 

  • Colton CA, Gilbert DL (1987) Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett 223:284–288

    PubMed  CAS  Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    PubMed  CAS  Google Scholar 

  • de Vos AF, van Meurs M, Brok HP, Boven LA, Hintzen RQ, van der Valk P, Ravid R, Rensing S, Boon L, t Hart BA, Laman JD (2002) Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol 169:5415–5423

    PubMed  CAS  Google Scholar 

  • Drapier JC, Hibbs JB Jr (1988) Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells. J Immunol 140:2829–2838

    PubMed  CAS  Google Scholar 

  • El-Benna J, Dang PM, Gougerot-Pocidalo MA, Elbim C (2005) Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses. Arch Immunol Ther Exp (Warsz) 53:199–206

    CAS  Google Scholar 

  • Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    PubMed  CAS  Google Scholar 

  • Fetler L, Amigorena S (2005) Neuroscience. Brain under surveillance: the microglia patrol. Science 309:392–393

    PubMed  CAS  Google Scholar 

  • Gerritse K, Laman JD, Noelle RJ, Aruffo A, Ledbetter JA, Boersma WJ, Claassen E (1996) CD40-CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci U S A 93:2499–2504

    PubMed Central  PubMed  CAS  Google Scholar 

  • Glezer I, Lapointe A, Rivest S (2006) Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries. FASEB J 20:750–752

    PubMed  CAS  Google Scholar 

  • Gold R, Schmied M, Tontsch U, Hartung HP, Wekerle H, Toyka KV, Lassmann H (1996) Antigen presentation by astrocytes primes rat T lymphocytes for apoptotic cell death. A model for T-cell apoptosis in vivo. Brain 119(Pt 2):651–659

    PubMed  Google Scholar 

  • Goldstein JL, Brown MS, Krieger M, Anderson RG, Mintz B (1979) Demonstration of low density lipoprotein receptors in mouse teratocarcinoma stem cells and description of a method for producing receptor-deficient mutant mice. Proc Natl Acad Sci U S A 76:2843–2847

    PubMed Central  PubMed  CAS  Google Scholar 

  • Granucci F, Petralia F, Urbano M, Citterio S, Di Tota F, Santambrogio L, Ricciardi-Castagnoli P (2003) The scavenger receptor MARCO mediates cytoskeleton rearrangements in dendritic cells and microglia. Blood 102:2940–2947

    PubMed  CAS  Google Scholar 

  • Grenier Y, Ruijs TC, Robitaille Y, Olivier A, Antel JP (1989) Immunohistochemical studies of adult human glial cells. J Neuroimmunol 21:103–115

    PubMed  CAS  Google Scholar 

  • Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, Noelle RJ, Becher B (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11:328–334

    PubMed  CAS  Google Scholar 

  • Harry GJ, McPherson CA, Wine RN, Atkinson K, Lefebvre d’Hellencourt C (2004) Trimethyltin-induced neurogenesis in the murine hippocampus. Neurotox Res 5:623–627

    PubMed Central  PubMed  Google Scholar 

  • Havenith CE, Askew D, Walker WS (1998) Mouse resident microglia: isolation and characterization of immunoregulatory properties with naive CD4 + and CD8 + T-cells. Glia 22:348–359

    PubMed  CAS  Google Scholar 

  • Hofman FM, Hinton DR, Johnson K, Merrill JE (1989) Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med 170:607–612

    PubMed  CAS  Google Scholar 

  • Huber JD, Egleton, RD, Davis, TP (2001) Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci 24:719–725

    PubMed  CAS  Google Scholar 

  • Huseby ES, Liggitt D, Brabb T, Schnabel B, Ohlen C, Goverman J (2001) A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med 194:669–676

    PubMed Central  PubMed  CAS  Google Scholar 

  • Husemann J, Silverstein SC (2001) Expression of scavenger receptor class B, type I, by astrocytes and vascular smooth muscle cells in normal adult mouse and human brain and in Alzheimer’s disease brain. Am J Pathol 158:825–832

    PubMed Central  PubMed  CAS  Google Scholar 

  • Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC (2002) Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 40:195–205

    PubMed  Google Scholar 

  • Iliev AI, Stringaris AK, Nau R, Neumann H (2004) Neuronal injury mediated via stimulation of microglial toll-like receptor-9 (TLR9). FASEB J 18:412–414

    PubMed  CAS  Google Scholar 

  • Inohara N, Koseki T, del Peso L, Hu Y, Yee C, Chen S, Carrio R, Merino J, Liu D, Ni J, Nunez G (1999) Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J Biol Chem 274:14560–14567

    PubMed  CAS  Google Scholar 

  • Jin S, Kawanokuchi J, Mizuno T, Wang J, Sonobe Y, Takeuchi H, Suzumura A (2007) Interferon-beta is neuroprotective against the toxicity induced by activated microglia. Brain Res 1179:140–146

    PubMed  CAS  Google Scholar 

  • Jou I, Lee JH, Park SY, Yoon HJ, Joe EH, Park EJ (2006) Gangliosides trigger inflammatory responses via TLR4 in brain glia. Am J Pathol 168:1619–1630

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kanneganti TD, Lamkanfi M, Nunez G (2007) Intracellular NOD-like receptors in host defense and disease. Immunity 27:549–559

    PubMed  CAS  Google Scholar 

  • Karin M, Lawrence T, Nizet V (2006) Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124:823–835

    PubMed  CAS  Google Scholar 

  • Kawai T, Akira S (2007) Antiviral signaling through pattern recognition receptors. J Biochem 141:137–145

    PubMed  CAS  Google Scholar 

  • Kawakami N, Nagerl UV, Odoardi F, Bonhoeffer T, Wekerle H, Flugel A (2005) Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion. J Exp Med 201:1805–1814

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kishida KT, Klann E (2007) Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxid Redox Signal 9:233–244

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kishida KT, Pao M, Holland SM, Klann E (2005) NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1. J Neurochem 94:299–306

    PubMed Central  PubMed  CAS  Google Scholar 

  • Koprowski H, Zheng YM, Heber-Katz E, Fraser N, Rorke L, Fu ZF, Hanlon C, Dietzschold B (1993) In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc Natl Acad Sci U S A 90:3024–3027

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kraal G, van der Laan LJ, Elomaa O, Tryggvason K (2000) The macrophage receptor MARCO. Microbes Infect 2:313–316

    PubMed  CAS  Google Scholar 

  • Lee SC, Liu W, Dickson DW, Brosnan CF, Berman JW (1993) Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. J Immunol 150:2659–2667

    PubMed  CAS  Google Scholar 

  • Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA (2005) Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci U S A 102:9936–9941

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liao H, Bu WY, Wang TH, Ahmed S, Xiao ZC (2005) Tenascin-R plays a role in neuroprotection via its distinct domains that coordinate to modulate the microglia function. J Biol Chem 280:8316–8323

    PubMed  CAS  Google Scholar 

  • Lindsey JW, Hodgkinson S, Mehta R, Siegel RC, Mitchell DJ, Lim M, Piercy C, Tram T, Dorfman L, Enzmann D et al (1994) Phase 1 clinical trial of chimeric monoclonal anti-CD4 antibody in multiple sclerosis. Neurology 44:413–419

    PubMed  CAS  Google Scholar 

  • Liu B, Gao HM, Wang JY, Jeohn GH, Cooper CL, Hong JS (2002) Role of nitric oxide in inflammation-mediated neurodegeneration. Ann N Y Acad Sci 962:318–331

    PubMed  CAS  Google Scholar 

  • Liu Y, Hao W, Letiembre M, Walter S, Kulanga M, Neumann H, Fassbender K (2006) Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J Neurosci 26:12904–12913

    PubMed  CAS  Google Scholar 

  • Lowenstein PR (2002) Immunology of viral-vector-mediated gene transfer into the brain: an evolutionary and developmental perspective. Trends Immunol 23:23–30

    PubMed  CAS  Google Scholar 

  • Lue LF, Walker DG, Brachova L, Beach TG, Rogers J, Schmidt AM, Stern DM, Yan SD (2001) Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Exp Neurol 171:29–45

    PubMed  CAS  Google Scholar 

  • MacMicking JD, Willenborg DO, Weidemann MJ, Rockett KA, Cowden WB (1992) Elevated secretion of reactive nitrogen and oxygen intermediates by inflammatory leukocytes in hyperacute experimental autoimmune encephalomyelitis: enhancement by the soluble products of encephalitogenic T cells. J Exp Med 176:303–307

    PubMed  CAS  Google Scholar 

  • Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M (2004) Microglia promote the death of developing Purkinje cells. Neuron 41:535–547

    PubMed  CAS  Google Scholar 

  • Martin DE, Chiu FJ, Gigli I, Muller-Eberhard HJ (1987) Killing of human melanoma cells by the membrane attack complex of human complement as a function of its molecular composition. J Clin Invest 80:226–233

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mautino G, Paul-Eugene N, Chanez P, Vignola AM, Kolb JP, Bousquet J, Dugas B (1994) Heterogeneous spontaneous and interleukin-4-induced nitric oxide production by human monocytes. J Leukoc Biol 56:15–20

    PubMed  CAS  Google Scholar 

  • McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD (2005) Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11:335–339

    PubMed  CAS  Google Scholar 

  • McVicar DW, Taylor LS, Gosselin P, Willette-Brown J, Mikhael AI, Geahlen RL, Nakamura MC, Linnemeyer P, Seaman WE, Anderson SK et al (1998) DAP12-mediated signal transduction in natural killer cells. A dominant role for the Syk protein-tyrosine kinase. J Biol Chem 273:32934–32942

    PubMed  CAS  Google Scholar 

  • Medana IM, Gallimore A, Oxenius A, Martinic MM, Wekerle H, Neumann H (2000) MHC class I-restricted killing of neurons by virus-specific CD8 + T lymphocytes is effected through the Fas/FasL, but not the perforin pathway. Eur J Immunol 30:3623–3633

    PubMed  CAS  Google Scholar 

  • Medana I, Li Z, Flugel A, Tschopp J, Wekerle H, Neumann H (2001) Fas ligand (CD95L) protects neurons against perforin-mediated T lymphocyte cytotoxicity. J Immunol 167:674–681

    PubMed  CAS  Google Scholar 

  • Melchjorsen J, Jensen SB, Malmgaard L, Rasmussen SB, Weber F, Bowie AG, Matikainen S, Paludan SR (2005) Activation of innate defense against a paramyxovirus is mediated by RIG-I and TLR7 and TLR8 in a cell-type-specific manner. J Virol 79:12944–12951

    PubMed Central  PubMed  CAS  Google Scholar 

  • Merrill JE (1991) Proinflammatory and antiinflammatory cytokines in multiple sclerosis and central nervous system acquired immunodeficiency syndrome. J Immunother 12:167–170

    Google Scholar 

  • Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2 + monocytes only under defined host conditions. Nat Neurosci 10:1544–1553

    PubMed  CAS  Google Scholar 

  • Morgan SC, Taylor DL, Pocock JM (2004) Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades. J Neurochem 90:89–101

    PubMed  CAS  Google Scholar 

  • Muller FJ, Snyder EY, Loring JF (2006) Gene therapy: can neural stem cells deliver? Nat Rev Neurosci 7:75–84

    PubMed  Google Scholar 

  • Neumann H (2001) Control of glial immune function by neurons. Glia 36:191–199

    PubMed  CAS  Google Scholar 

  • Neumann H, Cavalie A, Jenne DE, Wekerle H (1995) Induction of MHC class I genes in neurons. Science 269:549–552

    PubMed  CAS  Google Scholar 

  • Neumann H, Schmidt H, Cavalie A, Jenne D, Wekerle H (1997) Major histocompatibility complex (MHC) class I gene expression in single neurons of the central nervous system: differential regulation by interferon (IFN)-g and tumor necrosis factor (TNF)-a. J Exp Med 185:305–316

    PubMed Central  PubMed  CAS  Google Scholar 

  • Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K (2006) Microglia provide neuroprotection after ischemia. FASEB J 20:714–716

    PubMed  CAS  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    PubMed  CAS  Google Scholar 

  • Oehmichen W, Gencic M (1975) Experimental studies on kinetics and functions of monuclear phagozytes of the central nervous system. Acta Neuropathol Suppl (Suppl 6):285–290

    Google Scholar 

  • Olofsson P, Holmberg J, Tordsson J, Lu S, Akerstrom B, Holmdahl R (2003) Positional identification of Ncf1 as a gene that regulates arthritis severity in rats. Nat Genet 33:25–32

    PubMed  CAS  Google Scholar 

  • Paresce DM, Ghosh RN, Maxfield FR (1996) Microglial cells internalize aggregates of the Alzheimer’s disease amyloid beta-protein via a scavenger receptor. Neuron 17:553–565

    PubMed  CAS  Google Scholar 

  • Prinz M, Garbe F, Schmidt H, Mildner A, Gutcher I, Wolter K, Piesche M, Schroers R, Weiss E, Kirschning CJ et al (2006) Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J Clin Invest 116:456–464

    PubMed Central  PubMed  CAS  Google Scholar 

  • Qin H, Wilson CA, Roberts KL, Baker BJ, Zhao X, Benveniste EN (2006) IL-10 inhibits lipopolysaccharide-induced CD40 gene expression through induction of suppressor of cytokine signaling-3. J Immunol 177:7761–7771

    PubMed  CAS  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266:4244–4250

    PubMed  CAS  Google Scholar 

  • Raivich G (2005) Like cops on the beat: the active role of resting microglia. Trends Neurosci 28:571–573

    PubMed  CAS  Google Scholar 

  • Ransohoff RM (2007) Microgliosis: the questions shape the answers. Nat Neurosci 10:1507–1509

    PubMed  CAS  Google Scholar 

  • Remington LT, Babcock AA, Zehntner SP, Owens T (2007) Microglial recruitment, activation, and proliferation in response to primary demyelination. Am J Pathol 170:1713–1724

    PubMed Central  PubMed  Google Scholar 

  • Sawada M, Kondo N, Suzumura A, Marunouchi T (1989) Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res 491:394–397

    PubMed  CAS  Google Scholar 

  • Schmid CD, Sautkulis LN, Danielson PE, Cooper J, Hasel KW, Hilbush BS, Sutcliffe JG, Carson MJ (2002) Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J Neurochem 83:1309–1320

    PubMed Central  PubMed  CAS  Google Scholar 

  • Siegel RM, Chan FK, Chun HJ, Lenardo MJ (2000) The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat Immunol 1:469–474

    PubMed  CAS  Google Scholar 

  • Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133–139

    PubMed  Google Scholar 

  • Takahashi K, Rochford CD, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201:647–657

    PubMed Central  PubMed  CAS  Google Scholar 

  • Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H (2007) TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med 4:e124

    PubMed Central  PubMed  Google Scholar 

  • Town T, Jeng D, Alexopoulou L, Tan J, Flavell RA (2006) Microglia recognize double-stranded RNA via TLR3. J Immunol 176:3804–3812

    PubMed  CAS  Google Scholar 

  • Traugott U (1983) Acute experimental autoimmune encephalomyelitis. Differences between T cell subsets in the blood and meningeal infiltrates in susceptible and resistant strains of guinea pigs. J Neurol Sci 61:81–91

    PubMed  CAS  Google Scholar 

  • Trowsdale J, Barten R, Haude A, Stewart CA, Beck S, Wilson MJ (2001) The genomic context of natural killer receptor extended gene families. Immunol Rev 181:20–38

    PubMed  CAS  Google Scholar 

  • Turnbull IR, Gilfillan S, Cella M, Aoshi T, Miller M, Piccio L, Hernandez M, Colonna M (2006) Cutting edge: TREM-2 attenuates macrophage activation. J Immunol 177:3520–3524

    PubMed  CAS  Google Scholar 

  • van der Laan LJ, Ruuls SR, Weber KS, Lodder IJ, Dopp EA, Dijkstra CD (1996) Macrophage phagocytosis of myelin in vitro determined by flow cytometry: phagocytosis is mediated by CR3 and induces production of tumor necrosis factor-alpha and nitric oxide. J Neuroimmunol 70:145–152

    PubMed  CAS  Google Scholar 

  • van Kooten C, Banchereau J (2000) CD40-CD40 ligand. J Leukoc Biol 67:2–17

    PubMed  CAS  Google Scholar 

  • Visser L, Jan de Heer H, Boven LA, van Riel D, van Meurs M, Melief MJ, Zahringer U, van Strijp J, Lambrecht BN, Nieuwenhuis EE, Laman JD (2005) Proinflammatory bacterial peptidoglycan as a cofactor for the development of central nervous system autoimmune disease. J Immunol 174:808–816

    PubMed  CAS  Google Scholar 

  • Visser L, Melief MJ, van Riel D, van Meurs M, Sick EA, Inamura S, Bajramovic JJ, Amor S, Hintzen RQ, Boven LA et al (2006) Phagocytes containing a disease-promoting Toll-like receptor/Nod ligand are present in the brain during demyelinating disease in primates. Am J Pathol 169:1671–1685

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vodovotz Y, Bogdan C (1994) Control of nitric oxide synthase expression by transforming growth factor-beta: implications for homeostasis. Prog Growth Factor Res 5:341–351

    PubMed  CAS  Google Scholar 

  • Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schuffer W, Fassbender K (2007) Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem 20:947–956

    PubMed  CAS  Google Scholar 

  • Walton NM, Sutter BM, Laywell ED, Levkoff LH, Kearns SM, Marshall GP II, Scheffler B, Steindler DA (2006) Microglia instruct subventricular zone neurogenesis. Glia 54:815–825

    PubMed  Google Scholar 

  • Williams K, Ulvestad E, Waage A, Antel JP, McLaurin J (1994) Activation of adult human derived microglia by myelin phagocytosis in vitro. J Neurosci Res 38:433–443

    PubMed  CAS  Google Scholar 

  • Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS et al (1991) DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254:1001–1003

    PubMed  CAS  Google Scholar 

  • Yamada Y, Doi T, Hamakubo T, Kodama T (1998) Scavenger receptor family proteins: roles for atherosclerosis, host defence and disorders of the central nervous system. Cell Mol Life Sci 54:628–640

    PubMed  CAS  Google Scholar 

  • Zamvil SS, Steinman L (1990) The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol 8:579–621

    PubMed  CAS  Google Scholar 

  • Zekki H, Feinstein DL, Rivest S (2002) The clinical course of experimental autoimmune encephalomyelitis is associated with a profound and sustained transcriptional activation of the genes encoding toll-like receptor 2 and CD14 in the mouse CNS. Brain Pathol 12:308–319

    PubMed  CAS  Google Scholar 

  • Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M (2006) Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9:268–275

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The group of H.N. is supported by the Hertie Foundation, the Rose Foundation, the Deutsche Forschungsgemeinschaft and the European Union (LSHM-CT-2005–018637). The Neural Regeneration Group at the University Hospital Bonn is supported by the Hertie-Foundation, the Walter-und-Ilse-Rose-Foundation, the DFG (KFO177, SFB704) and the EU (LSHM-CT-2005-018637).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Neumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Kierdorf, K., Wang, Y., Neumann, H. (2009). Immune-Mediated CNS Damage. In: Martin, R., Lutterotti, A. (eds) Molecular Basis of Multiple Sclerosis. Results and Problems in Cell Differentiation, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2008_15

Download citation

Publish with us

Policies and ethics