Skip to main content

Prospects for Antigen-Specific Tolerance Based Therapies for the Treatment of Multiple Sclerosis

  • Chapter
  • First Online:
Molecular Basis of Multiple Sclerosis

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 51))

Abstract

A primary focus in autoimmunity is the breakdown of central and peripheral tolerance resulting in the survival and eventual activation of autoreactive T cells. As CD4+ T cells are key contributors to the underlying pathogenic mechanisms responsible for onset and progression of most autoimmune diseases, they are a logical target for therapeutic strategies. One method for restoring self-tolerance is to exploit the endogenous regulatory mechanisms that govern CD4+ T cell activation. In this review, we discuss tolerance strategies with the common goal of inducing antigen (Ag)-specific tolerance. Emphasis is given to the use of peptide-specific tolerance strategies, focusing on ethylene carbodiimide (ECDI)-peptide-coupled cells (Ag-SP) and nonmitogenic anti-CD3, which specifically target the T cell receptor (TCR) in the absence of costimulatory signals. These approaches induce a TCR signal of insufficient strength to cause CD4+ T cell activation and instead lead to functional T cell anergy/deletion and activation of Ag-specific induced regulatory T cells (iTregs) while avoiding generalized long-term immunosuppression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharoni R, Teitelbaum D, Arnon R, Sela M (1999) Copolymer 1 acts against the immunodominant epitope 82–100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. Proc Natl Acad Sci U S A 96:634–639

    PubMed Central  PubMed  CAS  Google Scholar 

  • Anderton SM, Wraith DC (2002) Selection and fine-tuning of the autoimmune T-cell repertoire. Nat Rev Immunol 2:487–498

    PubMed  CAS  Google Scholar 

  • Bai XF, Li HL, Shi FD, Liu JQ, Xiao BG, van der Meide PH, Link H (1998) Complexities of applying nasal tolerance induction as a therapy for ongoing relapsing experimental autoimmune encephalomyelitis (EAE) in DA rats. Clin Exp Immunol 111:205–210

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bai XF, Shi FD, Xiao BG, Li HL, van der Meide PH, Link H (1997) Nasal administration of myelin basic protein prevents relapsing experimental autoimmune encephalomyelitis in DA rats by activating regulatory cells expressing IL-4 and TGF-beta mRNA. J Neuroimmunol 80:65–75

    PubMed  CAS  Google Scholar 

  • Barnett ML, Kremer JM, St Clair EW, Clegg DO, Furst D, Weisman M, Fletcher MJ, Chasan-Taber S, Finger E, Morales A et al (1998) Treatment of rheumatoid arthritis with oral type II collagen. Results of a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum 41:290–297

    PubMed  CAS  Google Scholar 

  • Belghith M, Bluestone JA, Barriot S, Megret J, Bach JF, Chatenoud L (2003) TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 9:1202–1208

    PubMed  CAS  Google Scholar 

  • Benson JM, Stuckman SS, Cox KL, Wardrop RM, Gienapp IE, Cross AH, Trotter JL, Whitacre CC (1999) Oral administration of myelin basic protein is superior to myelin in suppressing established relapsing experimental autoimmune encephalomyelitis. J Immunol 162:6247–6254

    PubMed  CAS  Google Scholar 

  • Bernard CC, de Rosbo NK (1991) Immunopathological recognition of autoantigens in multiple sclerosis. Acta Neurol (Napoli) 13:171–178

    CAS  Google Scholar 

  • Bielekova B, Goodwin B, Richert N, Cortese I, Kondo T, Afshar G, Gran B, Eaton J, Antel J, Frank JA et al (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 6:1167–1175

    PubMed  CAS  Google Scholar 

  • Bielekova B, Sung MH, Kadom N, Simon R, McFarland H, Martin R (2004) Expansion and functional relevance of high-avidity myelin-specific CD4+ T cells in multiple sclerosis. J Immunol 172:3893–3904

    PubMed  CAS  Google Scholar 

  • Bitar DM, Whitacre CC (1988) Suppression of experimental autoimmune encephalomyelitis by the oral administration of myelin basic protein. Cell Immunol 112:364–370

    PubMed  CAS  Google Scholar 

  • Bornstein MB, Miller A, Slagle S, Weitzman M, Crystal H, Drexler E, Keilson M, Merriam A, Wassertheilsmoller S, Spada V et al (1987) A Pilot Trial of Cop-1 in Exacerbating Remitting Multiple-Sclerosis. N Engl J Med 317:408–414

    PubMed  CAS  Google Scholar 

  • Braley-Mullen H, Tompson JG, Sharp GC, Kyriakos M (1980) Suppression of experimental autoimmune thyroiditis in guinea pigs by pretreatment with thyroglobulin-coupled spleen cells. Cell Immunol 51:408–413

    PubMed  CAS  Google Scholar 

  • Burstein HJ, Shea CM, Abbas AK (1992) Aqueous antigens induce in vivo tolerance selectively in IL-2- and IFN-gamma-producing (Th1) cells. J Immunol 148:3687–3691

    PubMed  CAS  Google Scholar 

  • Chatenoud L (2003) CD3-specific antibody-induced active tolerance: from bench to bedside. Nat Rev Immunol 3:123–132

    PubMed  CAS  Google Scholar 

  • Chatenoud L, Thervet E, Primo J, Bach JF (1994) Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci USA. 91:123–127

    Google Scholar 

  • Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL (1994) Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265:1237–1240

    PubMed  CAS  Google Scholar 

  • Christen U, von Herrath MG (2004) Initiation of autoimmunity. Curr Opin Immunol 16:759–767

    PubMed  CAS  Google Scholar 

  • Critchfield JM, Racke MK, Zuniga-Pflucker JC, Cannella B, Raine CS, Goverman J, Lenardo MJ (1994) T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 263:1139–1143

    PubMed  CAS  Google Scholar 

  • Dal Canto MC, Kim BS, Miller SD, Melvold RW (1997) Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelination: A model for human multiple sclerosis. Neuroprotocols 10:453–461

    Google Scholar 

  • de Rosbo NK, Hoffman M, Mendel I, Yust I, Kaye J, Bakimer R, Flechter S, Abramsky O, Milo R, Karni A, Ben-Nun A (1997). Predominance of the autoimmune response to myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis: reactivity to the extracellular domain of MOG is directed against three main regions. Eur J Immunol 27:3059–3069

    Google Scholar 

  • Dua HS, Gregerson DS, Donoso LA (1992) Inhibition of experimental autoimmune uveitis by retinal photoreceptor a ntigens coupled to spleen cells. Cell Immunol 139:292–305

    PubMed  CAS  Google Scholar 

  • Duda PW, Schmied MC, Cook SL, Krieger JI, Hafler DA (2000) Glatiramer acetate (Copaxone (R)) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest 105:967–976

    PubMed Central  PubMed  CAS  Google Scholar 

  • Eagar TN, Karandikar NJ, Bluestone J, Miller SD (2002) The role of CTLA-4 in induction and maintenance of peripheral T cell tolerance. Eur J Immnol 32:972–981

    CAS  Google Scholar 

  • Eagar TN, Turley DM, Padilla J, Karandikar NJ, Tan LJ, Bluestone JA, Miller SD (2004) CTLA-4 regulates expansion and differentiation of Th1 cells following induction of peripheral T cell tolerance. J Immunol 172:7442–7450

    PubMed  CAS  Google Scholar 

  • Ebers GC, Sadovnick AD, Risch NJ (1995) A genetic basis for familial aggregation in multiple sclerosis. Nature 377:150–151

    PubMed  CAS  Google Scholar 

  • Faria AM, Weiner HL (1999) Oral tolerance: mechanisms and therapeutic applications. Adv Immunol 73:153–264

    PubMed  CAS  Google Scholar 

  • Faria AM, Weiner HL (2006) Oral tolerance: therapeutic implications for autoimmune diseases. Clin Dev Immunol 13:143–157

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fife BT, Guleria I, Gubbels Bupp M, Eagar TN, Tang Q, Bour-Jordan H, Yagita H, Azuma M, Sayegh MH, Bluestone JA (2006) Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway. J Exp Med 203:2737–2747

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fujinami RS, Oldstone MB (1985) Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 230:1043–1045

    PubMed  CAS  Google Scholar 

  • Gaur A, Wiers B, Liu A, Rothbard J, Fathman CG (1992) Amelioration of autoimmune encephalomyelitis by myelin basic protein synthetic peptide-induced anergy. Science 258:1491–1494

    PubMed  CAS  Google Scholar 

  • Genain CP, Abel K, Belmar N, Villinger F, Rosenberg DP, Linington C, Raine CS, Hauser SL (1996) Late complications of immune deviation therapy in a nonhuman primate. Science 274:2054–2057

    PubMed  CAS  Google Scholar 

  • Gregorian SK, Clark L, Heber-Katz E, Amento EP, Rostami A (1993) Induction of peripheral tolerance with peptide-specific anergy in experimental autoimmune neuritis. Cell Immunol 150:298–310

    PubMed  CAS  Google Scholar 

  • Herold KC, Burton JB, Francois F, Poumian-Ruiz E, Glandt M, Bluestone JA (2003) Activation of human T cells by FcR nonbinding anti-CD3 mAb, hOKT3gamma1(Ala-Ala). J Clin Invest 111:409–418

    PubMed Central  PubMed  CAS  Google Scholar 

  • Herold KC, Gitelman SE, Masharani U, Hagopian W, Bisikirska B, Donaldson D, Rother K, Diamond B, Harlan DM, Bluestone JA (2005) A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54:1763–1769

    PubMed  CAS  Google Scholar 

  • Herold KC, Hagopian W, Auger JA, Poumian-Ruiz E, Taylor L, Donaldson D, Gitelman SE, Harlan DM, Xu D, Zivin RA, Bluestone JA (2002) Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 346:1692–1698

    PubMed  CAS  Google Scholar 

  • Hogquist KA, Baldwin TA, Jameson SC (2005) Central tolerance: learning self-control in the thymus. Nat Rev Immunol 5:772–782

    PubMed  CAS  Google Scholar 

  • Jenkins MK, Schwartz RH (1987) Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med 165:302–319

    PubMed  CAS  Google Scholar 

  • Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, Myers LW, Panitch HS, Rose JW, Schiffer RB (1995) Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45:1268–1276

    PubMed  CAS  Google Scholar 

  • Kappos L, Comi G, Panitch H, Oger J, Antel J, Conlon P, Steinman L (2000) Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nat Med 6:1176–1182

    PubMed  CAS  Google Scholar 

  • Karandikar NJ, Vanderlugt CL, Bluestone JA, Miller SD (1998) Targeting the B7/CD28:CTLA-4 costimulatory system in CNS autoimmune disease. J Neuroimmunol 89:10–18

    PubMed  CAS  Google Scholar 

  • Karpus WJ, Kennedy KJ, Smith WS, Miller SD (1996) Inhibition of relapsing experimental autoimmune encephalomyelitis in SJL mice by feeding the immunodominant PLP139–151 molecule. J Neurosci Res 45:410–423

    PubMed  CAS  Google Scholar 

  • Karpus WJ, Lukacs NW, McRae BL, Streiter RM, Kunkel SL, Miller SD (1995) An important role for the chemokine macrophage inflammatory protein-1 alpha in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J Immunol 155:5003–5010

    PubMed  CAS  Google Scholar 

  • Karpus WJ, Peterson JD, Miller SD (1994) Anergy in vivo: Down-regulation of antigen-specific CD4+ Th1 but not Th2 cytokine responses. Int Immunol 6:721–730

    PubMed  CAS  Google Scholar 

  • Kennedy KJ, Smith WS, Miller SD, Karpus WJ (1997) Induction of antigen-specific tolerance for the treatment of ongoing, relapsing autoimmune encephalomyelitis – A comparison between oral and peripheral tolerance. J Immunol 159:1036–1044

    PubMed  CAS  Google Scholar 

  • Kennedy MK, Tan LJ, Dal Canto MC, Miller SD (1990a) Regulation of the effector stages of experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance induction. J Immunol 145:117–126

    PubMed  CAS  Google Scholar 

  • Kennedy MK, Tan LJ, Dal Canto MC, Tuohy VK, Lu ZJ, Trotter JL, Miller SD (1990b) Inhibition of murine relapsing experimental autoimmune encephalomyelitis by immune tolerance to proteolipid protein and its encephalitogenic peptides. J Immunol 144:909–915

    PubMed  CAS  Google Scholar 

  • Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G, Gorus F, Goldman M, Walter M, Candon S et al (2005) Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 352:2598–2608

    PubMed  CAS  Google Scholar 

  • Khalili K, White MK, Lublin F, Ferrante P, Berger JR (2007) Reactivation of JC virus and development of PML in patients with multiple sclerosis. Neurology 68:985–990

    PubMed  CAS  Google Scholar 

  • Khoury SJ, Hancock WW, Weiner HL (1992) Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J Exp Med 176:1355–1364

    PubMed  CAS  Google Scholar 

  • Kohm AP, Williams JS, Bickford AL, McMahon JS, Chatenoud L, Bach JF, Bluestone JA, Miller SD (2005) Treatment with nonmitogenic anti-CD3 monoclonal antibody induces CD4+ T cell unresponsiveness and functional reversal of established experimental autoimmune encephalomyelitis. J Immunol 174:4525–4534

    PubMed  CAS  Google Scholar 

  • Korczyn AD, Nisipeanu P (1996) Safety profile of copolymer 1: Analysis of cumulative experience in the United States and Israel. J Neruol 243:S23–S26

    CAS  Google Scholar 

  • Kurtzke JF (1993) Epidemiologic evidence for multiple sclerosis as an infection. Clin Microbiol Rev 6:382–427

    PubMed Central  PubMed  CAS  Google Scholar 

  • Luo X, Pothoven KL, McCarthy D, DeGutes M, Martin A, Getts DR, Xia G, He J, Zhang X, Kaufman DB, Miller SD (2008) ECDI-fixed allogeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms. Proc Natl Acad Sci U S A 105:14527–14532

    Google Scholar 

  • McRae BL, Vanderlugt CL, Dal Canto MC, Miller SD (1995a) Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med 182:75–85

    PubMed  CAS  Google Scholar 

  • McRae BL, Vanderlugt CL, Dal Canto MC, Miller SD (1995b) Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med 182:75–85

    PubMed  CAS  Google Scholar 

  • Metzler B, Wraith DC (1993) Inhibition of experimental autoimmune encephalomyelitis by inhalation but not oral administration of the encephalitogenic peptide: influence of MHC binding affinity. Int Immunol 5:1159–1165

    PubMed  CAS  Google Scholar 

  • Meyer AL, Benson JM, Gienapp IE, Cox KL, Whitacre CC (1996) Suppression of murine chronic relapsing experimental autoimmune encephalomyelitis by the oral administration of myelin basic protein. J Immunol 157:4230–4238

    PubMed  CAS  Google Scholar 

  • Miller A, Lider O, Roberts AB, Sporn MB, Weiner HL (1992a) Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor after antigen-specific triggering. Proc Nat Acad Sci 89:421–425

    PubMed Central  PubMed  CAS  Google Scholar 

  • Miller DH, Khan OA, Sheremata WA, Blumhardt LD, Rice GPA, Libonati MA, Willmer-Hulme AJ, Dalton CM, Miszkiel KA, O’Connor PW (2003) A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 348:15–23

    PubMed  CAS  Google Scholar 

  • Miller SD, Karpus WJ (1994) The immunopathogenesis and regulation of T-cell mediated demyelinating diseases. Immunol Today 15:356–361

    PubMed  CAS  Google Scholar 

  • Miller SD, McRae BL, Vanderlugt CL, Nikcevich KM, Pope JG, Pope L, Karpus WJ (1995a) Evolution of the T cell repertoire during the course of experimental autoimmune encephalomyelitis. Immunol Rev 144:225–244

    PubMed  CAS  Google Scholar 

  • Miller SD, Tan LJ, Pope L, McRae BL, Karpus WJ (1992b) Antigen-specific tolerance as a therapy for experimental autoimmune encephalomyelitis. Int Rev Immunol 9:203–222

    PubMed  CAS  Google Scholar 

  • Miller SD, Vanderlugt CL, Begolka WS, Pao W, Yauch RL, Neville KL, Katz-Levy Y, Carrizosa A, Kim BS (1997) Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope spreading. Nat Med 3:1133–1136

    PubMed  CAS  Google Scholar 

  • Miller SD, Vanderlugt CL, Lenschow DJ, Pope JG, Karandikar NJ, Dal Canto MC, Bluestone JA (1995b) Blockade of CD28/B7–1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity 3:739–745

    PubMed  CAS  Google Scholar 

  • Miller SD, Wetzig RP, Claman HN (1979) The induction of cell-mediated immunity and tolerance with protein antigens coupled to syngeneic lymphoid cells. J Exp Med 149:758–773

    PubMed  CAS  Google Scholar 

  • Mowat AM, Parker LA, Beacock-Sharp H, Millington OR, Chirdo F (2004) Oral tolerance: overview and historical perspectives. Ann N Y Acad Sci 1029:1–8

    PubMed  CAS  Google Scholar 

  • Mowat AM, Strobel S, Drummond HE, Ferguson A (1982) Immunological responses to fed protein antigens in mice. I. Reversal of oral tolerance to ovalbumin by cyclophosphamide. Immunology 45:105–113

    PubMed Central  PubMed  CAS  Google Scholar 

  • Neuhaus O, Farina C, Yassouridis A, Wiendl H, Bergh FT, Dose T, Wekerle H, Hohlfeld R (2000) Multiple sclerosis: Comparison of copolymer-1-reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Nat Acad Sci U S A 97:7452–7457

    CAS  Google Scholar 

  • Nicholson LB, Greer JM, Sobel RA, Lees MB, Kuchroo VK (1995) An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity 3:397–405

    PubMed  CAS  Google Scholar 

  • Nicholson LB, Kuchroo VK (1997) T cell recognition of self and altered self antigens. Crit Rev Immunol 17:449–462

    PubMed  CAS  Google Scholar 

  • Nicholson LB, Murtaza A, Hafler BP, Sette A, Kuchroo VK (1997) A T cell receptor antagonist peptide induces T cells that mediate bystander suppression and prevent autoimmune encephalomyelitis induced with multiple myelin antigens. Proc Nat Acad Sci U S A 94:9279–9284

    CAS  Google Scholar 

  • Olson JK, Croxford JL, Calenoff M, Dal Canto MC, Miller SD (2001a) A virus-induced molecular mimicry model of multiple sclerosis. J Clin Invest 108:311–318

    PubMed Central  PubMed  CAS  Google Scholar 

  • Olson JK, Croxford JL, Miller SD (2001b) Virus-induced autoimmunity: Potential role of viruses in initiation, perpetuation, and progression of T cell-mediated autoimmune diseases Viral Immunol 14 227–250

    Google Scholar 

  • Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA (1990) T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346:183–187

    PubMed  CAS  Google Scholar 

  • Paterson PY, Swanborg RH (1988) Demyelinating diseases of the central and peripheral nervous systems. In: Sampter M, Talmage DW, Frank MM, Austen KF, Claman HN (eds) Immunological diseases. Brown, Boston, Little, pp 1877–1916

    Google Scholar 

  • Pedotti R, Mitchell D, Wedemeyer J, Karpuj M, Chabas D, Hattab EM, Tsai M, Galli, SJ, Steinman L (2001) An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nat Immunol 2:216–222

    PubMed  CAS  Google Scholar 

  • Peterson JD, Karpus WJ, Clatch RJ, Miller SD (1993) Split tolerance of Th1 and Th2 cells in tolerance to Theiler’s murine encephalomyelitis virus. Eur J Immunol 23:46–55

    PubMed  CAS  Google Scholar 

  • Pope L, Paterson PY, Miller SD (1992) Antigen-specific inhibition of the adoptive transfer of experimental autoimmune encephalomyelitis in Lewis rats. J Neuroimmunol 37:177–190

    PubMed  CAS  Google Scholar 

  • Pozzilli P, Pitocco D, Visalli N, Cavallo MG, Buzzetti R, Crino A, Spera S, Suraci C, Multari G, Cervoni M, et al (2000) No effect of oral insulin on residual beta-cell function in recent-onset type I diabetes (the IMDIAB VII). IMDIAB Group. Diabetologia 43:1000–1004

    CAS  Google Scholar 

  • Racke MK, Critchfield JM, Quigley L, Cannella B, Raine CS, McFarland Hf, Lenardo MJ (1996) Intravenous antigen administration as a therapy for autoimmune demyelinating disease. Ann Neurol 39:46–56

    PubMed  CAS  Google Scholar 

  • Ruddle NH, Bergman CM, McGrath KM, Lingenheld EG, Grunnet ML, Padula SJ, Clark RB (1990) An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J Exp Med 172:1193–1200

    PubMed  CAS  Google Scholar 

  • Samson MF, Smilek DE (1995) Reversal of acute experimental autoimmune encephalomyelitis and prevention of relapses by treatment with a myelin basic protein peptide analogue modified to form long-lived peptide-MHC complexes. J Immunol 155:2737–2746

    PubMed  CAS  Google Scholar 

  • Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2:116–126

    PubMed  CAS  Google Scholar 

  • Slavin AJ, Maron R, Weiner HL (2001) Mucosal administration of IL-10 enhances oral tolerance in autoimmune encephalomyelitis and diabetes. Int Immunol 13:825–833

    PubMed  CAS  Google Scholar 

  • Smith CE, Eagar TN, Strominger JL, Miller SD (2005) Differential induction of IgE-mediated anaphylaxis after soluble vs. cell-bound tolerogenic peptide therapy of autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 102:9595–9600

    PubMed Central  PubMed  CAS  Google Scholar 

  • Smith CE, Miller SD (2006) Multi-peptide coupled-cell tolerance ameliorates ongoing relapsing EAE associated with multiple pathogenic autoreactivities. J Autoimmunity 27:218–231

    CAS  Google Scholar 

  • Su XM, Sriram S (1991) Treatment of chronic relapsing experimental allergic encephalomyelitis with the intravenous administration of splenocytes coupled to encephalitogenic peptide 91–103 of myelin basic protein. J Neuroimmunol 34:181–190

    PubMed  CAS  Google Scholar 

  • Tan LJ, Kennedy MK, Dal Canto MC, Miller SD (1991) Successful treatment of paralytic relapses in adoptive experimental autoimmune encephalomyelitis via neuroantigen- specific tolerance. J Immunol 147:1797–1802

    PubMed  CAS  Google Scholar 

  • Tan LJ, Kennedy MK, Miller SD (1992) Regulation of the effector stages of experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance induction. II. Fine specificity of effector T cell inhibition. J Immunol 148:2748–2755

    PubMed  CAS  Google Scholar 

  • Turley DM, Miller SD (2007) Peripheral tolerance Induction using ethylenecarbodiimide-fixed APCs uses both direct and indirect mechanisms of antigen presentation for prevention of experimental autoimmune encephalomyelitis. J Immunol 178:2212–2220

    PubMed  CAS  Google Scholar 

  • Utset TO, Auger JA, Peace D, Zivin RA, Xu D, Jolliffe L, Alegre ML, Bluestone JA, Clark MR (2002) Modified anti-CD3 therapy in psoriatic arthritis: a phase I/II clinical trial. J Rheumatol 29:1907–1913

    PubMed  CAS  Google Scholar 

  • Vandenbark AA, Barnes D, Finn T, Bourdette DN, Whitham R, Robey I, Kaleeba J, Bebo BF Jr, Miller SD, Offner H, Chou YK (2000) Differential susceptibility of human T(h)1 versus T (h) 2 cells to induction of anergy and apoptosis by ECDI/antigen-coupled antigen- presenting cells. Int Immunol 12:57–66

    PubMed  CAS  Google Scholar 

  • Vandenbark AA, Vainiene M, Ariail K, Miller SD, Offner H (1996) Prevention and treatment of relapsing autoimmune encephalomyelitis with myelin peptide-coupled splenocytes. J Neurosci Res 45:430–438

    PubMed  CAS  Google Scholar 

  • Vanderlugt CL, Eagar TN, Neville KL, Nikcevich KM, Bluestone JA, Miller SD (2000) Pathologic role and temporal appearance of newly emerging autoepitopes in relapsing experimental autoimmune encephalomyelitis. J Immunol 164:670–678

    PubMed  CAS  Google Scholar 

  • Vanderlugt CL, Miller SD (1996) Epitope spreading. Curr Opin Immunol 8:831–836

    PubMed  CAS  Google Scholar 

  • Waksman BH (1995) Multiple sclerosis: More genes versus environment. Nature 377:105–106

    PubMed  CAS  Google Scholar 

  • Walker LS, Abbas AK (2002) The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2:11–19

    PubMed  CAS  Google Scholar 

  • Warren KG, Catz I, Wucherpfennig KW (1997) Tolerance induction to myelin basic protein by intravenous synthetic peptides containing epitope P85 VVHFFKNIVTP96 in chronic progressive multiple sclerosis. J Neurol Sci 152:31–38

    PubMed  CAS  Google Scholar 

  • Weiner HL (2004) Current issues in the treatment of human diseases by mucosal tolerance. Ann N Y Acad Sci 1029:211–224

    PubMed  CAS  Google Scholar 

  • Weiner HL, Mackin GA, Matsui M, Orav EJ, Khoury SJ, Dawson DM, Hafler DA (1993) Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 259:1321–1324

    PubMed  CAS  Google Scholar 

  • Wekerle H (1991) Immunopathogenesis of multiple sclerosis. Acta Neurol (Napoli) 13:197–204

    CAS  Google Scholar 

  • Whitacre CC, Gienapp IE, Orosz CG, Bitar DM (1991) Oral tolerance in experimental autoimmune encephalomyelitis: III. Evidence for clonal anergy. J Immunol 147:2155–2163

    CAS  Google Scholar 

  • Wraith DC, Smilek DE, Mitchell DJ, Steinman L, McDevitt HO (1989) Antigen recognition in autoimmune encephalomyelitis and the potential for peptide-mediated immunotherapy. Cell 59:247–255

    PubMed  CAS  Google Scholar 

  • Wucherpfennig KW, Strominger JL (1995) Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80:695–705

    PubMed  CAS  Google Scholar 

  • Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature 356:63–66

    PubMed  CAS  Google Scholar 

  • Young DA, Lowe LD, Booth SS, Whitters MJ, Nicholson L, Kuchroo VK, Collins M (2000) IL-4, IL-10, IL-13, and TGF-beta from an altered peptide ligand-specific Th2 cell clone down-regulate adoptive transfer of experimental autoimmune encephalomyelitis. J Immunol 164:3563–3572

    PubMed  CAS  Google Scholar 

  • Zhang X, Hupperts R, De Baets M (2003) Monoclonal antibody therapy in experimental allergic encephalomyelitis and multiple sclerosis. Immunol Res 28:61–78

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Turley, D.M., Miller, S.D. (2009). Prospects for Antigen-Specific Tolerance Based Therapies for the Treatment of Multiple Sclerosis. In: Martin, R., Lutterotti, A. (eds) Molecular Basis of Multiple Sclerosis. Results and Problems in Cell Differentiation, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2008_13

Download citation

Publish with us

Policies and ethics