Skip to main content

Molecular Genetic Dissection of the Zebrafish Olfactory System

  • Chapter
  • First Online:
Chemosensory Systems in Mammals, Fishes, and Insects

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 47))

Abstract

Zebrafish is now becoming one of the most useful model organisms in neurobiology. In addition to its general advantageous properties (external fertilization, rapid development, transparency of embryos, etc.), the zebrafish is amenable to various genetic engineering technologies such as transgenesis, mutagenesis, gene knockdown, and transposon-mediated gene transfer. A transgenic approach unraveled two segregated neural circuits originating from ciliated and microvillous sensory neurons in the olfactory epithelium to distinct regions of the olfactory bulb, which likely convey different types of olfactory information (e.g., pheromones and odorants) to the higher olfactory centers. Furthermore, the two basic principles identified in mice, so-called one neuron—one receptor rule and convergence of like axons to target glomeruli, are basically preserved also in the zebrafish, rendering this organism a suitable model vertebrate for studies of the olfactory system. This review summarizes recent advances in our knowledge on genetic, molecular, and cellular mechanisms underlying the development and functional architecture of the olfactory neural circuitry in the zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100:693–702

    PubMed  CAS  Google Scholar 

  • Alioto TS, Ngai J (2005) The odorant receptor repertoire of teleost fish. BMC Genomics 6:173. doi:10.1186/1471-2164-6-173

    PubMed  Google Scholar 

  • Alioto TS, Ngai J (2006) The repertoire of olfactory C family G protein-coupled receptors in zebrafish: candidate chemosensory receptors for amino acids. BMC Genomics 7:309. doi:10.1186/1471-2164-7-309

    PubMed  Google Scholar 

  • Asakawa K, Suster ML, Mizusawa K, Nagayoshi S, Kotani T, Urasaki A, Kishimoto Y, Hibi M, Kawakami K (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci USA 105:1255–1260

    PubMed  CAS  Google Scholar 

  • Baier H (2000) Zebrafish on the move: towards a behavior-genetic analysis of vertebrate vision. Curr Opin Neurobiol 10:451–455

    PubMed  CAS  Google Scholar 

  • Baier H, Korsching S (1994) Olfactory glomeruli in the zebrafish form an invariant pattern and are identifiable across animals. J Neurosci 14:219–230

    PubMed  CAS  Google Scholar 

  • Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction inC. elegans. Cell 74:515–527

    PubMed  CAS  Google Scholar 

  • Barnea G, O'Donnell S, Mancia F, Sun X, Nemes A, Mendelsohn M, Axel R (2004) Odorant receptors on axon termini in the brain. Science 304:1468

    PubMed  CAS  Google Scholar 

  • Barth AL, Nicholas JJ, Ngai J (1996) Asynchronous onset of odorant receptor expression in the developing zebrafish olfactory system. Neuron 16:23–34

    PubMed  CAS  Google Scholar 

  • Barth AL, Dugas JC, Ngai J (1997) Noncoordinate expression of odorant receptor genes tightly linked in the zebrafish genome. Neuron 19:359–;369

    PubMed  CAS  Google Scholar 

  • Buck LB (2000) The molecular architecture of odor and pheromone sensing in mammals. Cell 100:611–618

    PubMed  CAS  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    PubMed  CAS  Google Scholar 

  • Cao Y, Oh BC, Stryer L (1998) Cloning and localization of two multigene receptor families in goldfish olfactory epithelium. Proc Natl Acad Sci USA 95:11987–11992

    PubMed  CAS  Google Scholar 

  • Carr WES (1988) The molecular nature of chemical stimuli in the aquatic environment. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 3–27

    Google Scholar 

  • Catania S, Germana A, Laura R, Gonzalez-Martinez T, Ciriaco E, Vega JA (2003) The crypt neurons in the olfactory epithelium of the adult zebrafish express TrkA-like immunoreactivity. Neurosci Lett 350:5–8

    PubMed  CAS  Google Scholar 

  • Chess A, Simon I, Cedar H, Axel R (1994) Allelic inactivation regulates olfactory receptor gene expression. Cell 78:823–834

    PubMed  CAS  Google Scholar 

  • Dickson BJ, Gilestro GF (2006) Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol 22:651–675

    PubMed  CAS  Google Scholar 

  • Doving KB, Selset R (1980) Behavior patterns in cod released by electrical stimulation of olfactory tract bundles. Science 207:559–560

    PubMed  CAS  Google Scholar 

  • Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C (1996) A genetic screen for mutations affecting embryogenesis in zebrafish 123:37–46

    Google Scholar 

  • Ekker SC (2000) Morphants: a new systematic vertebrate functional genomics approach. Yeast 17:302–306

    PubMed  CAS  Google Scholar 

  • Ellingsen S, Laplante MA, Konig M, Kikuta H, Furmanek T, Hoivik EA, Becker TS (2005) Large-scale enhancer detection in the zebrafish genome. Development 132:3799–3811

    PubMed  CAS  Google Scholar 

  • Fricke C, Lee JS, Geiger-Rudolph S, Bonhoeffer F, Chien CB (2001)Astray, a zebrafish roundabout homolog required for retinal axon guidance. Science 292:507–510

    PubMed  CAS  Google Scholar 

  • Friedrich RW (2002) Real time odor representations. Trends Neurosci 25:487–489

    PubMed  Google Scholar 

  • Friedrich RW, Korsching SI (1997) Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 18:737–;752

    PubMed  CAS  Google Scholar 

  • Friedrich RW, Korsching SI (1998) Chemotopic, combinatorial, and noncombinatorial odorant representations in the olfactory bulb revealed using a voltage-sensitive axon tracer. J Neurosci 18:9977–9988

    PubMed  CAS  Google Scholar 

  • Friedrich RW, Laurent G (2001) Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291:889–894

    PubMed  CAS  Google Scholar 

  • Fuss SH, Korsching SI (2001) Odorant feature detection: activity mapping of structure response relationships in the zebrafish olfactory bulb. J Neurosci 21:8396–8407

    PubMed  CAS  Google Scholar 

  • Gao Q, Yuan B, Chess A (2000) Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nat Neurosci 3:780–785

    PubMed  CAS  Google Scholar 

  • Germana A, Montalbano G, Laura R, Ciriaco E, dell Calle ME, Vega JA (2004) S100 protein-like immunoreactivity in the crypt olfactory neurons of the adult zebrafish. Neurosci Lett 371:196–198

    PubMed  CAS  Google Scholar 

  • Germana A, Paruta S, Germana GP, Ochoa-Erena FJ, Montalbano G, Cobo J, Vega JA (2007) Differential distribution of S100 protetin and calretinin in mechanosensory and chemosensory cells of adult zebrafish (Danio rerio). Brain Res 1162:48–55

    PubMed  CAS  Google Scholar 

  • Gilmour D, Knaut H, Maischein HM, Nusslein-Volhard C (2004) Towing of sensory axons by their migrating target cellsin vivo. Nat Neurosci 7:491–492

    PubMed  CAS  Google Scholar 

  • Gloriam DEI, Bjarnadottir TK, Yan YL, Postlethwait JH, Schioth HB, Fredriksson R (2005) The repertoire of trace amine G-protein-coupled receptors: large expansion in zebrafish. Mol Phylogenet Evol 35:470–482

    PubMed  CAS  Google Scholar 

  • Goldman AL, Van der Goes van Naters W, Lessing D, Warr CG, Carlson JR (2005) Coexpression of two functional odor receptors in one neuron. Neuron 45:661–666

    PubMed  CAS  Google Scholar 

  • Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C (1996) The identification of genes with unique and essential functions in the development of the zebrafish,Danio rerio. Development 123:1–36

    PubMed  CAS  Google Scholar 

  • Halloran MC, Sato-Maeda M, Warren JT, Su F, Lele Z, Krone PH, Kuwada JY, Shoji W (2000) Laser-induced gene expression in specific cells of transgenic zebrafish. Development 127:1953–1960

    PubMed  CAS  Google Scholar 

  • Hamdani EH, Doving KB (2002) The alarm reaction in crucian carp is mediated by olfactory neurons with long dendrites. Chem Senses 27:395–398

    Google Scholar 

  • Hamdani EH, Doving KB (2003) Sensitivity and selectivity of neurons in the medial region of the olfactory bulb to skin extract from conspecifics in crucian carp,Carassius carassius. Chem Senses 28:181–191

    CAS  Google Scholar 

  • Hamdani EH, Doving KB (2006) Specific projection of the sensory crypt cells in the olfactory system in crucian carp,Carassius carassius. Chem Senses 31:63–67

    Google Scholar 

  • Hamdani EH, Doving KB (2007) The functional organization of the fish olfactory system. Prog Neurobiol 82:80–86

    CAS  Google Scholar 

  • Hamdani EH, Stabell OB, Alexander G, Doving KB (2000) Alarm reaction in the crucian carp is mediated by the medial bundle of the medial olfactory tract. Chem Senses 25:103–109

    PubMed  CAS  Google Scholar 

  • Hamdani EH, Alexander G, Doving KB (2001a) Projection of sensory neurons with microvilli to the lateral olfactory tract indicates their participation in feeding behaviour in crucian carp. Chem Senses 26:1139–1144

    CAS  Google Scholar 

  • Hamdani EH, Kasumyan A, Doving KB (2001b) Is feeding behaviour in crucian carp mediated by the lateral olfactory tract? Chem Senses 26:1133–1138

    CAS  Google Scholar 

  • Hansen A, Finger TE (2000) Phyletic distribution of crypt-type olfactory receptor neurons in fishes. Brain Behav Evol 55:100–110

    PubMed  CAS  Google Scholar 

  • Hansen A, Zeiske E (1998) The peripheral olfactory organ of the zebrafish, Danio rerio: an ultrastructural study. Chem Senses 23:39–48

    PubMed  CAS  Google Scholar 

  • Hansen A, Rolen SH, Anderson K, Morita Y, Caprio J, Finger TE (2003) Correlation between olfactory receptor cell type and function in the channel catfish. J Neurosci 23:347–359

    Google Scholar 

  • Hansen A, Anderson KT, Finger TE (2004) Differential distribution of olfactory receptor neurons in goldfish: structural and molecular correlates. J Comp Neurol 477:347–359

    PubMed  CAS  Google Scholar 

  • Hansen A, Zielinski BS (2005) Diversity in the olfactory epithelium of bony fishes: development, lamellar arrangement, sensory neuron cell types and transduction components. J Neurocytol 34:183–208

    PubMed  CAS  Google Scholar 

  • Hara TH, Zhang C (1998) Topographic bulbar projections and dual neural pathways of the primary olfactory neurons in salmonid fishes. Neuroscience 82:301–313

    PubMed  CAS  Google Scholar 

  • Hashiguchi Y, Nishida M (2006) Evolution and origin of vomeronasal-type odorant receptor gene repertoire in fishes. BMC Evol Biol 6:76. doi:10.1186/1471-2148-6-76

    PubMed  Google Scholar 

  • Hashiguchi Y, Nishida M (2007) Evolution of trace amine-associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium. Mol Biol Evol 24:2099–2107

    PubMed  CAS  Google Scholar 

  • Hutson LD, Chien CB (2002) Pathfinding and error correction by retinal axons: the role ofastray/robo2. Neuron 33:205–217

    PubMed  CAS  Google Scholar 

  • Igarashi KM, Mori K (2005) Spatial representation of hydrocarbon odorants in the ventrolateral zones of the rat olfactory bulb. J Neurophysiol 93:1007–1019

    PubMed  CAS  Google Scholar 

  • Imamura K, Mataga N, Mori K (1992) Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. I. Aliphatic compounds. J Neurophysiol 68:1986–2002

    PubMed  CAS  Google Scholar 

  • Kang J, Caprio J (1995) Electrophysiological response of single olfactory bulb neurons to amino acids in the channel catfish,Ictalurus punctatus. J Neurophysiol 74:1421–1434

    PubMed  CAS  Google Scholar 

  • Karlstrom RO, Trowe T, Klostermann S, Baier H, Brand M, Crawford AD, Grunewald B, Haffter P, Hoffmann H, Meyer SU, Muller BK, Richter S, van Eeden FJ, Nusslein-Volhard C, Bonhoeffer F (1996) Zebrafish mutations affecting retinotectal axon pathfinding. Development 123:427–438

    PubMed  CAS  Google Scholar 

  • Katoh K, Koshimoto H, Tani A, Mori K (1993) Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. II. Aromatic compounds. J Neurophysiol 70:2161–2175

    PubMed  CAS  Google Scholar 

  • Kawakami K (2004) Transgenesis and gene trap methods in zebrafish by using the Tol2 transposable element. Methods Cell Biol 77:201–222

    PubMed  CAS  Google Scholar 

  • Kawakami K, Shima A (1999) Identification of the Tol2 transposase of the medaka fishOryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafishDanio rerio. Gene 240:239–244

    PubMed  CAS  Google Scholar 

  • Kimchi T, Xu J, Dulac C (2007) A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448:1009–1014

    PubMed  CAS  Google Scholar 

  • Knaut H, Werz C, Geisler R, Nuslein-Volhard C (2003) A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature 421:279–282

    PubMed  CAS  Google Scholar 

  • Knaut H, Blader P, Strahle U, Schier AP (2005) Assembly of trigeminal sensory ganglia by chomokine signaling. Neuron 47:653–666

    PubMed  CAS  Google Scholar 

  • Korsching SI (2002) Olfactory maps and odor images. Curr Opin Neurobiol 12:387–392

    PubMed  CAS  Google Scholar 

  • Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, Parant JM, Yost HJ, Kanki JP, Chen CB (2007) Construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236:3088–3099

    PubMed  CAS  Google Scholar 

  • Kyle AL, Sorensen PW, Stacey NE, Dulka JG (1987) Medial olfactory tract pathways controlling sexual reflexes and behavior in teleosts. Ann N Y Acad Sci 519:97–107

    Google Scholar 

  • Laberge F, Hara TJ (2001) Neurobiology of fish olfaction: a review. Brain Res Rev 36:41–59

    Google Scholar 

  • Laberge F, Hara TJ (2003) Non-oscillatory discharges of an F-prostaglandin responsive neuron population in the olfactory bulb-telencephalin transition area in lake whitefish. Neuroscience 116:1089–1095

    PubMed  CAS  Google Scholar 

  • Larsson MC, Domingos AI, Jones WD, Chiappe E, Amrein H, Vosshall LB (2004)Or83b encodes a broadly expressed odorant receptor essential forDrosophila olfaction. Neuron 43:703–714

    PubMed  CAS  Google Scholar 

  • Lewcock JW, Reed RR (2004) A feedback mechanism regulates monoallelic odorant receptor expression. Proc Natl Acad Sci USA 101:1069–1074

    PubMed  CAS  Google Scholar 

  • Leypold BG, Yu CR, Leinders-Zufall T, Kim MM, Zufall F, Axel R (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci USA 99:6376–6381

    PubMed  CAS  Google Scholar 

  • Li J, Mack JA, Souren M, Yaksi E, Higashijima S, Mione M, Fetcho JR, Friedrich RW (2005a) Early development of functional spatial maps in the zebrafish olfactory bulb. J Neurosci 25:5784–5795

    CAS  Google Scholar 

  • Li Q, Shirabe K, Thisse C, Thisse B, Okamoto H, Masai I, Kuwada JY (2005b) Chemokine signaling guides axons within the retina in zebrafish. J Neurosci 25:1711–1717

    CAS  Google Scholar 

  • Li W, Scott AP, Siefkes MJ, Yan H, Liu Q, Yun SS, Gage DA (2002) Bile acid secreted by male sea lamprey that acts as a sex pheromone. Science 296:138–141

    PubMed  CAS  Google Scholar 

  • Liberles SD, Buch LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature 442:645–650

    PubMed  CAS  Google Scholar 

  • Lipschitz DL, Michel WC (2002) Amino acid odorants stimulate microvillar sensory neurons. Chem Senses 27:277–286

    PubMed  Google Scholar 

  • Luu P, Acher F, Bertrand HO, Fan J, Ngai J (2004) Molecular determinants of ligand selectivity in a vertebrate odorant receptor. J Neurosci 24:10128–10137

    PubMed  CAS  Google Scholar 

  • Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723

    PubMed  CAS  Google Scholar 

  • Martini S, Silvotti L, Shirazi A, Ryba NJP, Tirindelli R (2001) Co-expression of putative pheromone receptors in the sensory neurons of the vomeronasal organ. J Neurosci 21:843–848

    PubMed  CAS  Google Scholar 

  • Meijerink J, Carlsson MA, Hansson BS (2003) Spatial representation of odorant structure in the moth antennal lobe: a study of structure—response relationships at low doses. J Comp Neurol 467:11–21

    PubMed  Google Scholar 

  • Meister M, Bonhoeffer T (2001) Tuning and topography in an odor map on the rat olfactory bulb. J Neurosci 21:1361–1360

    Google Scholar 

  • Michel WC (1999) Cyclic nucleotide-gated channel activation is not required for activity-dependent labeling of zebrafish olfactory receptor neurons by amino acids. Biol Signals Recept 8:338–347

    PubMed  CAS  Google Scholar 

  • Michel WC, Derbidge DS (1997) Evidence of distinct amino acid and bile salt receptors in the olfactory system of the zebrafish,Danio rerio. Brain Res 764:179–187

    PubMed  CAS  Google Scholar 

  • Michel WC, Sanderson MJ, Olson JK, Lipschitz DL (2003) Evidence of a novel transduction pathway mediating detection of polyamines by the zebrafish olfactory system. J Exp Biiol 206:1697–1706

    CAS  Google Scholar 

  • Miyasaka N, Sato Y, Yeo SY, Hutson LD, Chien CB, Okamoto H, Yoshihara Y (2005) Robo2 is required for establishment of a precise glomerular map in the zebrafish olfactory system. Development 132:1283–1293

    PubMed  CAS  Google Scholar 

  • Miyasaka N, Knaut H, Yoshihara Y (2007) Cxcl12/Cxcr4 chemokine signaling is required for placode assembly and sensory axon pathfinding in the zebrafish olfactory system. Development 134:2459–2468

    PubMed  CAS  Google Scholar 

  • Mombaerts P (2004) Genes and ligands for odorant vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278

    PubMed  CAS  Google Scholar 

  • Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R (1996) Visualizing an olfactory sensory map. Cell 87:675–686

    PubMed  CAS  Google Scholar 

  • Monti Graziadei GA, Stanley RS, Graziadei PPC (1980) The olfactory marker protein in the olfactory system of the mouse during development. Neuroscience 5:1239–1252

    Google Scholar 

  • Mori K, Mataga N, Imamura K (1992) Differential specificities of single mitral cells in rabbit olfactory bulb for a homologous series of fatty acid odor molecules. J Neurophysiol 67:786–789

    PubMed  CAS  Google Scholar 

  • Mori K, Nagao H, Yoshihara Y (1999) The olfactory bulb: coding and processing of odor molecule information. Science 286:711–715

    PubMed  CAS  Google Scholar 

  • Mori K, Takahashi YK, Igarashi KM, Yamaguchi M (2006) Maps of odorant molecular features in the mammalian olfactory bulb. Physiol Rev 86:409–433

    PubMed  CAS  Google Scholar 

  • Morita Y, Finger TE (1998) Differential projections of ciliated and microvillous olfactory receptor cells in the catfish,Ictalurus punctatus. J Comp Neurol 398:539–550

    PubMed  CAS  Google Scholar 

  • Nasevisius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220

    Google Scholar 

  • Neuhaus EV, Gisselmann G, Zhang W, Dooley R, Stortkuhl K, Hatt H (2005) Odorant receptor heterodimerization in the olfactory system ofDrosophila melanogater. Nat Neurosci 8:15–17

    PubMed  CAS  Google Scholar 

  • Neuhauss SCF (2003) Behavioral genetic approaches to visual system development and function in zebrafish. J Neurobiol 54:148–160

    PubMed  CAS  Google Scholar 

  • Ngai J, Alioto TS (2007) Genomics of odor receptors in zebrafish. In: Firestein S, Beauchamp GK (eds) The senses: a comprehensive reference, vol. 4. Olfaction and taste. Academic, Oxford, pp 553–560

    Google Scholar 

  • Nguyen-Ba-Charvet KT, Chedotal A (2002) Role of slit proteins in the vertebrate brain. J Physiol (Paris) 96:91–98

    CAS  Google Scholar 

  • Nikonov AA, Caprio J (2001) Electrophysiological evidence for a chemotopy of biological relevant odors in the olfactory bulb of the channel catfish. J Neurophysiol 86:1869–1876

    PubMed  CAS  Google Scholar 

  • Nikonov AA, Caprio J (2004) Odorant specificity of single olfactory bulb neurons to amino acids in the channel catfish. J Neurophysiol 92:123–134

    PubMed  Google Scholar 

  • Nikonov AA, Caprio J (2007) Highly specific olfactory receptor neurons for types of amino acids in the channel catfish. J Neurophysiol 98:1909–1918

    PubMed  CAS  Google Scholar 

  • Nikonov AA, Finger TE, Caprio J (2005) Beyond the olfactory bulb: an odoropic map in the forebrain. Proc Natl Acad Sci USA 102:18688–18693

    PubMed  CAS  Google Scholar 

  • Nishizumi H, Kumasaka K, Inoue N, Nakashima A, Sakano H (2007) Deletion of the core-H region in mice abolishes the expression of three proximal odorant receptor genes in cis. Proc Natl Acad Sci USA 104:20067–20072

    PubMed  CAS  Google Scholar 

  • Pfister P, Rodriguez I (2005) Olfactory expression of a single and highly variable V1r pheromone receptor-like gene in fish species. Proc Natl Acad Sci USA 102:5489–5494

    PubMed  CAS  Google Scholar 

  • Ressler KJ, Sullivan SL, Buck LB (1994) Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79:1245–1255

    PubMed  CAS  Google Scholar 

  • Rolen SH, Caprio J (2007) Processing of bile salt odor information by single olfactory bulb neurons in the channel catfish. J Neurophysiol 97:4058–4068

    PubMed  CAS  Google Scholar 

  • Rolen SH, Sorensen PW, Mattson D, Caprio J (2003) Polyamines as olfactory stimuli in the goldfishCarassius auratus. J Exp Biol 206:1683–1696

    PubMed  CAS  Google Scholar 

  • Rossi D, Zlotnik A (2000) The biology of chemokines and their receptors. Annu Rev Immunol 19:23–45

    Google Scholar 

  • Rubin BD, Katz LC (1999) Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23:499–511

    PubMed  CAS  Google Scholar 

  • Saraiva LR, Korsching SI (2007) A novel olfactory receptor gene family in teleost fish. Genome Res 17:1448–1457

    PubMed  CAS  Google Scholar 

  • Sato T, Hamaoka T, Aizawa H, Hosoya T, Okamoto H (2007a) Genetic single-cell mosaic analysis implicates ephrinB2 reverse signaling in projections from the posterior tectum to the hindbrain in zebrafish. J Neurosci 27:5271–5279

    CAS  Google Scholar 

  • Sato Y, Miyasaka N, Yoshihara Y (2005) Mutually exclusive glomerular innervation by two distinct types of olfactory sensory neurons revealed in transgenic zebrafish. J Neurosci 25:4889–4897

    PubMed  CAS  Google Scholar 

  • Sato Y, Miyasaka N, Yoshihara Y (2007b) Hierarchical regulation of odorant receptor gene choice and subsequent axonal projection of olfactory sensory neurons in zebrafish. J Neurosci 27:1606–1615

    CAS  Google Scholar 

  • Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H (2003) Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science 302:2088–2094

    PubMed  CAS  Google Scholar 

  • Shykind BM, Rohani SC, O'Donnell S, Nemes A, Mendelsohn M, Sun Y, Axel R, Barnea G (2004) Gene switching and the stability of odorant receptor gene choice. Cell 117:801–815

    PubMed  CAS  Google Scholar 

  • Sood R, English MA, Jones M, Mullikin J, Wang DM, Anderson M, Wu D, Chandrasekharappa SC, Yu J, Zhang J, Paul Liu P (2006) Methods for reverse genetic screening in zebrafish by resequencing and TILLING. Methods 39:220–227

    PubMed  CAS  Google Scholar 

  • Sorensen PW, Caprio J (1998) Chemoreception. In: Evans DH (ed) The physiology of fishes, 2nd edn. CRC, Boca Raton, pp 375–405

    Google Scholar 

  • Sorensen PW, Hara TJ, Stacey NE (1991) Sex pheromones selectively stimulate the medial olfactory tracts of male goldfish. Brain Res 558:343–347

    PubMed  CAS  Google Scholar 

  • Sorensen PW, Fine JM, Dvornikovs V, Jeffrey CS, Shao F, Wang J, Vrieze LA, Anderson KR, Hoye TR (2005) Mixture of new sulfated steroids functions as a migratory pheromone in the sea lamprey. Nat Chem Biol 1:324–328

    PubMed  CAS  Google Scholar 

  • Speca DJ, Lin DM, Sorensen PW, Isacoff EY, Ngai J, Dittman AH (1999) Functional identification of a goldfish odorant receptor. Neuron 23:497–498

    Google Scholar 

  • Spehr M, Leinders-Zufall T (2005) One neuron-mulitple receptors: increased complexity in olfactory coding? Sci STKE 285:pe25. doi:10.1126/stke.2852005pe25

    Google Scholar 

  • Stacey NE, Kyle AL (1983) Effects of olfactory tract lesions on sexual and feeding behavior in the goldfish. Physiol Behav 30:621–628

    PubMed  CAS  Google Scholar 

  • Steele CW, Owens DW, Scarfe AD (1990) Attraction of zebrafishBrachydanio rerio to alanine and its suppression by copper. J Fish Biol 36:341–352

    CAS  Google Scholar 

  • Steele CW, Scarfe AD, Owens DW (1991) Effects of group size on the responsiveness of zebrafishBrachydanio rerio to alanine, a chemical attactant. J Fish Biol 38:553–564

    CAS  Google Scholar 

  • Stowers L, Holy TE, Meister M, Dulac C, Koentges G (2002) Loss of sex discrimination and male–male aggression in mice deficient for TRP2. Science 295:1493–1500

    PubMed  CAS  Google Scholar 

  • Strotmann J, Levai O, Fleischer J, Schwarzenbacher K, Breer H (2004) Olfactory receptor proteins in axonal processes of chemosensory neurons. J Neurosci 24:7754–7761

    PubMed  CAS  Google Scholar 

  • Takahashi YK, Kurosaki M, Hirono S, Mori K (2004) Topographic representation of odorant molecular features in the rat olfactory bulb. J Neurophysiol 92:2413–2427

    PubMed  CAS  Google Scholar 

  • Thermes V, Grabher C, Ristratore F, Bourrat F, Choulika A, Wittbrodt J, Joly JS (2002)I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech Dev 118:91–98

    PubMed  CAS  Google Scholar 

  • Tran PB, Miller RJ (2003) Chemokine receptors: signposts to brain development and disease. Nat Rev Neurosci 4:444–455

    PubMed  CAS  Google Scholar 

  • Troemel ER, Chou JH, Dwyer ND, Colbert HA, Bargmann CI (1995) Divergent seven transmembrane receptors are candidate chemosensory receptors inC. elegans. Cell 83:207–218

    PubMed  CAS  Google Scholar 

  • Uchida N, Takahashi YK, Tanifuji M, Mori K (2000) Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features. Nat Neurosci 3:1035–1043

    PubMed  CAS  Google Scholar 

  • Valentincic T, Metelko J, Ota D, Pirc V, Blejec A (2000) Olfactory discrimination of amino acids in brown bulhead catfish. Chem Senses 25:21–29

    PubMed  CAS  Google Scholar 

  • Vassar R, Chao SK, Sitcheran R, Numez JM, Vosshall LB, Axel R (1994) Topographic organization of sensory projections to the olfactory bulb. Cell 79:981–991

    PubMed  CAS  Google Scholar 

  • Vitebsky A, Reyes R, Sanderson MJ, Michel WC, Whitlock KE (2005) Isolation and characterization of thelaure olfactory behavioral mutant in the zebrafish,Danio rerio. Dev Dyn 234:229–242

    PubMed  CAS  Google Scholar 

  • Vosshall LB, Stocker RF (2007) Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 30:505–533

    PubMed  CAS  Google Scholar 

  • Vosshall LB, Wong AM, Axel R (2000) An olfactory sensory map in the fly brain. Cell 102:147–159

    PubMed  CAS  Google Scholar 

  • Wang F, Nemes A, Mendelsohn M, Axel R (1998) Odorant receptors govern the formation of a precise topographic map. Cell 93:47–60

    PubMed  CAS  Google Scholar 

  • Wang JW, Wong AM, Flores J, Vosshall LB, Axel R (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112:271–282

    PubMed  CAS  Google Scholar 

  • Weltzien FA, Hoglund E, Hamdani EH, Doving KB (2003) Does the lateral bundle of the medial olfactory tract mediate reproductive behavior in male crucian carp? Chem Senses 28:293–300

    PubMed  Google Scholar 

  • Westerfield M (1995) The zebrafish book, 3rd edn. University of Oregon Press, Eugene, Oregon

    Google Scholar 

  • Wienholds E, van Eeden F, Kosters M, Mdde J, Plasterk RHA, Cuppen E (2003) Efficient target-selected mutagenesis in zebrafish. Genome Res 13:2700–2707

    PubMed  CAS  Google Scholar 

  • Yang Z, Jiang H, Chachainasakul T, Gong S, Yang XW, Heintz N, Lin S (2006) Modified bacterial artificial chromosome for zebrafish transgenesis. Methods 39:183–188

    PubMed  CAS  Google Scholar 

  • Yu CR, Power J, Barnea G, O'Donnell S, Brown HE, Osborne J, Axel R, Gogos JA (2004) Spontaneous neural activity is required for the establishment and maintenance of the olfactory sensory map. Neuron 42:553–566

    PubMed  CAS  Google Scholar 

  • Zielinski BS, Hara TJ (2007) Olfaction. In: Hara T, Zielinski B (eds) Fish physiology, vol 25. Sensory systems neuroscience. Academic, San Diego, pp 1–43

    Google Scholar 

  • Zippel HP, Voigt R, Knaust M, Luan Y (1993) Spontaneous behaviour, training and discrimination training in goldfish using chemosensory stimuli. J Comp Physiol A 172:81–90

    Google Scholar 

  • Zou Z, Buck LB (2006) Combinatorial effects of odorant mixes in olfactory cortex. Science 311:1477–1481

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Nobuhiko Miyasaka and Yuki Sato for preparation of the figures and critical reading of the manuscript. The work was supported in part by a Grant-in-Aid for Scientific Research (B) and a Grant-in-Aid for Scientific Research on Priority Area (Cellular Sensor) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yoshihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London

About this chapter

Cite this chapter

Yoshihara, Y. (2008). Molecular Genetic Dissection of the Zebrafish Olfactory System. In: Korsching, S., Meyerhof, W. (eds) Chemosensory Systems in Mammals, Fishes, and Insects. Results and Problems in Cell Differentiation, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2008_1

Download citation

Publish with us

Policies and ethics